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ABSTRACT

Human cognition is said to be systematic: cognitive ability generalizes to structurally

related behaviours. The connectionist approach to cognitive theorizing has been strongly

criticized for its failure to explain systematicity. Demonstrations of generalization notwith-

standing, I show that two widely used networks (feedforward and recurrent) do not support

systematicity under the condition of local input/output representations. For a connection-

ist explanation of systematicity, these results leave two choices, either: (1) develop models

capable of systematicity under local input/output representations; or (2) justify the choice

of similarity-based (nonlocal) component representations su�cient for systematicity.
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INTRODUCTION

Ten years (1988-1997) of the systematicity debate and its implications for cognitive ar-

chitecture have had little if not no impact on the day-to-day practices of the connectionists'

version of cognitive science. Despite the seminal papers of Fodor and Pylyshyn (1988) and

Smolensky (1988), and numerous rebuttals from both sides (see Fodor & McLaughlin, 1990;

Fodor, 1997; Smolensky, 1995b, among many others), architectures that predate the de-

bate still appear to be the connectionists' �rst choice (e.g., Plunkett & Elman, 1997). In

fact, enthusiasm for the recent \Rethinking Innateness" series (see the cover note to Elman,

Bates, Johnson, Karmilo�-Smith, Parisi, & Plunkett, 1996) suggests that the debate has

had no e�ect on the general program of establishing principles for a connectionist cognitive

architecture.

Toward this goal, the purpose of this paper is to analyze two widely used networks: the

feedforward and recurrent networks, for their capacity to support systematicity. The main

result is that neither network is systematic in the sense that learning some behaviours con-

veys appropriate generalization to other structurally related behaviours. What it means to

support appropriate generalization is de�ned in the next section, along with the term system-

aticity and its signi�cance to cognitive architecture. Relative to that de�nition, simulations

and analyses are then conducted on feedforward and recurrent networks for their capacity to

demonstrate systematicity. Finally, the implications of these results are discussed in terms

of principles for a connectionist cognitive architecture.

SYSTEMATICITY AND GENERALIZATION

One basic observation that can be made about human cognition is that cognitive ability is

organized into groups, or collections of behaviours. Rather than distributed arbitrarily over

the space of possible behaviours, cognitive abilities are organized with particular regularity.
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Just as the �ring of electrons into a sheet of material reveals a high degree of atomic structure

in physics1, so too does the probing of mental capability in humans suggest some degree of

structure in cognition. The structure-based grouping of cognitive ability is referred to as

systematicity, and its implication for cognitive architecture is the systematicity debate.

The following examples (adapted from Fodor & Pylyshyn, 1988) illustrate the organized

nature of cognitive ability. If one has the ability to infer that \John went to the store", given

that \John and Mary went to the store", then one also has the ability to make the related

inference, \Mary went to the store", given that \Mary and John went to the store". Both

these inferences share the same (logical) structure: P ^ Q ! P . Rephrased, there are no

cognitive states whereby one can make the �rst inference, but not the second. But, neither

of these two inference capabilities says anything about the structurally unrelated inference:

\two plus three equals �ve".

The classical solution to systematicity is to posit structured representations, and pro-

cesses sensitive to the structure of those representations (Fodor & Pylyshyn, 1988). So, for

example, having a representational state that identi�es the components, P , ^ and Q, and

a cognitive process that maps this state to a new state identifying P , then this process ex-

tends to any situation in which the input (and output) can be mapped to (and from) those

states (e.g., John and Mary, Mary and John, etc). A parser is an example of this sort of

architecture.

One half of Fodor and Pylyshyn's argument2 against connectionism is that the archi-

tectural components of a network (e.g., activations, nodes, and weighted connections) do

not enforce systematicity. Very briey, in the localist case, where one node represents some

complex object, structure sensitive processing cannot be supported by simply labeling the

1The angle at which electrons are scattered is not random, but quantized and dependent on the structure
of the material at which they were �red.

2The other half is that connectionist demonstrations of systematicity implement classical architectures.
This paper is only concerned with identifying connectionist properties that do (don't) enforce systematicity.
See Fodor (1997) and Smolensky (1995a) for continued and aposing arguments on the implementation issue.
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node with the corresponding representation. Since only node activity (e.g., 0's and 1's) are

the inputs to other network processes, labels have no causal consequences and so cannot

be used to support systematicity. In the distributed case, where representations are the

activations of collections of nodes, activity vectors alone will not su�ce since, in general,

decomposition of vectors into the structural components they supposedly represent is not

uniquely determinable.

While one may accept that localistic associative networks are not su�cient to capture sys-

tematicity, demonstrations of generalization by more complex networks utilizing distributed

representations and processes would seem to have answered Fodor and Pylyshyn's objections.

If such generalization results are (or are not) demonstrations of systematicity then we need

to know why, so that the relevant architectural properties can be replicated (or avoided) in

other connectionist systems designed to incorporate systematicity.

If learning is to be the additional connectionist property that enforces systematic be-

haviour, then a suitable criterion for systematicity as generalization must be speci�ed. For

the rest of the paper, criteria devised by Hadley (1993, 1994) are considered as the require-

ment for systematicity. There are di�culties with treating systematicity as a generalization

problem. It is di�cult to determine exactly what level of generalization is achieved by

humans. This uncertainty is exaggerated by lack of control over a subject's background

knowledge, and the strategies that they employ in any given task. Yet, one can take a

bounds approach which can still yield interesting results. If, for example, one can safely

identify a lower bound on the degree of generalization exhibited by humans, then one can

immediately rule out a class of architectures that do not meet this lower bound. The results

presented here are of this form.
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Strong systematicity

Based on linguistic evidence of generalization, Hadley formulated a criterion for sys-

tematicity. In Hadley's (1993) de�nition: a model is regarded as strongly systematic if it

demonstrates correct performance on components in novel (syntactic) positions3.

