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ABSTRACT

Learning transfer is the improvement in performance on one
task having learnt a related task. That the degree of transfer
is significantly greater in humans than other primates and
animals suggests it is a critical component of higher intel-
ligence. One connectionist approach, weight sharing, repre-
sents common task knowledge as weighted connections shared
by subnetworks dedicated to individual tasks. Although this
technique permits transfer, recent analysis has shown that it
does not support the same degree of transfer as humans. In
this paper, several extensions are outlined, and their theoret-
ical limits compared. The comparison points to a greater role
for control mechanisms in connectionist cognitive models.
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1. Introduction

Learning transfer is the phenomenon whereby performance
(as measured by the number of learning trials, for example)
on one task is significantly better having learnt a structurally
related task. Experiments on learning transfer typically in-
volve a series of tasks with the same structure, but differing
in stimulus materials. Subjects are tested on a task instance
until some learning criterion is reached, at which point a new
task is tested. If the number of learning trials to reach cri-
terion on the subsequent task is significantly less than for
the previous task, then the subject has demonstrated some
degree of learning transfer.

Since the work of Harlow [4] it is known that the degree of
transfer differentiates species (see [7] for a review). Rats,
for instance, show almost no transfer even after hundreds of
tasks, whereas humans show the greatest degree of transfer
[7]. That the degree of transfer distinguishes humans from
other primates and animals suggests the underlying mecha-
nisms are critical components of intelligence.

One connectionist approach, weight sharing, represents com-
mon task knowledge as weighted connections shared by sub-
networks dedicated to individual tasks (e.g., [5, 1]). In Hin-
ton’s simulations, a feedforward network was trained to make
inferences about relationships in two isomorphic family trees.
The network is required to learn the mapping from person
and relation to person (e.g., John, Wife — Mary) for each
family tree. The network consisted of two groups of input and
output units (i.e., a group for each family) linked to common
groups of hidden units. The weighted connections between
hidden units code common knowledge across the two fami-
lies. With this configuration the network was trained on 100
of the 104 possible person-relation pairs. In one simulation
run, the network generalized to all four remaining test cases.
In the other run, it generalized to three test cases.

Weight sharing appears as an elegant solution to the problem

of learning transfer in networks. However, recent analysis
[9, 8] showed that it was not sufficient to account for the
degree of transfer in humans [2]. In this paper, I examine
extensions to weight sharing and compare their theoretical
limits to the psychological data.

2. Human subjects: Klein 4-group task

In a series of psychological experiments [2], human subjects
exhibited rapid transfer of learning on a series of tasks shar-
ing the structure. In one experiment, subjects are given a
series of four task instances derived from the Klein-4 Group
(Figure (a)), where a, b, c and d are states; and H and V are
operations on states. For example, application of H to state
a results in state b. When states are depicted as vertices of
a square, H and V can be interpreted as horizontal and ver-
tical transitions, respectively. Each task instance consisted
for four unique three-letter strings and two unique shapes,
corresponding to the states and operators in the klein group
(e.g., Figure (b)). Subjects are presented with a string and
a shape, and asked to predict the response string (e.g., PEJ
and A predicts BIP).
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Figure 1: Klein 4-group (a) and task instance (b).
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By the fourth task instance, subjects predict six of the eight
responses. Furthermore, in a related experiment, subjects
were also able to predict the start state, given the opera-
tor and final state; and the operator given the start and
final states. In both cases, subjects predicted six of eight
responses.’

3. Feedforward networks with shared weights

Before detailing and expanding upon an analysis of trans-
fer initiated in [9], some justification is given for the choice
of local input/output representations (i.e., single unit with
activation 1, and the rest 0) for task elements used here,
and in [5]. Generalization performance is sensitive to the

1Since the assignment of strings and shapes to states and opera-
tors is arbitrary and unique across task instances, it is not possible
to predict the first two responses (see [2]).



choice of input/output representations. In an extreme case,
if all elements are represented by a single real number, then
arbitrarily many generalizations are possible after training
on only two examples in a linear system with one variable.
Although there is some similarity between elements in the
Klein 4-group task (e.g., strings may share common charac-
ters), this similarity is not the basis for generalization, since
the assignment of task elements is arbitrary across task in-
stances. The use of local representations acts as a control
measure to eliminate any possibility of generalization on the
basis of surface (input pattern) similarity.

