
Introducing learning into tensor networks

Steven Phillips

(stevep@etl.go.jp)

Cognitive Science Section, Electrotechnical Laboratory, Tsukuba, Japan

Abstract: In this paper it is shown how component,
role and cue representations are learnt by backpropa-
gating error through units and connections that con-
struct tensor representations.

Introduction
Connectionist models of human cognition have been

strongly criticized for their inability to demonstrate
structure-based behaviour without implementing sym-
bol systems [1]. Tensor networks were developed as a
way of representing structured objects within a con-
nectionist framework by units that compute the outer
product of object-role pairs [4]. However, tensor rep-
resentations assume, ideally, orthonormal role vectors.
In this paper, I present an architecture called the
tensor-recurrent network (TRN) that learns these rep-
resentational components.
A connectionist implementation of the outer prod-

uct of two vectors ~V (object) and ~W (role) is a ma-
trix of tensor unit activations such that Tij = Vi:Wj,
where Tij is the ith-row jth-column unit of a rank-2

tensor ~T ; and Vi and Wj are the ith and jth units

of vectors ~V and ~W , respectively. A tensor repre-
sentation is the sum of the outer product of object-
role pairs. For example, the structured object John

Loves Mary has the tensor representation ~TJLM =
~VJ
 ~Rs + ~VL
 ~Rv + ~VM
 ~Ro, where ~VJ , ~VL and ~VM
represent objects John, Loves and Mary, respectively;

and ~Rs, ~Rv and ~Ro represent the subject, verb and ob-
ject roles, respectively. In terms of connectivity, each
tensor unit Tij has incoming connections from units
Vi and Wj of strength 1.

The inner product of a tensor ~T and a vector ~W

results in vector ~V such that Vi =
PN

j Tij :Wj , imple-
mented as weight 1 connections from their respective
units. For example, given cue vector ~Qs (requesting

the subject component), ~TJLM� ~Qs = ~VJ , if ~Qs = ~Rs,
and role vectors are mutually orthonormal.

The tensor-recurrent network (TRN)
The TRN learns appropriate object, role and cue

vectors by backpropagating an error signal through
units that compute the outer and inner products. Us-
ing John loves Mary Subject? as an example, a trace
of network activation and error propagation is given
for the TRN, depicted in Figure 1.
Each component object is presented to the network

at the input units (one per time step). This results in
activation vectors at the hidden units (internal com-
ponent object representation) and roles units (object's
role representation). Role vectors are also inuenced
by previous roles vectors represented at the context

units. The outer product of object and role represen-
tations is computed and added to the tensor units.
The inner product of tensor and role representations
is computed at the inner product units. The resulting
vector is mapped to the output units and compared to
the target output. During the �rst three time steps the
network is required to auto-associate the input, which
helps learn appropriate internal representations. At
the fourth time step, a query vector is presented at
the question units, which results in a cue vector at
the cue units. The inner product of the tensor and
cue representations is computed at the inner product
units, which is then mapped to the output units for
comparison against the target.
At each time step, error is backpropagated from

the output units to question, input and context units.
Modi�able weights (dashed lines) are updated so as to
minimize the sum of squares di�erence between out-
put and target vectors. Units with modi�able weights
have tanh as their activation function.
Component representations In the case where the
role vectors are mutually orthonormal, then, by the
laws: (~v
 ~w)� ~w = ~v, if k~wk = 1, and (~v
 ~w)�~z = ~0,
if ~w ? ~z, the vector representation at the hidden units
will be the same as the vector representation at the in-
ner product units. Consequently, the network will act
like a three-layer feedforward network, permitting, in
principle, the learning of internal object representa-
tions for arbitrary input-output mappings.
Role representations Suppose the network has al-
ready been given the �rst component ~VJ , and is cur-
rently required to auto-associate the second compo-
nent ~VL (i.e., ~VL is the current target). Then, the
error at the output layer is:

E = k~VL � g((f(~VJ)
 ~Rs + f(~VL)
 ~Rv)� ~Rv)k

E = k~VL � g(�f(~VJ) + f (~VL))k;

where f is the function from input to hidden units;
g is the function from inner product to output units;
~VJ and ~VL are the input/output representations of

the John and Mary components, respectively; ~Rs and
~Rv are their respective role vectors; and, � is the dot
product of ~Rs and ~Rv. Error E goes to zero (E ! 0)
when � ! 0. That is, when the two role vectors are
orthogonal, assuming g(f (~VL)) = ~VL (i.e., the network
has learnt to auto-associate the Loves component).
Cue representations Suppose we request the sub-
ject component from the object John Loves Mary.
Then, at the fourth time step, error is:

E = k~VJ � g(~TJLM � ~Qs)k

1

E = k~VJ � g(�f (~VJ) + �f (~VL) + f(~VM))k;

where ~Qs is the cue vector at the cue units; and, �,

� and are the dot products of ~Qs with ~Rs, ~Rv and
~Ro, respectively. Error E goes to zero (E ! 0) when
� ! 1, and �; ! 0 (i.e., when the question vec-
tor is collinear with the �rst role vector, assuming

g(f(~VJ)) = ~VJ).

context(10)

co
py

 b
ac

k

bottleneck(2)

state(10)

role(4)

tensor(32)
(outer product)

inner product(8)

output(8)

cue(4)

question(3) input(8)

hidden(8)

f

g

Figure1: Tensor-recurrent network architecture.

Simulation
Simple sentences conforming to the structure subject-

verb-object are presented to the network, followed by
a question requesting the subject, verb or object com-
ponent. Subject and object components are drawn
from the set f Bill, John, Karen, Mark, Vivian g,
and the verb component is drawn from the set f calls,
chases, loves g. All components are encoded locally
(e.g., 01000).
Each trial, starting from a randomly initialized set

of weights, consisted of training on 20 randomly gen-
erating sentence/question sequences, and testing on
a separate set of 100 randomly generated sequences.
Each word or question was presented one per time
step with the network activations being reset to zero
at the beginning of each sentence. The network was
trained using standard backpropagation with the sum
of squares error function and a learning rate of 0.1, un-
til the activation of every output units was within 0.4
of the target output for all patterns in all sequences.
The network was tested for correct extraction of com-
ponents (all units within 0.5 of their target) on the
remaining sentences. On each trial the number of cor-
rect responses was recorded. Full details of network
simulations and their application to the systematicity
problem appear in [2, 3].
The percentage of correct responses to the question

vector on the test set averaged over 5 trials is given

in Figure 2, where the x-axis indicates the number of
nouns that appeared in both subject and object po-
sitions in the training set. The bottom dotted line
indicates chance level response, and the error bars in-
dicate 95% con�dence intervals. The graph shows re-
sults only for noun-position combinations that did not
occur in the training set.

0

20

40

60

80

100

0 1 2 3 4 5

C
or

re
ct

 (
%

)

Number of overlapping items

0.5 criterion
Chance level

Figure2: Percentage correct versus overlap.

Discussion
Table 1 shows how with learning the role vectors be-

come progressively more orthogonal. (The measure is
one minus the magnitude of the normalized dot prod-
uct so 0 implies collinear and 1 implies orthogonal.)
By 1000 epochs of training the verb and object role
vectors were collinear. However, by 4900 epochs of
training these roles were su�ciently close to orthogo-
nal permitting correct extraction of components.

Table1: Orthogonality between role vectors.

Update S-V S-O V-O aver.

0 0.32 0.22 0.02 0.19

1000 0.89 0.96 0.00 0.61

4900 0.70 0.59 0.71 0.67

Acknowledgments
I would like to Kazuhisa Niki for his help. The

author is supported by an STA fellowship.

References
[1] J A Fodor and Z W Pylyshyn. Connectionism and

cognitive architecture: A critical analysis. Cogni-
tion, 28:3{71, 1988.

[2] S Phillips. Strong systematicity within a connec-
tionist framework: Tensor-recurrent network. In
16th Conf. of Cog. Sci. Soc., pages 723{727, 1994.

[3] S Phillips. Connectionism and the Problem of Sys-
tematicity. PhD thesis, Univ. of Queensland, Aus-
tralia, 1995. ftp://uqcsftp.cs.uq.oz.au/pub/pdp/th
eses/phillips.ps.Z.

[4] P Smolensky. Tensor product variable binding.
Arti�cial Intelligence, 46:159{216, 1990.

2