It is assumed that generalization performance must be above chance level. If there are

only �ve possible output responses, and one takes the maximumly activated output unit as

the network's response then there is a base level 20% chance of demonstrating generalization

to the novel position. Yet, this would not qualify as a demonstration of generalization. I

assume that human performance is signi�cantly above chance level, and I refer to further

experimental support for this assumption in the Discussion section. An example of strong

systematicity would be to correctly infer that \John" is the lover of \Mary", given the

premise \John loves Mary", having only been trained on examples where \John" appeared

in the object position of the binary relation \loves".

Hadley (1993, 1994) found that the models of McClelland and Kawamoto (1986), Chalmers

(1990), Elman (1989, 1990, 1991), Smolensky (1990) and St. John and McClelland (1990)

did not demonstrate strong systematicity. Essentially, by a statistical analysis of training

sets, in all likelihood all components appeared in all of their allowable positions.

This result raises the question as to whether the lack of strong systematicity was due

to a fundamental limitation of these connectionist models, or simply that the intention

was not to demonstrate strong systematicity, but some other phenomenon. This section

is an attempt to address this question through analysis and simulation of a number of

connectionist architectures. However, before this analysis a point must be made regarding

3Subsequently, Hadley's (1994) de�nition of strong systematicity also includes correct performance on
components in novel positions at novel levels of embedding (e.g., Mary knew Tom hit John). Although,
the simulations and analyses presented here focus on the �rst de�nition, the negative results clearly apply
to the extended de�nition. See also Niklasson and van Gelder (1994a) for other generalization criteria for
systematicity.
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component representations.

Component similarity

Work by Niklasson (1993) claims to have demonstrated strong systematicity on a trans-

formation of logical expressions task. However, component representations presupposed a

similarity based on their position, or role within a complex expression. For example, the

proposition symbols (p, q, r, s) all shared a common feature in their vector representation.

Furthermore, the so-called novel component, s, on which the network was tested had as

its representation the common feature with no other features (vector components) active.

Consequently, the generalization demonstrated was due to the common feature on which the

network had already been trained in the components of p, q, r, and so cannot be considered a

demonstration of strong systematicity4, without an explanation as to how the propositional

symbols obtained similar representations.

The use of surface similarity is a syntactically convenient way of denoting the role of

a component. But it cannot be the sole basis for structure sensitivity, because identical

component representations can �ll di�erent structural roles. Suppose a subject can infer

\Mary", given the statement \John loves Mary", and the question \John loves who?". Then,

by the property of strong systematicity, one can also infer \dogs" given the statement \John

loves dogs", and the same question. Although it may be reasonable to assume nouns have

same similar (internal) representation, it cannot be surface (external) similarity that is the

basis or the following inference. Suppose a subject can infer \loves" from the statement

\John loves Mary" and the question "John does what to Mary?". Again, by the property of

systematicity, one can also infer \dogs" from the statement \John dogs5 Mary" and the same

question. But, in the second case, the same surface representation (or, physical stimulus)

4See also Hadley (1994) for a similar comment on McClelland and Kawamoto (1986).
5Chases relentlessly.
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is supposed to identify a di�erent structural role (i.e., verb). Of course, the reason such

inferences are possible is because of the surrounding context. Novel input may derive similar

internal representations from context, but they cannot be relied upon to possess inherently

similar external physical characteristics. The implication for connectionist modeling is that if

similar input/output representations are the basis for demonstrations of strong systematicity,

one must also explain how such representations arise.

The use of similar component representations also occurs in Chalmers (1990), where

words of a common class (e.g., verbs, nouns) share a common feature in their vector repre-

sentations; and, in Niklasson and van Gelder (1994a), where component representations of

objects belonging to a common category (e.g., proposition, conjunctive) are constructed with

vectors representing these categories. These two models assume a similarity that connection-

ist networks are expected to learn. The point is that systematicity is a property at the level

of compositional objects, not at the level of component objects. In language, systematicity

is a property at the level of sentences, not at the level of words (Fodor & Pylyshyn, 1988).

That is, the ability to represent and process sentences of a particular structure relates to

other sentences conforming to the same structure. So as to control the e�ect of component

similarity on demonstrations of systematicity, orthogonal (actually local6) representations

are used to represent components, in subsequent simulations and analyses.

FEEDFORWARD NETWORK

The tasks considered here and in the following section (for the simple recurrent network)

depend on processing 2-tuples (i.e., ordered pairs of atomic objects). 2-tuples are the simplest

complex object for demonstrating generalization across position. Although, humans deal

with more complex objects, the simplicity of 2-tuples makes them attractive for analysis. The

tasks involve auto-association of 2-tuples as a test of the capacity to represent an object (Task

6One vector component on, the rest o� (e.g., 01000).
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1), and querying of the �rst (second) component of a 2-tuple as a test of inference capacity

(Task 2). Generalization (lack of generalization) across position for the auto-association

(inference) task is referred to as strong (weak) systematicity of representation (inference).

Hadley's (1994) de�nition also includes generalization to recursively embedded structures.

The lower bounds approach taken here means that failure to demonstrate systematicity for

this task implies failure on more tasks involving more complex structures.

Architecture

The feedforward network examined here consists of three layers: input, hidden and out-

put, where there was one unit per component per position in both input and output layers

(Figure 1).

Insert Figure 1 about here

Task: Auto-association of 2-tuples

To demonstrate systematicity of representation the network must be capable of construct-

ing representations of structurally related objects. In a connectionist framework, where rep-

resentations are vectors in some activation space, construction of internal representations is

simply allocating a vector in some internal (hidden unit) activation space. However, to be a

useful representation, representations of component objects must be subsequently accessible.

Thus, auto-association tasks are useful in that they require networks to both construct and

access representations of structured objects. One of the simplest structured objects in which

to test this capacity are 2-tuples (e.g., the binary relation: loves(subject, object)).

To demonstrate strong systematicity, the network must demonstrate correct processing

of instances with components in positions that did not occur in the training set. In this
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task, for example, correctly auto-associating the 2-tuple (John, Mary) having only been on

examples with \Mary" in the subject position.

