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Abstract

At root, the systematicity debate over classical ver-
sus connectionist explanations for cognitive architecture
turns on quantifying the degree to which human cogni-
tion is systematic. We introduce into the debate recent
psychological data that provides strong support for the
purely structure-based generalizations claimed by Fodor
and Pylyshyn (1988). We then show, via simulation,
that two widely used connectionist models (feedforward
and simple recurrent networks) do not capture the same
degree of generalization as human subjects. However,
we show that this limitation is overcome by tensor net-
works that support relational processing.

Distribution of cognitive behaviour

In the search for the essential components of cognitive
architecture researchers have looked for concepts, phe-
nomena and principles that help reduce potential candi-
dates to, ultimately, a single architecture that explains
cognitive behaviour. Systematicity is one such concept.
Systematicity is the property whereby cognitive ca-

pacities are grouped on the basis of common structure.
For example, the ability to infer that \John went to the
store" given that \John and Mary went to the store",
extends to other structurally related inferences such as
\Mary went to the store" given that \Mary and John
went to the store". These two inferences share the com-
mon structure \P and Q implies P".
The concept of systematicity was introduced by Fodor

and Pylyshyn (1988) to di�erentiate two candidate cog-
nitive architectures: classical (symbol based) and con-
nectionist (vector based) on the basis of their distribu-
tion of behaviours. In brief, their argument is that:

� Human cognitive behaviour is grouped on the basis
of common structure (e.g., from above, it is not the
case that one can do the �rst inference, but not the
second).

� Classical architectures capture this grouping of be-
haviours by positing structure sensitive processes.

� Connectionist architectures, by specifying context-
sensitive (structure insensitive processes), distribute
behaviour irrespective of structure.

� Therefore, classical (symbol) systems are a better ex-
planation for cognitive architecture, although connec-
tionist architectures may provide suitable implemen-
tations of classical ones.

At issue here is not whether an architecture can ul-
timately exhibit all the observed stimulus-response be-
haviours, but how these behaviours are distributed over
their available resources (e.g., learning trials). For exam-
ple, an architecture based on simple associations requires
two association steps (e.g., 1: A!B; 2: B!A) to sup-
port a bidirectional link between events A and B. By
contrast, a relation based architecture only requires one
step (e.g., R(A,B)), since bi(omni)directionality is built
into relational operators (Phillips, Halford, & Wilson,
1995). The two architectures, although supporting the
same functionality, distribute that functionality di�er-
ently. The relevant di�erence is that there are states of
associative based architectures for which representations
of events are accessible in one direction, but not the other
(e.g., after step 1, but before step 2). If one only ever
observes bidirectional behaviour then such observations
would be support for the relation based architecture, and
not the association based architecture, although the for-
mer could be implemented by the latter1.
Clearly, then, the root of the systematicity argument

over cognitive architecture rests on the degree to which
human cognition is systematic. Fodor and Pylyshyn take
systematicity to be self-evident. Without recourse to
speci�c data they claim, for example, that one can make
inferences of the form P ! Q;P ` Q, if and only if one
can make inferences of the form Q ! P;Q ` P . Sub-
sequently, Hadley (1994) characterized systematicity as
generalization to novel syntactic position, based on a
review of language learning. Researchers have demon-
strated networks supporting this de�nition of system-
aticity to various degrees (Christiansen & Chater, 1994;
Hadley & Hayward, 1994; Niklasson & van Gelder, 1994;
Phillips, 1994). However, others2 question whether the
empirical evidence supports this de�nition either way,
given the di�culty of controlling subjects' background
knowledge and observing what knowledge they have ac-
quired in the course of an experiment. Furthermore,

1Analogously, whereas the architectural components of a
database system are typically provided by fourth-generation
languages such as SQL, such languages may be implemented
in third-generation languages such as C, or Pascal. The point
is, of course, that the sorts of behaviours exhibit by \paper-
based" information processing systems are better captured
(modelled) by relational languages like SQL, rather than pro-
cedural languages like C.

