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Although the importance of analogy in human cognition has long been recognized (e.g., 

Piaget, 1950; Spearman, 1923) and understanding of human analogical reasoning accelerated in 

the 1980s (Gentner, 1983, 1989; Gick & Holyoak, 1983) the explanatory potential of analogy 

has not been fully recognised. Computational modelling has advanced rapidly, as is clear from 

the chapters in this volume, and this has been accompanied by increasingly wide applications. A 

role has been been proposed for analogy in a variety of cognitive phenomena including 

scientific understanding (Dunbar, this volume; Gentner & Gentner, 1983), political reasoning 

(Holyoak & Thagard, 1995) and children’s mathematics (English & Halford, 1995). Analogy is 

recognised as a natural mechanism for human reasoning, since it is possible from an early age 

(Goswami, 1992; Halford, 1993) and can even be performed by some nonhuman primates such 

as chimpanzees (Oden, Thompson & Premack, 1998; Premack, 1983). However, despite 

recognition of the power and widespread availability of analogy, it is not yet as widely utilised 

in modelling human cognition as we might have expected.  

Part of the reason why the explanatory potential of analogy in human cognition has been 

under-utilised might be that it has sometimes been difficult to demonstrate its effects on human 

problem solving in the laboratory. Analogy is a structure-preserving map from a base or source 

to a target (Gentner, 1983) but unless participants are given extensive training on the base 

analog, they tend to focus on superficial attributes rather than recognising relations that form 

the deeper basis for the analogy (Gick & Holyoak, 1983). This is by contrast with real-life 

analogies where structural correspondences between situations tends to be more readily 

recognised. The chapter by Dunbar (this volume) is very timely in indicating possible reasons 

for the paradox that effective analogical reasoning occurs so readily in naturalistic settings yet 

is so difficult to demonstrate in laboratories. Analogies in real life tend to be idiosyncratic and 

ephemeral, often lasting only as long as necessary to solve a problem, and then being forgotten. 

Most importantly, people are more likely to focus on structural aspects when they generate 



analogies for themselves. These factors makes analogical reasoning difficult to manipulate 

experimentally. If research such as that by Dunbar and his collaborators leads to more effective 

techniques for promoting analogical reasoning in laboratory studies it might increase 

experimentation on the explanatory power of analogy. 

We have argued elsewhere (e.g. Halford, 1993) that there is potential for analogy theory, in 

combination with capacity theory, to explain phenomena in cognitive development. We will 

briefly review some examples to indicate the kind of hypotheses that can be generated. 

Analogy as a Mechanism in Children’s Reasoning 

Developmental research on analogy has tended to focus on age of attainment (e.g. Goswami, 

1992, this volume) rather than on the role of analogy as a model of children’s reasoning. 

However we will illustrate its explanatory potential in two domains, transitive inference and 

class inclusion. It is well established that transitive inference can be performed by ordering 

premise elements into an array (Riley & Trabasso, 1974; Sternberg, 1980a, b) and Halford 

(1993) has pointed out that this can be interpreted as mapping premises into an ordering 

schema, as shown in Figure 1A. Given premises such as Tom is taller than James, Mike is taller 

than Tom, we can construct the order Mike, Tom, James. At first sight this might not seem to 

be a case of analogy, but on reflection we see that it amounts to assigning the three names to 

slots in an ordering schema. We all learn ordering schemas such as top-bottom or left-right at 

an early age, and they can function effectively as templates for ordering. The template is really 

the base for an analogy, and the ordered set of names is the target. This illustrates that analogy 

may play a subtle role in a lot of situations where it has not been recognised. Consequently, 

analogy theory, as it has been developed over the last two decades, has a lot of unrecognised 

potential for generating hypotheses about such tasks. 



 We have been interested in generating hypotheses based on the processing demands of 

analogical mapping. The load occurs in this case because in order to map Mike, Tom, James 

into top, middle, bottom respectively, both premises must be considered. The premise Tom is 

taller than James, taken alone, only tells us that Tom should go in top or middle position, and 

that James should go in middle or bottom position. Similarly for the premise Mike is taller than 

Tom. To assign Mike, Tom, James uniquely to ordinal positions both premises must be 

considered jointly. It is the integration of the premises, each of which represents a binary 

relation, into a ternary relation, that imposes the processing load for both children (Halford, 

Maybery, & Bain, 1986) and adults (Maybery, Bain, & Halford, 1986). This provides a possible 

explanation for the difficulty which young children experience with transitive inference 

(Andrews & Halford, 1998).  

Another task which young children have found difficult for reasons that have not been easy 

to explain is class inclusion (Halford, 1993) as shown in Figure 1B. A class inclusion problem 

for children might entail presenting a small set of  apples and oranges and asking “are there 

more fruit or more apples”. Unlike transitive inference, the basis of solution is not known, and 

analogy theory can help fill this gap.  In principle, the problem can be solved by mapping into a 

familiar schema that is isomorphic to the inclusion hierarchy. A suitable schema would be the 

family, because it includes parents and children. Fruit can be mapped into family, apples into 

(say) parents, and non-apples into children. Family is more numerous than parents, and this 

becomes a candidate inference for the target. By reverse mapping, it can be concluded that fruit 

are more numerous than apples.  