Analysis: Weak systematicity of representation

Assuming a local representation (see Figure 1), each output unit is dedicated to detecting

a particular component in a particular position from the network's hidden unit (internal)

representation of the complex object. For example, one output unit detects the presence

or absence of \Mary" in the subject position. Correct performance of this task depends on

orienting the \Mary-subject" hyperplane so as to position all points in the training set into

two classes: \Mary" in the subject position; and, \Mary" not in the subject position. If

there are enough training points then the network will also correctly classify test cases.

However, for the output unit that detects \Mary" in the object position there is only one

class of points in the training set (i.e., \Mary" not in the object position), by the requirement

of demonstrating strong systematicity. With only one class of points, the training set pro-

vides no information regarding the orientation of the hyperplane to correctly classify points

with \Mary" in the object position, and so the network cannot be expected to generalize

from components appearing in the subject position to components appearing in the object

position. In this case, the network is said to be weakly systematic, where generalization to

novel combinations may be demonstrated, but not to novel positions (Hadley, 1993).

Of course, a fortuitous set of starting weights may permit the network to generalize to

the new position, however, we also require the network to demonstrate generalization across

position above chance level. Given the number of ways in which a hyperplane can be oriented

such fortuitous arrangements are very unlikely. Thus, it is concluded that the feedforward

network does not demonstrate strong systematicity with respect to this task in the case of

local input/output representations.
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SIMPLE RECURRENT NETWORK

Architecture

The lack of strong systematicity in the feedforward network is due to the independence of

the weights accessing components from di�erent positions. In the simple recurrent network

(Elman, 1990), inputs and outputs are represented over the same set of units, and therefore

transformed by the same set of weights. Thus, if the components of complex objects are

presented temporally, rather than spatially, the simple recurrent network has the possibility

of exhibiting strong systematicity, at least for the auto-association of 2-tuples task (Figure

2).

Insert Figure 2 about here

Task 1: Auto-association of 2-tuples

The task of the recurrent network is essentially the same as for the feedforward network

described in the previous subsection except that instead of presenting both components

simultaneously, components are presented one per time step. After presenting both compo-

nents, at which time the network should have constructed some internal representation of

the ordered pair, the network is required to output the ordered pair in the order that it was

presented. Figure 2 shows an example of the network and the input-output mapping it is

required to perform7.

Each trial of the network consisted of:

� Random generation of training examples from a distribution where all �ve atomic

7The simple recurrent network in Elman (1990) was trained to perform word prediction from a set of
sentences generated from a grammar.
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objects can appear in the �rst position, but only four atomic objects can appear in the

second position. Weights were updated at the end of each sequence (i.e., every four

patterns). Context units were reset to zero at the beginning of each sequence.

� Random initialization of weights from a uniform distribution between -1 and 1.

� Training of the network using the standard error backpropagation algorithm with a 0.1

learning rate, no momentum term, and the sum of squares error function (Rumelhart,

Hinton, & Williams, 1986) until performance on the training set was within 0.5 of the

target for all output units for all patterns in the training set.

� Testing on all remaining combinations (i.e., every atomic object in the �rst position

combined with the atomic object left out of the second position in the training set).

� Recording of network response to all output patterns in the test set. Two testing

criteria were used. A network response was considered correct when: (1) the maximally

activated output unit had a target activation of one - maximum criterion; or (2) all

output units were within 0.5 of their target - 0.5 criterion.

In addition, the number of training examples (ordered pairs) was varied from 10 to 200.

Since each network was initialized from a random set of weights, each train and test trial

was repeated �ve times for each training set size.

Result: Strong systematicity of representation

The recurrent network showed perfect performance (for both maximum and 0.5 testing

criteria) on the unseen object in the second position in the test set when trained on 200

ordered pairs. When trained on 50 ordered pairs, performance dropped to a mean of 76%

(maximum criterion) and 36% (0.5 criterion) over 5 trials (Figure 3).

12



Insert Figure 3 about here

Analysis

Due to the high dimensionality of the network's internal representational space (which is

the number of hidden units) it is, in general, di�cult to determine the nature of the internal

representations constructed by a network to solve a particular task. However, examination of

the relationship between hidden unit activation using principal components analysis (PCA)

(Elman, 1989), and canonical discriminants analysis (CDA) (Wiles & Bloesch, 1992) can

reveal the dimensions of greatest importance.

The internal representations learnt by the simple recurrent network were analyzed in the

case where the network demonstrated generalization across position in all �ve trials (i.e.,

when the training set consisted of 200 training examples). After the network was trained

to the 0.5 training criterion, all 200 training examples were presented to the network and

the resulting 800 hidden unit activation patterns were saved. Full details of this analysis are

provided in Phillips (1995). Here, only two plots of the internal space are given as a guide

to the nature of the internal representations suggested by these techniques.

At the second time step the network must construct a representation of each pair which

maintains information regarding the �rst and second components of that pair. To help

identify this information a PCA of points at the second time step only was performed. A

comparison of variance along hidden unit versus principal component dimensions (Figure 4)

shows that the number of signi�cant principal components was much less than the number

of hidden units. The �rst �ve components account for 88% of the variance. Therefore, the

activations of many of the hidden units were correlated, suggesting that multiple hidden

units were coding for the same information.
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Insert Figure 4 about here

The hidden unit activations were then plotted onto the �rst and second principal com-

ponents (Figure 5). The plot shows two levels of spatial organization. At one level, points

are grouped into four clusters based on their output mapping8. At the other level, there

appears to be the same within-cluster organization of points (labeled by their �rst object).

This consistency is suggested by the same rotational ordering of points within each cluster.

Insert Figure 5 about here

The consistency of within-cluster organization suggests that �rst object information is

being encoded along other dimensions independent (by virtue of the apparent regularity) of

second object information. If this suggestion is correct then there may exist directions in

hidden unit activation space along which all four clusters can be superimposed. Or, in other

words, there may be a projection from points in hidden unit activation space such that, for

example, the point representing the pair (Karen, John) and the point representing the pair

(Karen, Ann) become the same.