2Anonymous reviewer of Phillips (submitted).



in the domain of reasoning, van Gelder and Niklasson
(1994) argue that the empirical evidence on logical in-
ference (speci�cally, modus tollens3) does not support
the Fodor and Pylyshyn's claim that human cognition
is systematic. When thematic information is supplied in
the premises, most subjects successfully perform the in-
ference. Yet, when abstract information is supplied per-
formance drops dramatically. A purely structure-based
architecture would not predict this di�erence since the
structure is the same in both cases.
The context-sensitive nature of cognition and its de-

pendence on background knowledge make it di�cult to
quantify levels of generalization. Is it the case, for exam-
ple, that no aspect of cognition is purely structure-based,
in which case a classical picture is entirely wrong? Or, is
it the interaction of two underlying factors (familiarity,
and structure-sensitivity) that is being observed?
We point to recent psychological experiments by Hal-

ford, Bain, and Maybery (submitted) as evidence for
the degree of systematicity consistent with the original
claims of Fodor and Pylyshyn. When contextural and
background information are controlled (by using materi-
als of equally low association value and devoid of seman-
tic content), subjects consistently make generalizations
on the basis of the structural relationships between ma-
terials. We show that this purely structure-based gener-
alization is di�cult to achieve for two standard connec-
tionists networks. Even though these networks demon-
strate generalization, the degree of generalization is not
the same as human subjects. However, we provide one
alternative to the lack of generalization in terms of tensor
networks that support relational processing.

Evidence: Relational schema induction
Recent psychological experiments by Halford et al. (sub-
mitted) demonstrated rapid induction and transfer of re-
lational schemas by human subjects on a series of tasks
sharing a common structure. In Experiment 1, four-
task series were generated from the Klein 4-group us-
ing two operators: horizontal and vertical (see below).
The task consists of four states and two operators, which
map each state to a next state. When the states are de-
picted as vertices of a square, the two operators can be
interpreted as horizontal and vertical transitions (Figure
1(a)). Each task instance consists of four randomly gen-
erated strings, and two shapes (corresponding to the hor-
izontal and vertical transitions). Subjects are presented
with a string and a shape, and asked to predict the re-
sponse string. For example, in Figure 1(b), PEJ and
4 predict BIP. In each trial, all eight possible string-
shape pairs are presented one at a time in random order.
After making a prediction, subjects are informed of the
correct response. No reference is made to the structure
and underlying meaning of the task. Learning within a
task instance continues until all eight pairs are correctly
predicted within a single trial, or to a maximum of six
trials. After the intra-task learning criterion is reached,
or after six trials, the next task instance is presented,
until four task instances have been completed.

3The inference: if p implies q and not q then not p.
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Figure 1: Klein 4-group (a) and task instance (b).

One of the most pertinent results to this paper is that
�rst trial error rate on the fourth task was 2.00 for a
group of 12 participants. Halford et al. considered two
possible explanations for correct prediction on novel pat-
terns. One can make correct predictions by interpreting
elements of the new task as elements of a common task
structure, or a previous task. For example, given stimu-
lus pairs and their target responses (from Figure 1):

(PEJ, 4) ! BIP; and
(SIY, ) ! PEJ,

one can make the following interpretations4:

(PEJ, a); (4, H);
(BIP, b); (, V);
(SIY, d); and
(JAS, c).

A third stimulus pair (BIP,) can be predicted as JAS
via the aligned elements and task structure. The three
steps are:

1. BIP ! b and  ! V;
2. (b, V) ! c; and
3. c ! JAS.

An alternative, non-structure based explanation is to
observe that (1) a string never predicted itself, and (2)
no string was paired with a shape more than once. Us-
ing this statistical knowledge the expected error is 3.34.
However, the observed error rate was signi�cantly lower
than this value t(23) = 1.89, p < :05 (Halford et al.,
submitted).
These results are strong evidence for the sort of

structure-based generalization claimed by Fodor and
Pylyshyn. When materials are controlled for associa-
tion value and semantic content (by using pronounce-
able, but otherwise meaningless three letter strings and
shapes), subjects consistently reached the point (4th
task instance) of making correct inferences on new tasks
conforming to the same structure, independent of the
materials used. What then is the support for the same
degree of structure-based generalization in connectionist
networks? We address this question by examining feed-
forward networks on the Klein 4-group task used to test
human subjects.