3.1. Summary of previous results

In this and subsequent sections, the network consists of four
input and four output units representing strings for each task
instance, and two input units for shapes. The inputs are
connected to a common layer of hidden units, which are con-
nected to a second common layer of hidden units, which are
connected to the outputs.

Since generalization is maximized by reducing the number
of free parameters, while still being able to represent a solu-
tion, the strategy was to test a network with the minimum
number of hidden units. With only three hidden units in the
first layer and two in the second, the network could learn one
task instance but could not transfer that learning to a sub-
sequent task [9]. Lack of transfer could have been due to a
poor set of learning parameters. However, a plot of the er-
ror surface around a global minimum showed that even when
only two of the weights where free the error surface for the
training set was not constrained to coincide with the testing
set. In others words, there were many solutions (minima) in
the training space that were not solutions to the test space,
and so generalization was highly unlikely. Thus it was con-
cluded that weight sharing along could not demonstrate any
degree of transfer across the isomorphic task instances [8].

4. Other techniques for improving transfer

As well as connectivity, activation and error functions also de-
termine the shape of the error surface. Given the possibly in-
finite variations one can make in terms of these architectural
components it is not feasible to canvas all possibilities. How-
ever, we can identify specific properties and examine their
capacity to support learning transfer.

4.1. Reduced representations

The effective weight space of the network can be restricted
by enforcing fewer activation states for its units (e.g., binary,
rather than real valued). In the extreme case, the smallest
number of identifiable states for the second hidden layer is
4 (i.e., one state for each possible response). Fewer states
means that at least one state must be mapped to two different
responses. Reduced representations can be implemented with
a signal binary valued unit for each internal state and 0/1
weights connected to the output; or, by one real valued unit
and weights with non-monotonic activation functions at the
output units. In the second case, since it is not possible
to partition 4 points on a line using single threshold units,
double threshold units are required. Gaussian functions, for
example, have two thresholds permitting each point to be
separated from every other point.

In either case, how many patterns are required to learn a
new task? The lower bound is four (i.e., one pattern for

each possible response). Each output unit must be trained
to discriminate between two types of points: the pattern it
represents; and all other patterns. With fewer patterns, at
least one of the output units will be trained on only one type
of point (i.e., the patterns represented by the other output
units). In this case, the training set provides no information
about discrimination for that output unit. Therefore, the
upper bound on generalization is four patterns.

4.2. Bidirectional connections

One limiting property of the feedforward network is the uni-
directional nature of its flow of information. Learning the
mapping between task specific input/output representations
and common structural elements proceeds in one direction
only: from stimulus to internal representation and then from
internal representation to response. These two directions are
independent. The consequence is that learning to map a
task element (stimulus) to a suitable internal representation
(i-e., alignment) does not permit the related generalization
of mapping the aligned internal representation to the same
task element, but treated as a response. Even with the most
optimized internal representational space (four states) four is
an upper bound on generalization.

An obvious extension to the feedforward network is to intro-
duce bidirectional weights and linear units so that the inter-
pretation and its inverse are learnt concurrently. Following
previous analysis, this architecture assumes only four possible
states at the hidden layer encoding strings, and two possible
states for shapes. Since the mapping is bidirectional there is
one unit per state and binary valued bidirectional weighted
connections between each pair of units.

Suppose the network has been trained on two patterns for
the second task: (A,H) — B, and (D,V) — A. Now, for the
sake of identifying bounds on generalization, suppose each
task element in the first two patterns has been aligned to
its corresponding structural element. That is, the five task
elements (A,B,D,H,V) represented at the input/output units
will have been mapped to their corresponding internal rep-
resentations. However, the sixth element C does not appear
in the first two patterns, so weights from its corresponding
input/output unit will not have been trained. There are four
possible states that element C can be mapped to, only one of
which is correct. Consequently, when given the third pattern:
(C,H) or (C,V), there is no guarantee the network will make
the correct prediction. The network requires training on the
third pattern to identify the correct alignment for element
C. Hence the upper bound on generalization is five, which is
still less than human performance.

4.3. Non-local weight modification

The limitation of the previous techniques is that the mapping
of each task element was considered independent of the other
task elements. Human subjects can make use of the one-to-
one correspondence principle to improve generalization. That
is, each element of a task instance maps to one and only one
unique structural element. For example, if we know from the
first two stimulus-response trials that elements A, B and D
map to particular structural elements, then we can infer that
element C maps to the last remaining unaligned structural
element, even though C does not appear in the first two trials.
Use of the one-to-one correspondence principle permits the
correct prediction after two training examples.