If such a direction exists, it can be found using CDA by grouping all points on the basis

of the �rst object. CDA will identify dimensions in hidden unit activation space such that

points in the same group (e.g., (Karen, Ann), (Karen, Bill), (Karen, Karen), and (Karen,

John)) are close together, while points in di�erent groups are far apart.

A CDA was performed on all hidden unit activations at the second time step grouped

by the object presented at the �rst time step. The points were then plotted onto the �rst

8There are only four clusters since one object (\Vivian") was left out of the second position in order to
test strong systematicity.
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and second canonical discriminants (Figure 6). The plot shows that the four clusters can

be superimposed, and supports the suggestion that �rst object information was encoded

independent of second object information. In each case, all points belonging to the same

cluster di�ered in location by at most 10�6.

Insert Figure 6 about here

A similar form of internal representation was found for the 3rd and 4th time steps

(Phillips, 1995), suggesting that the network also extracted components via the same set

of dimensions. By encoding and decoding component representations via the same input

and output sets of weights (respectively), the network only requires training on each unique

object in one of the positions, but not necessarily both, as the simulations demonstrated.

Task 2: Querying of 2-tuples

In this task, the simple recurrent network is presented with an ordered pair and a

query/question, which requests the �rst or second component of the ordered pair. For

example, given the pair (John, Bill) and the question that requests the �rst component the

network should respond with John. As in the auto-association of 2-tuples task, there are

�ve possible atomic objects that may appear in either the �rst or the second positions. In

addition, there are two query objects that request either the �rst or second component of

the ordered pair.

The simulation conditions for the querying of 2-tuples task were as follows:

� Local encoding of input and output vectors. As there are seven possible input vectors

in this task (i.e., 5 possible components plus 2 possible queries) there are 7 input units

to encode the input vectors, and 5 output units to encode the 5 possible components.
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� Generation of 40 training sequences (each sequence consisting of three patterns), con-

sisting of all 5 components in the �rst position combined with 4 possible components

in the second position combined with the two possible queries. The �fth component

was used to test strong systematicity. Thus, the test set consisted of 10 sequences (i.e.,

all 5 components in the �rst position combined with the �fth component in the second

position combined with the two queries).

� Random initialization of weights from a uniform distribution in the range �1 to 1.

� Training of the network using the standard error backpropagation algorithm with 0.1

learning rate, no momentum term, and the sum of squares error function (Rumelhart

et al., 1986) until performance on the training set reached criterion. Two training

criteria were used: (1) all output units were within 0.5; (2) all outputs were within

0.4 of the target output for every unit on every training pattern. If the network did

not reach criterion by the 10000th epoch (where one epoch is the presentation of every

training pattern) then training was terminated. Weights were updated at the end of

each sequence (i.e., every three patterns). Context units were reset to zero at the

beginning of each sequence.

� Testing on all remaining tuples using two criteria for correctness: (1) the maximally

activated output unit corresponds to the target activation of 1 - maximum criterion;

(2) all output units are with 0.5 of their target activation - 0.5 criterion.

� Each train-test trial was repeated 10 times for each training criterion, with weights

being randomly initialized at the beginning of each trial.

The simple recurrent network was examined with 20, 10 and 8 hidden units. In the case

of the 8 hidden unit network, 0.5 was used as the training criterion.
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Result: Weak systematicity of inference

In the case of 20 hidden units, the simple recurrent network learnt perfectly on the

training set on each of the 10 trials for both 0.5 and 0.4 training criteria (i.e., all output

units were within 0.4 of their target outputs for all patterns in the training set). However,

in all trials performance on the test set was zero for both maximum and 0.5 testing criteria.

The network did not correctly respond, in any trial, to any of the 5 sequences where the

network the second component was the target.

In the case where 10 hidden units were used, training reached the 0.4 criterion in 7 of the

10 trials. In all trials, regardless of whether the network reached the training criterion, the

performance on the test set was zero, for both testing criteria, with regard to the extraction

of the second component.

When only 8 hidden units were used only 1 of the 10 trials converged to the 0.5 training

criterion. In all but two trials performance was zero, with 0.5 and maximum testing criteria,

on the extraction of the second component in the test set. For the other two trials, test

set performance was 1 out of 5 for maximum testing criterion, 0 out of 5 for 0.5 testing

criterion. Since there are 5 possible components this level of performance is no better than

chance. Furthermore, in these two trials the network did not acquire perfect performance

on the training set within 10000 epochs. The results are summarized in Table 1.

Insert Table 1 about here

Analysis

In the querying of 2-tuples task, the network is presented with an ordered pair and a

question requesting the �rst or second component of the pair. Now suppose \Mary" is the
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component on which the network is to demonstrate strong systematicity. Then, to solve the

task the network must implement the following function:

f(Q1;R[(Mary;X)]) ! Mary (1)

f(Q1;R[(X;Mary)]) ! :Mary (2)

f(Q2;R[(Mary;X)]) ! :Mary (3)

f(Q2;R[(X;Mary)]) ! Mary (4)

where Q1 and Q2 are the question vectors; R[(Mary;X)] is a representation of an ordered

pair with Mary in the �rst position and some other object (X) in the second position;

R[(X;Mary)] is a representation of an ordered pair with Mary in the second position and

some other object (X) in the �rst position; and, f is the function that implements the

mapping. The R[:] notation is used to refer to the network's internal representation of an

object which may be di�erent from the object's external representation.