4The last interpretation (JAS, c) comes from the knowl-
edge that they are the only remaining uninterpreted elements.



Connectionist properties

A common method for demonstrating generalization is to
partition data into training and testing sets, where the
inputs and outputs range over the same vector space.
However, in the schema induction typically the stimu-
lus and response materials do not appear in more than
one task. Therefore, particular attention must be given
to the way input and target vectors are represented in
the network. One way is to use a di�erent group of
input/output units for each task, with learning trans-
fer on the basis on common connections between hid-
den units (Figure 2(a)). Hinton (1990) used this style
of network to demonstrate generalization between two
isomorphic family trees. However, this approach is cum-
bersome for a longer series of tasks since it adds many
additional weights and units that are only updated dur-
ing one of the tasks. The approach we adopted was to
use the same units and weights for each task, but to
reset the input-to-hidden and hidden-to-output connec-
tions. This approach simulates the use of novel materials
across tasks, while allowing knowledge transfer by not
resetting the hidden-to-hidden unit connections (Figure
2(b)). Dashed arrows indicate the actual weights reset
during simulations (see Method).

Task 1 Task 2

Task 1 Task 2

(a) (b)

hidden 1

hidden 2

Figure 2: Feedforward network with di�erent (a) and
same (b) input/output units for each task.

Another consideration is the number of hidden lay-
ers (at least two) and the number of units within each
layer. Importantly, the number of weights (free param-
eters) must be small enough to facilitate generalization,
but large enough to support a solution. Preliminary sim-
ulations suggested a 6-3-2-4 network, where the 6 input
units (4 states plus two operators) are connected to the
�rst hidden layer of 3 units, connected to the second hid-
den layer of 2 units, connected to the 4 output units. For
units with activation functions that form hyperplanes, it
can be shown that 2 is the minimum number of units
for the second hidden layer, and that 2 is a lower bound
for the �rst hidden layer, under the condition of local
input/output vectors (i.e., a single unit with activation
1 and the rest 0). Preliminary simulations with a 6-2-
2-4 failed to learn all patterns, so the 6-3-2-4 network
was used. Use of more hidden units only decreases the
likelihood of generalization as it introduces more free pa-
rameters for the same number of examples.

Method

Preliminary simulations showed that the network failed
to learn many of the patterns in the second task despite
successfully learning all patterns in the �rst task. This,
despite the fact that one of the solutions to the second
task is the same set of weights learnt from the �rst task,
some of which were already speci�ed. The inability to
learn the second task introduces a methodological prob-
lem: how to examine generalization when the network
cannot �nd any of the available solutions to the training
set. There are several ways to overcome this problem, for
example: use more trainable weights; �x fewer weights
common to both tasks; or, use more powerful learning
methods. However, a failure to demonstrate generaliza-
tion under these circumstances is always subject to the
\what if you tried ..." response. Alternatively, one can
take a upper bound approach by identifying the degree
of generalization capable by the network given the most
amount of information. If the network fails to meet the
generalization criterion under this condition we can say
that it cannot support systematicity as there is no fur-
ther information available to the network.
Accordingly, we adopted the following procedure: (1)

train the network to correct prediction on all patterns
in the �rst task; (2) reset only those weights connected
from the input unit corresponding to the test pattern
for the second task; and (3) retrain the network with all
other patterns, and all other weights and biases �xed.
Figure 2(b) shows the weights (dashed arrows) reset for
learning the second task. The networks were randomly
initialized from a 0 mean 0.5 variance normal distribu-
tion, and updated using the standard backpropagation
algorithm (Rumelhart, Hinton, & Williams, 1986) with
squared di�erence between output and target patterns as
the error function, and a learning rate of 0.1. Training
continued until the average squared error for each out-
put unit and pattern reached 0.01 training5. Networks
were examined for transfer in the cases where 1, 2 and
3 weights from the input unit representing the missing
stimulus pattern were reset. Since local representations
(i.e., a single unit with activation 1, the rest 0) were
used, this corresponds to retraining on all patterns for
the new task except the single test pattern containing
the input string represented by that unit. Results are
reported for the second task instance.