This principle can be implemented by modifying the weight
updating function. A purely local weight update function
does not implement one-to-one correspondence, since the
weights linking the unaligned task and structure elements are
not updated during training on the first two patterns. Con-
sequently, a third training pattern containing the unaligned
element C is required to align all elements. Yet, one-to-one
correspondence can be enforced using a non-local weight up-
date function® (e.g., [6]).

Suppose a group of input/output units (Io, Iy, Ic, I4) for
representing task stimuli, and a group of hidden units (Ha,
Hy, H., Hy) representing corresponding structural elements.
Following along the lines of Hummel and Holyoak’s model, a
procedure for ensuring one-to-one correspondence is outlined
in the following example:

e Suppose input pattern A is presented at the in-
put/output units. The unit I, becomes active and prop-
agates its activation to the hidden units. Mutual inhi-
bition between hidden units ensures only one unit (say,
H,) is most active.

e Weights linking co-active units have their weights in-
creased. The outgoing weights from a unit are normal-
ized. Normalization increases the weight between the
two most co-active units (Io-H,) at the expense of the
other outgoing weights. It ensures that unit I, only
activates the hidden unit H, (i.e., task element A is
aligned to one and only one structural element). How-
ever, at this stage unit H, could be activated by other
input/output units.

e To constrain hidden units from being activated by other
input/output units, incoming weights to a common unit
are also normalized. As with outgoing weights, normal-
ization increases one weight at the expense of others. In
this case, it has the effect of ensuring that a structural
element corresponds to one and only one task element.

e If weights are bounded above by one, and normalized
to sum to zero [6], then weights between aligned pairs
(e-g., I,-H,) will approach one and non-aligned pairs
(i.e., I;i-H, and I,-H;, where 3,j # a) will be negative.

Suppose the first two trials consisted of stimulus-response
patterns: (A,H) — B; and (D,V) — A. By the end of the
second trial, all three elements have been aligned to their
corresponding structural elements. For the sake of exposi-
tion, suppose elements are aligned by setting weights I,-H,,
I,-Hp and I4-Hg to one. By virtue of normalization, all other
weights into or out of these six units will have small negative
values. This leaves the single I.-H. connection. Although,
this weight was not directly trained by the presence of the C
element (since it does not appear in the first two trials), it is
indirectly trained by its absence. All other connections to the
unit I. will have small negative weights, since they are con-
nected to non-aligned units (i.e., hidden units already aligned
to other input/output units). Similarly, all other connections
to the unit H. will have small negative weights. Assuming
a small positive starting weight for connection I.-H., then
normalization will force this value to become strongly posi-
tive. On the third trial, when element C is presented to the
network it will already be aligned to the structural element

2In the sense that weight change is also a function of other
weights in the same layer (e.g., normalization).

represented at H., resulting in correct prediction of the re-
sponse element. After training on two patterns, non-local
weight modification permits generalization to the other six
patterns.

4.4. Omnidirectionality

In the Klein 4-group tasks, subjects also showed the ability to
predict the missing operator (shape) given the initial and final
states, and the initial state given the operator and final states.
Bidirectional links between task and structure elements are
not sufficient to make this generalization, since the mapping
between structure elements is still unidirectional (i.e., from
initial state and operator to final state). In fact, the first
test from initial and final states to operator is meaningless to
a feedforward network without input units to represent the
initial state and output units to represent the operator.

In general, omnidirectionality between related elements is
supported by tensor networks [10, 3]. For full implemen-
tation details the reader is referred to these articles. Here,
only an outline of a tensor-based architecture is provided.

Based on the work of [10], [3] showed how tensor networks
can support relations as the sum of the tensor outer prod-
ucts of vectors representing each tuple element. A rank n
tensor (7™) is constructed by taking the outer product of
vectors representing each tuple element of an n-ary relational
instance. For example, the ternary relational instance (b, v, c)

is represented by the rank 3 tensor T = b®7® ¢ The inner

—

product is used to extract tuple elements, as in bRTOT? =¢.