To correctly discriminate the \Mary" component a hyperplane must be partitioned so as

to satisfy the following inequalities:

~WI
~Q1 + ~WC

~RC
Mary;X +B > � (5)

~WI
~Q1 + ~WC

~RC
X;Mary +B < � (6)

~WI
~Q2 + ~WC

~RC
Mary;X +B < � (7)

~WI
~Q2 + ~WC

~RC
X;Mary +B > � (8)

where ~WI and ~WC are the input to hidden and context to hidden weight vectors (respec-

tively); B is the bias (weight) to the unit; and, � is the threshold above which the component

\Mary" is considered to be the correct response.
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Subtracting equation 7 from equation 5, and equation 8 from equation 6 leaves:

WI ( ~Q1 � ~Q2) > 0 (9)

WI ( ~Q2 � ~Q1) > 0 (10)

Since there does not exist a weight (WI) that satis�es both inequalities 9 and 10, the

network cannot represent the solution with a single hyperplane for each component. Con-

sequently, correct extraction of the \Mary" component requires at least two hyperplanes

positioned in the input space (by two hidden units at the hidden layer) and a hyperplane

positioned in the hidden space (by the output unit detecting the \Mary" component)9. Cor-

rect orientation of hyperplanes at the hidden layer is depicted in Figure 7. Circles indicate

\Mary" is the target output, and squares indicate \Mary" is not the target output. Numerals

indicate a request for the �rst or second component, \X" indicates some other component

object, and \C" is just the di�erence vector.

Insert Figure 7 about here

Assuming the two hidden unit hyperplanes are in correct position, the resulting repre-

sentation at the hidden layer for these four types of points, dependent on whether they are

on the high or low side (relative to some threshold) of these two hyperplanes, is shown in

Figure 8. In the hidden unit activation space, these four point types must be partitioned by

a single hyperplane into two groups: \Mary" (circles) and \not-Mary" (squares). Clearly,

such a partitioning is possible. However, in addition, the network is required to demonstrate

strong systematicity on the \Mary" component. Therefore, in the training set, one of the

9This analysis essentially parallels the explanation as to why perceptrons cannot solve the \exclusive-or"
task (Hertz, Krogh, & Palmer, 1991; Minsky & Papert, 1990).

19



positions (e.g., \Mary" in the second position) does not occur (empty circle and square).

Consequently, the training set does not provide any information regarding the partitioning

of points along the vertical dimension, and therefore, the network cannot be expected to

generalize to these cases.

Insert Figure 8 about here

The critical di�erence with this inference task is that at the third time step the network

may be required to extract a component from either the �rst or second position. In the case

of auto-association, the task only demanded that the �rst-position component be extracted

at the third time step, and only the second-position component be extracted at the fourth

time step. Therefore, in that case, components can be extracted via the same set of weights

(but at di�erent times). So in the inference case two di�erent sets of weights must be trained

to perform the extraction. Hence, the network cannot demonstrate strong systematicity with

respect to this task.

DISCUSSION

The simulations and analyses of the previous sections demonstrated that the general ar-

chitectures of feedforward and recurrent networks using local input/output representations

do not have the necessary properties to support systematicity. Fodor and Pylyshyn argued

that local internal representations cannot support systematicity. For the technical reasons

presented here, this limitation also applies to distributed representations, given local in-

put/outputs for these two networks. These results are general in that they do not depend

on the size of the training set or the number of internal units and connections. The lack of

generalization is because the connections that map component representations from di�er-
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ent positions are learned independently. In one special case, autoassociation of 2-tuples by

a recurrent network, some degree of generalization across position was demonstrated. The

apparent solution was to utilized the same group of weights to retrieve each component in

what resembled a �rst-in-�rst-out bu�er. This solution did not su�ce for Task 2. Hence,

the only positive example, cannot be said to be su�cient support for systematicity.

One way of attempting to defer the implication of these results is to argue that human

cognition is not as systematic as the classicists (e.g., Fodor and Pylyshyn) claim; that human

cognition is mostly context sensitive and so properties such as systematicity are only ideals at

best. Therefore, (connectionist) models that are not systematic may still provide a reasonable

approximation to human cognition. Van Gelder and Niklasson (1994) argued this position

from experimental results on logical inferences. Subjects are signi�cantly better at inference

when thematic10 rather than abstract examples are used. But, this lack of systematicity may

only reect familiarity within a domain. Other psychological experiments (Halford, Bain, &

Maybery, submitted) in other domains (schema induction) clearly demonstrated situations

of perfect (symbol-like) generalization by all subjects.

In the experiments of Halford et al. (submitted), subjects are given a series of four tasks,

where each task consists of learning a mapping from (string, shape) pairs to strings. In

each task there are four (three letter) strings and two shapes (e.g., \KEL, triangle" predicts

\GOH"; \GOH, square" predicts \DUS", etc). Each string is paired with each shape to

generate eight mappings. The strings and shapes are meaningless, and chosen randomly for

each new task. The relations between strings and shapes within a task conform to a speci�c

structure, and that structure is the same for each task, although each new task uses a new

set of strings and shapes. The structure of each task instance can be visualized as a square,

where each string lies on its own vertex and each shape is consistently either a horizontal or

10For example: If it is raining then there are clouds. There are no clouds. Therefore, it is not raining,
which is an instance of the inference modus tollens: P ! Q ^ :Q) :P .
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vertical transition from one vertex to another, identifying the predicted string.

The signi�cance of these experiments is that by the fourth task all subjects made perfect

predictions (six out of eight) after seeing only two of the eight possible mappings. In fact, this

degree of generalization goes beyond strong systematicity (generalization to novel position)

in that one of the four strings does not appear anywhere in the �rst two mappings11. Thus,

the implications of systematicity for a (connectionist) cognitive architecture cannot be so

easily dismissed on the grounds that human cognition is, at best, quasi-systematic (Phillips

& Halford, 1997). Although subjects are highly unlikely to have experience at this particular

problem, knowledge of spatial analogues would greatly facilitate performance. However, that

subjects can call upon such knowledge acquired through the course of development does not

alter the point. Rather, it reiterates the need to develop techniques that encode and make

accessible such information. It is worth noting that one possible technique, weight sharing12,

although su�cient to demonstrate some degree of learning transfer (see, for example, Hinton,

1990) does not support the same degree of transfer in these experiments (Phillips & Halford,

submitted).