Results

The network demonstrated generalization to the test
pattern in 7 of 10 trials when only one weight was re-
set. There was no evidence of generalization when all 3
weights were reset. In 2 trials (with 3 weights reset) the
output unit with the maximum activation corresponded
to the target string. This rate of success is not better
than chance (2.5), and the di�erence between the largest
two activated units, in each trial, was only marginal
(< 0:02). In both trials, the network only learnt 6 of
the 7 training patterns. In the 4 trials where all 7 train-
ing patterns for the second task were learnt, there was
no generalization to the test pattern.

5Su�cient for correct prediction on all training patterns.



Discussion

The most pertinent result is the 4 trials where all 7 train-
ing patterns were learnt without generalization to the
single test pattern: since the region of weight space that
is a solution to the 7 training patterns is larger than
the region of space for all 8 patterns, there is no neces-
sity that training will generalize to the test pattern. One
way to reduce the di�erence between the two regions is to
eliminate hidden units to reduce the number of weights
(free parameters). However, as we have seen, further re-
duction in hidden units leaves the task unrepresentable.
Therefore, the feedforward network in its standard form
cannot be said to capture the property of systematicity
as characterized by the empirical data.
The results do not preclude the feedforward network

from demonstrating some degree of generalization across
structurally isomorphic tasks. For example, Hinton
(1990) showed the same type of network (with di�erent
numbers of hidden layers and units) exhibiting predic-
tion on isomorphic family trees. However, the degree
of generalization was extremely limited (after training
on 100 of a possible 104 patterns, the network correctly
predicted the remaining 4 test patterns), and in light of
evidence discussed here, di�erent to that of humans.
The limitation of the feedforward network on Klein 4-

group tasks also extends to the simple recurrent network
(Elman, 1990), which others (Christiansen & Chater,
1994; Niklasson & van Gelder, 1994) have shown exhibits
(to some degree) the de�nition of systematicity put forth
by Hadley (1994). A simple recurrent network applied to
the Klein 4-group task includes all the weights and units
of the feedforward network, plus additional weights for
mapping the context (hidden unit vector from the previ-
ous time step) to the hidden units. Since the additional
weights in the simple recurrent network make the solu-
tion even less constrained than the feedforward network
it is highly unlikely to exhibit generalization for the Klein
4-group task.

Extensions

As well as connectivity, activation and error functions
also determine the shape of the error surface. Given
the possibly in�nite variations one can make in terms
of these architectural components it is not feasible to
canvas all possibilities. However, we can identify spe-
ci�c properties and examine their capacity to support
systematicity.
The e�ective weight space of the network can be re-

stricted by enforcing fewer activation states for its units
(e.g., binary, rather than real valued). In the extreme
case, the smallest number of identi�able states for the
second hidden layer is 4 (i.e., one state for each pos-
sible response). Fewer states means that at least one
state must be mapped to two di�erent responses. Sup-
pose, also, that these 4 states are supported by a single
hidden unit. This condition requires nonmonotonic ac-
tivation functions (e.g., gaussian, pulse) at the output
layer, since as mentioned above it is not possible to par-
tition 4 points on a line into using single threshold func-
tions. However, gaussian functions for example have two

thresholds permitting each point to be separated from
every other point.
Under these conditions, how many patterns are re-

quired to learn a new task? The lower bound is 4 (i.e.,
one pattern for each possible response), since each out-
put unit requires training on at least one pattern for
which the correct response corresponds to that unit. As-
suming we have the appropriate architectural elements
(e.g., connectivity, activation and error functions) to en-
force such a representation are these components su�-
cient to support systematicity? We must conclude No,
since subject response rate is 2.00 (over 12 subjects),
which is signi�cantly less than 4. Therefore, such ex-
tensions do not support systematicity as de�ned by the
empirical evidence.
One limiting property of the feedforward network

is the unidirectional nature of its ow of information.
Learning the links between internal representations of
the task structure and current task elements proceeds in
one direction only: from stimulus to internal representa-
tion and then from internal representation to response.
These two directions are independent. The consequence
is that learning to map a task element as a stimulus to a
suitable internal representation (i.e., alignment) does not
permit the related generalization of mapping the aligned
internal representation to the same task element, but
treated as a response.
An obvious extension to the feedforward network is