For example, Ri(I,0, F) = {(b,v,c),...} corresponds to the
tensor Tj, = bRTRE+. . ., under the assumption that element
vectors are mutually orthonormal. Also, T; = BIP ® b +
JAS®c+ (_j ® U... represents the interpretations of strings
and shapes to structural elements, deduced from the first two
patterns. The response to the third stimulus pair is predicted
as follows:

BIPOT =b Q0T —
. b®17®f;9—>€;and
3. T,0¢— JAS.

A tensor based network captures the same degree of gener-
alization as subjects at the fourth task by embodying some
of the properties of relational systems. Those properties are
omnidirectional access to relational elements, and represen-
tation of the relational structure via groups of units dedi-
cated to particular relational arguments (roles). Given the
same two first trial tuples, the corresponding tensor opera-
tions supporting omnidirectional prediction are:

1. BIPoT, b T.0JAS — &
b®Th ®— ¥; and
3. T0t—0.

Tensors are one mechanism for implementing omnidirectional
access to knowledge elements. With respect to the Klein 4-
group task, after the first two trials they permit prediction
for the remaining six final state trials, plus six operator trials,
plus six initial state trials.



5. Summary: Five techniques for transfer

Weight sharing, in itself, does not result in any transfer
of learning. Essentially, with real-valued activations and
weights, there are too many possible internal states. The
number of internal states at the second hidden layer can be re-
duced to a minimum of four. In this case, learning transfer is
increased to four patterns on the subsequent task. However,
four is the absolute upper limit with a purely feedforward
network. Further increase in learning transfer must make
use of the bidirectional relationship between task and struc-
ture elements. The use of bidirectional connections between
input/output units and hidden units permits five patterns to
be correctly predicted. However, bidirectional connections
alone do not enforce the one-to-one correspondence princi-
ple between task and structure elements. This principle can
be enforced by a non-local weight update function, permit-
ting the maximum transfer in one direction (i.e., from initial
state and operator to final state) of six patterns. Yet, each
task is a relation (not just a function), permitting elements
to be predicted in other directions (e.g., predict the oper-
ator that results in a transition between two given states).
Omnidirectional access to task elements can be implemented
by omnidirectional connections between hidden units, which
encode common structural information. This architectural
component permits six final states to be predicted plus six
operators plus six initial states (6*"), matching the capabil-
ity of humans. These results are summarized in Table 1.

Table 1: Architectural components and their impact on learn-
ing transfer as measured by the number of correctly predicted
patterns on the subsequent task.

Architectural component Transfer (Max. 67 7)
Weight sharing 0

Reduced representations 4
Bidirectional i/o connections 5
Non-local weight modification 6
Omnidirectional connections 6+t
Humans 67"

6. Discussion: Nature of knowledge
representation

Much of connectionist research has focussed on the issue of
representation in the sense of data values (e.g., local versus
distributed vectors). The first two techniques are examples.
They result in reduced descriptions (vector representations)
of task knowledge so as to increase generalization. The con-
trol process remains largely unchanged (i.e., forward propaga-
tion of activation, and backward propagation of error signal).

The other three components are essentially process oriented
in the sense that they concern the flow of information, rather
than its value. With bidirectional connections, for example,
activation flows both from input/output to hidden units and
from hidden to input/output units. One may remark that
bidirectional connections play the same role of reduced de-
scriptions as shared weights in that two previously separate
weight matrices are compressed to one. But the difference is
that bidirectional units have a temporal (serial) component.
It makes no sense for the hidden units to activate the in-
put/output units until they themselves have been activated
by the input/output units. Tensor networks also assume ad-
ditional connectivity to place inputs onto the appropriate axis

of the tensor. The STAR model of analogical reasoning [3]
and the LISA model of analogical reasoning and schema in-
duction [6] are two examples of networks with more complex
control mechanisms.

7. Conclusion

Control affords a particular form of generalization. From the
five techniques sketched here, a pattern begins to emerge.
Increasing generalization comes by overloading network re-
sources (e.g., units, weights dedicated to more than one re-
lated task). But reuse of resources requires co-ordination
(control).

In the past, connectionists have looked for more power-
ful learning algorithms while keeping the basic feedfor-
ward/feedback control structure the same. The work here
suggests a greater need for more complex control mecha-
nisms, which is evident in more recent models. One can spec-
ulate that the advance of humans over other animals is the
control, rather than the distribution of information.
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