Other connectionist networks lacking strong systematicity

The weak systematicity result of the simple recurrent network does not make any assump-

tions about the nature of the internal representations of the ordered pairs. The assumptions

made were that the external representations of components are encoded locally, requiring an

intermediate layer of �rst-order units between the inputs and the outputs (which are also

�rst-order units). Therefore, the result can also be applied to other architectures conforming

to these restrictions.

11To see why, suppose strings labeled A, B, C and D; and shapes triangle and square. In the �rst two
presentations, subjects see that (A,triangle) predicts B; and (B,square) predicts C. At the third presentation,
given (D, triangle) subjects correctly predict C, yet D did not appear anywhere in the previous mappings,
nor in any of the previous tasks.

12Weights shared by several subnetworks to encode knowledge common to the various tasks to which each
subnetwork is dedicated.
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Feedforward network

The context units in the simple recurrent network can be regarded as another group of

input units holding a representation of the ordered pair. The two sets of input units map

representations to hidden units which in turn map representations to output units. Since

no speci�c assumptions are made regarding the nature of the order pair representation,

three-layered feedforward networks are weakly systematic of inference.

Jordan's recurrent network

Jordan's (1990) recurrent network (see Figure 9(a)) di�ers from the simple recurrent

network in that context is copied from the output unit activations rather than the hidden

unit activations of the previous time step. Like the simple recurrent network, this network

requires two hidden units to discriminate each component, but the training set provides no

information about retrieving the component in the missing position. Therefore, this network

is also weakly systematic of inference.

Insert Figure 9 about here

Pollack's recursive auto-associative memory

Pollack's (1990) recursive auto-associative memory (see Figure 9(b)) is essentially the

same as the simple recurrent network except there is an additional set of output units whose

targets are the current context values (i.e., the network not only auto-associates the current

input, but also the current context). However, these units (and their associated weights)

play no part in the extraction of components. Their purpose is to encourage the formation of

useful representations at the context layer. And, since generalization is crucially dependent
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on training weights into the units representing the retrieved components, this architecture

cannot demonstrate strong systematicity of inference on this task.

Forced simple recurrent network

The forced simple recurrent network (Maskara & Noetzel, 1992) is a variation of the

recursive auto-associative memory in that the targets for the output units are the previous

context, the current input and the next input. Additional information (hints) regarding the

target function can improve learnability in networks (see, for example, Abu-Mostafa, 1990).

However, as with the recursive auto-associative memory, the additional output units play no

part in the extraction of components in the forced simple recurrent network. Therefore, the

network cannot demonstrate strong systematicity of inference on this task.

Recurrent networks with higher-order connections

Some research on generalization has been conducted on networks of higher-order weighted

connections, where weights multiply, rather than add the incoming activations (see, for exam-

ple, Omlin & Giles, 1992). While none of this work has speci�cally addressed systematicity,

one can make predictions by comparing the number of free parameters in higher-order net-

works to the �rst-order networks analyzed here. Since the number of higher-order connections

between two layers of units is at least as great as the number of �rst-order connections (and,

in general, many times more), the additional number of parameters make generalization

across position even less likely for completely connected networks, given the same number

of training patterns.

From the analysis of the simple recurrent network, at most a network of 2k hidden units

is su�cient to represent the task, assuming k possible components in each position. With

2 + k input units13 and k output units, the total number of weights is (2 + k + 2k)2k + 2k2,

13The additional two units represent the question inputs.
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which is O(k2). A second-order network does not require a hidden layer, since the decision

boundaries are curved surfaces, not hyperplanes, in which case 2 + k input and k context

units are connected to k output units. The total number of second-order connections is

(2+k)(1+k)k
2
(i.e., there are (2+k)(1+k) unique pairs of units in the �rst layer connected

to each of k units in the second layer), which is �(k3)14. Since the number of free parameters

is greater, generalization across position is less likely given the same training set. So, a fully

connected higher-order network is unlikely to support strong systematicity.

Simple recurrent network on word prediction

Christiansen and Chater (1994) test for strong systematicity in the simple recurrent net-

work on a word prediction task. They claim some limited supported for strong systematicity

in one of two experiments, but analysis here shows no support for strong systematicity.

A simple recurrent network was trained to predict words in sentences conforming to a

particular phrase structured grammar. In their second experiment, supposedly demonstrat-

ing strong systematicity, the network was given the sentence fragment: \Mary says that John

and boy ...", at which point plural verbs and prepositions were correctly predicted. Since

the word \boy" did not appear in the same position in the training set, the authors claim

a demonstration of strong systematicity. Yet, in this case, the prediction of a plural verb

or preposition does not require any knowledge of the word \boy". In fact, it only requires

knowledge of some noun. When the network received as input the word \and", it correctly

predicted that a singular or plural noun should follow. But, \... the activations for both

'boy' and 'boys' [were] minimal compared to the other nouns" (p.283, emphasis added), sug-

gesting that they played no role in prediction. Since the hidden units contained information

about nouns (e.g., \John", \Mary", but not necessarily \boy"), this information was copied

to the context units for the next time step (i.e., at which time \boy" was presented to the

14Meaning complexity is no better than k3, whereas O(k2) is no worse than k2.
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input units). The information at the context units can be used to (conjointly15) predict the

next word, which can be learned from many other examples in the training set that no not

include \boy". Christiansen and Chater remarked, following a suggestion by Hadley, that

the network also achieved correct prediction when the novel word \boy" appeared on both

sides of the conjunction. But even this demonstration does not change the explanation, since

the intervening word \and", always predicts a noun phase according to their grammar. At

best, this experiment is ambiguous on the issue of strong systematicity. A better test is the

prediction of novel words, which was examined in their �rst experiment.

In their �rst experiment, the network received the word \Mary's" from which it correctly

predicted either a singular or plural noun to follow. But, as Christiansen and Chater point

out, none of the predicted nouns included the two novel nouns \girl" and \girls". In light of

these results, their second experiment does not provide any evidence for strong systematicity.