to introduce bidirectional weights and linear units so
that the interpretation and its inverse are learnt con-
currently. However, Experiment 5 (Halford et al., sub-
mitted) showed that subjects also have the ability to pre-
dict the missing operator (shape) given the initial and
�nal states (strings). Simple bidirectional links would
not support this kind of generalization, since each state
is equally associated with both operators.
In general, omnidirectionality between related ele-

ments is supported by tensor networks. We can charac-
terize a branching point in the evolution of connectionist
networks; one which turns on the property of direction-
ality, which we consider as an additional requirement for
systematicity. In the next section, we outline an alter-
native approach to capturing systematicity: the use of
tensor networks that support relational processing.

Support for relational processing

An alternative approach to the continued extensions to
the feedforward network is to embody the properties of
relations into connectionist networks. Our purpose here
is not to provide a complete model of the data from the
relational schema induction experiments, but to show
how connectionist (tensor) networks capture some es-
sential properties pertaining to systematicity.

Relational architecture

The Klein 4-group task can be supported by a relation-
based architecture that assumes relational data struc-
tures (i.e., sets of ordered tuples) and processes for ac-
cessing relational elements. A relation, as the concept
has been adopted for cognition (Halford, Wilson, &



Phillips, submitted; Phillips et al., 1995), consists of a
schema (symbol that identi�es the name of the relation
and its arguments, or roles) and a set of ordered tuples
(instances of the relation). In addition, there are the
operators: select: �cR ! R0, which returns the relation
R0 containing all tuples from R satisfying condition c;
and project: �aR! R0, which returns all tuple elements
from R at argument position a.
For example, given the Klein 4-group as the rela-

tion: Rk(I; O; F ) = f(a;H; b); (a;V; d); :::g, then �F �
�hI=ai;hO=HiRk ! b, where � is the composition of two
operators. That is select the instances from the Klein re-
lation such that the elements in the initial state (I) and
operator (O) positions are a and H (respectively), and
project out the element in the �nal state (F ) position of
the selected instance. Since the project and select oper-
ators often appear in pairs, we simplify the notation to:
Rk(a;H;�)! b.
Suppose relations Rk(I; O; F ) and Rt(I; O; F ), rep-

resenting the Klein 4-group structure and current task
(respectively); and Ri(T;S), representing the interpre-
tation between task and structure elements. From the
example pertaining to Figure 1, where the �rst two pre-
sented patterns are: (PEJ,4)!BIP, and (SIY,)!
PEJ, the response to the third stimulus pair: (BIP,)
is predicted as follows:

1. Ri(BIP;�)! b, Ri(;�)! V;
2. Rk(b;V;�)! c; and
3. Ri(�;c)! JAS.

Although, elements c and JAS do not appear in the �rst
two patterns it is assumed that they are added to the
interpretation relation Ri as they are the only remaining
uninterpreted elements.

Tensor architecture

Based on the work of Smolensky (1990), Halford, Wil-
son, Guo, Gayler, Wiles, and Stewart (1994) showed how
tensor networks can support relations as the sum of the
tensor outer products of vectors representing each tuple
element. A rank n tensor (T n) is constructed by taking
the outer product6 of vectors representing each tuple el-
ement of an n-ary relational instance. For example, the
ternary relational instance (b;V; c) is represented by the

rank 3 tensor T 3 = ~b 
 ~V 
 ~c.
In addition, the relational operator pair project-select

(� � �), as we have used them, corresponds to the ten-
sor inner product7 (Halford et al., submitted; Phillips
et al., 1995). For example, Rk(I; O; F ) = f(b;V; c); : : :g

corresponds to the tensor Tk = ~b 
 ~V 
 ~c + : : :, un-
der the assumption that element vectors are mutually
orthonormal. Therefore, assuming tensors Tk and Ti,
corresponding to relations Rk and Ri (respectively), the
third stimulus pair is predicted as follows:

1. ~BIP � ~Ti ! ~b, ~� ~Ti ! ~V ;

2. ~b 
 ~V � ~Tk ! ~c; and

3. ~Ti � ~c! ~JAS.