Two networks demonstrating strong systematicity

In Hadley (1994), the de�nition of strong systematicity was extended to included re-

cursively embedded structures. Relative to this de�nition, a model is said to be strongly

systematic if, for example, having only been trained on instances where \Mary" appears in

the subject position, it generalizes to instances such as \John loves Mary" and \Tom knows

that John loves Mary". Two more complex networks satisfying these de�nitions are: the

transformation network16 of Niklasson and van Gelder (1994b); and the associative semantic

network of (Hadley & Hayward, 1995)17. The de�nition of systematicity was again revised

to include the capacity to assign appropriate meanings to words in test sentences (Hadley

& Hayward, 1995). This degree of systematicity, called strong semantic systematicity, is

15Which may explain why prediction of plural verbs was much less in the test case (see Figure 6(g), p.283).
16This network actually satis�ed a more stringent criterion in demonstrating generalization to components

that did not appear at all in the training set.
17This network also satis�es strong semantic systematicity (Hadley & Hayward, 1995), which requires

identifying the roles (e.g., agent, patient, etc) that components play in novel positions at novel levels of
embedding. This de�nition is not considered here.
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exhibited by the associative semantic network.

Transformation network

The Transformation network (Niklasson & van Gelder, 1994b) consists of two recursive

autoassociative memory (RAAM) networks (Pollack, 1990), and a feedforward network. The

task of the transformation network was to learn to make transformations (,) between logical

expressions (e.g., p! q , :p _ q). One RAAM was trained to encode a vector representa-

tions of logical expressions from their atomic constituents (e.g., p, q and !), and the other

RAAM was trained to decode representations of expressions back to their constituents. The

feedforward network was trained to map between those representations for the logical expres-

sions. The network demonstrated strong systematicity: having been trained on expressions

containing propositions p, q and r, the network generalized to expressions containing s.

A plot of hidden unit activations from a trained network (Niklasson & van Gelder, 1994b,

Figure 4) showed a similar form of two level clustering as was found with the simple recurrent

network. The �rst graph clearly shows clusters based on the second proposition, and the

same within-cluster positioning based on the �rst proposition. This organization suggests

that the component objects were decoded from within their complex representations along

the same set of dimensions (weights). Interestingly, the transformation task is a variation

of the autoassociation task (Task 1) on which the simple recurrent network was examined.

That is, the propositions were encoded and retrieved in the same �rst-in-�rst-out manner,

except with the addition of intervening connectives (e.g., !, _, etc). So, in light of the

analysis conducted here on the simple recurrent network such a solution makes sense.

The network also demonstrated generalization when the novel constituent s did not ap-

pear anywhere in the training set. At �rst, this result seems surprising given that the weights

from the input unit representing s are never updated during training (since its activation
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was always 0 for all other patterns). But, an examination of the encoding of constituents

suggests how such generalization was achieved. All propositions have one unit in their input

vector set to 1 to distinguish them from all other symbols. Thus, even the novel constituent s

received training to distinguish them from the connectives. In addition, the use of minimum

Euclidean Distance to determine the correct constituent works well with locally encoded con-

stituents. Regardless of the input to hidden weights, no component of the novel proposition

s will be projected in the direction of other propositions, since the activations to the inputs

representing those constituents will be zero (under a local representation). Thus, the closest

point is likely to be the novel constituent. An interesting extension to these simulations is

an inference task like Task 2, where the network is required to extract a speci�c value for

a speci�c constituent within a complex representation. In light of the results on the simple

recurrent network, I expect that the transformation network would not demonstrate strong

systematicity on such tasks.

Semantic network

The associative semantic network (Hadley & Hayward, 1995) is quite di�erent in structure

and functionality to any of the previously discussed networks. There is not su�cient space

for a full explanation of this network. However, one observation is made that suggests how

this network achieves generalization across position.

The task consists of representing the semantic content of a given sentence. Seman-

tic concepts such as principal proposition, agent, action, patient and individual words are

represented as individual nodes. The network learns by association between inputs nodes

(representing words) and their target semantic representations. The point to note about

this architecture, with respect to generalization across position, is that there are no direct

connections between the input nodes and the position/role nodes (e.g., agent, patient). In-
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formation between the input and position nodes is mitigated by a single proposition node.

Therefore, weight vectors from the input layer to each position node is e�ectively related by

a scalar factor. Linking input to position nodes via a single intermediate node introduces a

weight dependency across position. It is suggested that this property facilitates generaliza-

tion across position for unembedded sentences in the associative semantic network.

Implications for a connectionist cognitive architecture

The main implication of these results is that the architecture of higher cognition is not

that of completely connected networks coupled to a learning function, as exempli�ed in the

feedforward and recurrent networks. Such networks permit states that have no counterpart

in higher cognition (speci�cally, states of weak systematicity).

Yet, the negative results do not imply that all of connectionism is unsuitable for cognitive

modeling18. What is does tell us, to echo Fodor and McLaughlin (1990), is that there must

be additional principles above those of units and weights that organise network connectivity

in such as way as to enforce systematicity. One possibility is tensor networks (Smolensky,

1990)19, whose connectivity is arranged in such a way as to implement the inner (�) and

outer (
) product operators.

Tensor networks were introduced by Smolensky (1990) as a connectionist method for

representing symbol structures. An important property of tensors is that construction and

recovery of component representations occurs over the same set of units (via the inner product

operator), independent of the component's value and position within the complex object.

Hence learning to extract a component from one position automatically extends to all other

positions. The following example illustrates why.

Suppose \John loves Mary" is an instance of the binary relation \loves". Following

18There may even be domains where humans are weakly systematic.
19Fodor and McLaughlin (1990) and Fodor (1997) rejected this solution on the implementation issue, not

the issue of realizing systematicity.
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Smolensky (1990), these relational instances can be represented by the tensors: TJM =

J
r1+M
r2, where J andM are vector representations for components \John" and \Mary";

and r1 and r2 are their respective roles. Now, assuming that r1 and r2 are orthonormal, the

person being loved is determined by: TJM � r2 = M . This case automatically extends

to the related instance \Mary loves John", by the properties of inner and outer products:

TMJ � r2 = (M 
 r1 + J 
 r2)� r2 = J . In fact, it extends to all instances of the relation,

so that: TXY � r1 = X and TY X � r1 = Y , and similarly for the second component accessed

by role r2.

Although tensors are a representation scheme, they can be included in a larger learning

network where appropriate role vectors are learned to demonstrate generalization across

position (Phillips, 1994, 1995). Whether such a network can address all of Hadley's strong

systematicity criteria (including, generalization to novel levels of embedding) is the subject

of further study. The important point is that additional principles must be built into these

connectionist networks so as to demonstrate systematicity.

Component similarity revisited

At the beginning of the paper, I argued that one cannot rely on a priori similarity

between component input/output representations as the basis for systematicity. However,

this restriction does not preclude a network from constructing similar internal component

representations in previous learning as the basis for systematicity in subsequent tasks.

Suppose, through prior learning (e.g., categorization), previously dissimilar input stimuli

are assigned similar internal representations. In an extreme case, all components in the 2-

tuples task could be evenly distributed along a single internal unit dimension (e.g., Ann - 0.1;

Bill - 0.3; John - 0.5; etc). This new internal unit could serve as an input to a subnetwork for

the purpose of the autoassociation task. In this case, the auto-association task only requires
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learning a two element vector mapping: auto-association of (John, Bill) is the mapping

(0.5, 0.3) ! (0.5, 0.3). Since there is a linear relationship between the new similarity-based

input and output representations, only three 2-tuples are necessary for generalization to the

remaining pairs in a 2-2 feedforward network (i.e., two input units completely connected to

two output units). At least two of the �ve components would not have appeared in both

positions in the training set. Even though all components must have appeared in some

training condition for a previous (categorization) task, with respect to auto-association the

network can be said to have demonstrated strong systematicity.

Clearly, choice of component representation has a signi�cant impact on generalization.

But, permitting arbitrary input/output representations potentially trivializes the issue. As

the previous example demonstrated, generalization may be ensured by making novel com-

ponents su�ciently \close" to trained components, independent of whatever structure they

belong too. If one insists on component similarity as the basis for generalization, then the

crucial question becomes, what justi�es a particular choice of component representation?

CONCLUSION

In hindsight, it may seem obvious that there should be no generalization given that the

weights that extract components from di�erent positions are trained independently. But

this observation does not come directly from inspection of network connectivity alone. It

comes from an analysis of connectivity in conjunction with learning and task requirements:

for example, while the simple recurrent network exhibited generalization across position in

Task 1, there was no generalization for the same network in Task 2.

Feedforward and recurrent networks are not, in themselves, systematic. In the case of

local component representation, the two networks require additional properties (constraints)

to enforce generalization across position. I have focussed on one property: dependency
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between the weights associated with the representation of components in di�erent positions.

Dependency is enforced by using the same group of weights for each position, as in the tensor

and semantic networks. It may also be enforced by the learning method, as appeared to be

the case for the transformation network, although further analysis is needed in this area.

A cognitive architecture based on a network of units coupled with a learning algorithm

for con�guring the pattern of connectivity is attractive. It makes fewer commitments to the

design of speci�c mechanisms that realize cognitive behaviours. And those commitments

can be grounded, partly, by observation (learning) of external environmental events. Nev-

ertheless, if one accepts the requirements of systematicity, then those requirements are not

met by just this type of architecture. Either, additional properties are necessary to explain

why networks are con�gured in a particular way so as to exhibit systematicity; or, additional

subnetworks are required to preprocess potential components into similarity-based represen-

tations, for which it may be possible to demonstrate strong systematicity. Either way, the

standard approach will not su�ce.

In the 1980's, computer science saw a revolution in software design from the so called

procedural (3rd generation) languages such as C to relational (4th generation) languages of

which SQL is the standard for the purposes of modeling information systems. Analogously,

answers to the why question with respect to structure-related properties such as systematic-

ity, should refocus attention toward other approaches in connectionist modeling of higher

cognition.
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Figure Captions

Figure 1. The feedforward network for auto-association of 2-tuples.

Figure 2. The simple recurrent network and the temporal version of the auto-association

of 2-tuples task. Parenthesized values indicate number of units, dashes indicate zero input.

Starred outputs were not considered for testing.

Figure 3. Generalization to second position as a function of the number of training patterns

(log scale). The number of correct responses using maximum (solid line) and 0.5 (dashed

line) test response criteria were averaged over 5 trials. Error bars indicate 95% con�dence

levels. The horizontal dotted line indicates chance level performance.

Figure 4. Variance in hidden unit activation and principal components, ordered by mag-

nitude.

Figure 5. Principal components analysis of points in hidden unit activation space gener-

ated from training sequences at the second time step.

Figure 6. Canonical discriminants analysis of points in hidden unit activation space gen-

erated from training sequences at the second time step grouped on the basis of the �rst

input object.

Figure 7. Orientation of the hidden unit hyperplanes to extract the \Mary" component.

Figure 8. Orientation of the output unit hyperplane in the hidden unit activation space.
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Figure 9. Two alternative recurrent network architectures: Jordan's recurrent network (a)

and Pollack's recursive auto-associative memory (b).
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Table 1: Summary of the performance of the simple recurrent network on the systematicity
of inference task for networks with 20, 10 and 8 hidden units.

Hidden units 20 10 8*

Convergent trials (0.5/0.4) 10/10 10/7 1
(10 trials)

Correct test cases (5)
Train: 0.4; Test: (0.5/max) 0/0 0/0 -
Train: 0.5; Test: (0.5/max) 0/0 0/0 0/0 (8 trials)

0/1 (2 trials)
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