6
S
m

 T

n = (Si1:::im :Tj1:::jn).
7
S
m
� T

m+n = (
P

i1 :::im
Si1:::im :Ti1:::im+n).

Thus, a tensor based network captures the same de-
gree of generalization as subjects at the 4th task by
embodying some of the properties of relational systems.
Those properties are omnidirectional access to relational
elements, and representation of the relational structure
via groups of units dedicated to particular relational ar-
guments (roles).
The omnidirectional property observed in Experiment

5 is supported in relational systems by the project
and select operators. For example, having learnt the
stimulus-response pair (PEJ, 4) ! BIP from a sin-
gle presentation, subjects consistently inferred that 4 is
the missing shape resulting in the transition from string
PEJ to string BIP. In a relational system, the sin-
gle stimulus-response pair is added as the triple (PEJ,
4, BIP) to the relation Rt(I; O; F ). Each of the
three elements are accessed as: Rt(PEJ;4;�)! BIP;
Rt(PEJ;�;BIP)! 4; and Rt(�;4;BIP)! PEJ.
The corresponding tensor operations supporting om-

nidirectionality are: ~PEJ 
 ~4�Tt ! ~BIP ; ~PEJ �Tt�
~BIP ! ~4; and Tt � ~4
 ~BIP ! ~PEJ .

Where do we stand now?

This paper was motivated by comments from an anony-
mous reviewer of Phillips (submitted), who questioned
whether it is possible to determine the systematic na-
ture of human cognition given the di�culty of observing
a subject's internal (representational) state, and their
sensitivity to contextual information. Our response has
been to point to psychological experiments showing evi-
dence of generalization on the basis of common relations
between the stimulus materials, not on the basis of the
contents of those materials.
Our subsidiary points concern the connectionist prop-

erties that do/don't support the same degree of system-
aticity as human subjects. The degree of generalization
exhibited by human subjects places strong requirements
on (connectionist) models of cognition. Those require-
ments are not captured by specifying standard feedfor-
ward or recurrent networks, despite the fact that these
networks demonstrate generalization in other domains.
We point to tensor networks that support relational pro-
cessing as one property that supports systematicity as
measured by one set of empirical studies.
We do not claim that all of cognition is as equally

systematic, only that at least one (signi�cant) part is.
Furthermore, the negative results with respect to feed-
forward and recurrent networks do not rule out these ar-
chitectures as interesting candidates for other aspects of
cognition. For example, McClelland (1995) has demon-
strated that the feedforward network captures the im-
portant torque di�erence e�ect in the development of
balance-scale. However, we do stress that in light of
other evidence, such models will not provide the whole
story (at least not without signi�cant extensions).
Now that we have separated out two factors inuenc-

ing the distribution of cognitive behaviour (i.e., struc-
ture based, as pointed out here, and familiarity based,
as pointed out by van Gelder & Niklasson, 1994), the
question remains as to how to put the two back together



under a single architecture. We have briey outlined two
directions: (1) continue the extension of existing mod-
els by including additional structural constraints (e.g.,
bidirectionality, etc), and (2) start with connectionist
networks (e.g., tensors) with properties isomorphic to
classical (e.g., relational) systems and progressively inte-
grate the context-sensitive properties of other networks.
Some work is being done in this direction (Phillips, sub-
mitted), although further work is required.
Finally, it should also be noted that the tensor net-

work (as we have presented it here) is not, speci�cally,
a claim for connectionism as an alternative to classicism
as a theoretical basis for cognitive behaviour. In fact,
as our use of the tensor network was designed to sup-
port relational processes, it can be regarded as an im-
plementation of a classical (relational) system. Whether,
in fact, connectionism does provide an alternative the-
oretical basis is still debated (Fodor, 1997; Smolensky,
1995), and given the extensive literature on this issue
(see Fodor & Pylyshyn, 1988; Smolensky, 1988; Fodor
& McLaughlin, 1990; van Gelder, 1990, among others),
it would be inappropriate to address it here. Neverthe-
less, alternative or not, the problem of determining what
connectionist properties support systematicity remains.
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