The difficulties children have with these tasks can be explained by the complexity of 

information that must be processed to perform the correct mapping (Halford, 1993). Notice 

that, in order to determine the correct mapping, it needs to be recognised that fruit and family 



are superordinates, whereas apples-nonapples, and parents-children, are subordinates. The 

difficulty of recognizing this is that the status of a category as superordinate or subordinate is 

not inherent in the category, but is defined by its relation to other categories. For example, 

neither fruit nor family is inherently a superordinate. If the hierarchy had been fruit, meat and 

food, fruit would have been a subordinate and food a superordinate. Fruit is a superordinate 

because it includes a subordinate and its complement, that is apples and nonapples. Similarly, 

family is a superordinate because it includes parents and children. To determine the correct 

mapping, relations between the three classes must be taken into account. This means mapping a 

ternary relation, between fruit, apples, nonapples to another ternary relation, between family, 

parents, children, as shown in Figure 1A. Mapping ternary relations imposes a high processing 

load (Halford, Wilson, & Phillips, 1998a) for both adults and children, which explains one 

source of difficulty.  

Analogy in mathematics education 

Another little recognised application for analogy occurs in mathematics education, where 

concrete aids representing mathematical concepts have been analysed as analogs. Differences in 

effectiveness can be explained by the complexity of the information that is required to 

determine the mapping from the analog to the concept represented (Halford, 1993; English & 

Halford, 1995). 

Analogy theory in reasoning 

There is also scope for analogy theory to have a greater explanatory role in logical inference. 

Some models are based on formal inference rules (Braine, 1978; Rips, 1989) but most theorists 

have chosen to model reasoning on the basis of alternative psychological mechanisms such as 

memory retrieval (Kahneman & Tversky, 1973) mental models (Johnson-Laird, 1983; Johnson-

Laird & Byrne, 1991) or pragmatic reasoning schemas (Cheng & Holyoak, 1985). There are 



also models based on more specialised mechanisms such as cheater detection (Cosmides, 1989; 

Cosmides & Tooby, 1992).  

The major issues here can be exemplified in the Wason Selection Task (Wason, 1968) 

shown in Figure 2. In this task participants are given four cards containing p, ~p, q, ~q (where 

~p means not-p) and asked which cards must be turned over to test the rule p → q (p implies q). 

The correct choices, p and ~q, are rarely chosen in abstract versions of the task (see reviews by 

Evans, 1982, 1989). The literature on techniques for improving performance on this task 

includes evidence for an effect of analogy (e.g. Cox & Griggs, 1982) but the scope for 

improvement has probably increased because of greater understanding of analogical reasoning 

processes. An example of this is that the improvement induced by pragmatic reasoning 

schemas, such as permission (Cheng & Holyoak, 1985) appears to be interpretable as 

analogical reasoning.  

The general form of the permission schema is that in order to perform action p, it is 

necessary to have permission q. The disconfirming case is p and ~q, where the action is 

performed without permission. Pragmatic reasoning schemas are sometimes interpreted as 

being specialised for deontic reasoning (Oaksford & Chater, 1994; Rips, 1994; Almor & 

Sloman, 1996), but it appears to have been overlooked that they may be utilized by analogical 

mapping. We will use the definition of pragmatic reasoning schemas as structures of general 

validity that are induced from ordinary life experience. This includes not only deontic rules 

such as permission and obligation, but other rules such as prediction and cause, and also 

extends to social contract schemas such as cheater-detection. As Figure 2B shows, the elements 

and relations presented in the WST task can be mapped into a permission or prediction schema. 

This can be done by application of the principles that are incorporated in contemporary 

computational models of analogy (Falkenhainer, Forbus, & Gentner, 1989; Gray, Halford, 



Wilson, & Phillips, 1997; Hummel & Holyoak, 1997; Mitchell & Hofstadter, 1990) and no 

special mechanism is required. Most of the major findings attributed to different formats might 

be more parsimoniously interpreted in terms of analogical mapping. 

In this theory, a possible reason why induction of a permission schema improves 

performance is that, as Table 1 shows, permission is isomorphic to the conditional. Extending 

this argument, a possible reason for the tendency to respond in terms of the biconditional p ↔  

q, is that in the standard version of the task participants may interpret the rule as a prediction. 

As Table 1 shows, prediction is isomorphic to the biconditional (Halford, 1993). It implies that 

the importance of permission is not that it is deontic, but that it is isomorphic to the conditional. 

As the canonical interpretation of the task is based on the truth-functional definition of the 

conditional, this mapping produces more responses that are deemed to be correct. By contrast, a 

lot of the errors produced by the standard version of the task are attributable to the rule being 

interpreted as a biconditional.  This is what would be expected if the task were mapped into the 

prediction schema, because prediction is isomorphic to the biconditional. 

  While we would not suggest that this argument accounts for all the effects associated with  

either the Wason Selection Task or pragmatic reasoning schemas, it does serve to illustrate that 

analogy can serve as the basic mechanism even in tasks such as WST that might normally be 

considered to entail logical reasoning. Analogical mapping explanations of WST performance 

are not confined to schemas such as permission and prediction, but will apply in principle to 

any schema with a structure sufficiently close to the WST problem to permit a mapping to be 

made. It therefore has potential to subsume other explanations, including those based on social 

contract theory.  

Cosmides and Tooby (1992) have argued that performance in the WST does not reflect 

general purpose reasoning mechanisms, but is based on a cheater detection schema that has 



evolved because of its adaptive value in a social environment. Thus the rule p → q can be 

represented as: 

“If you take the benefit, then you pay the cost” (benefit → cost);  

The correct choice, p and ~q, corresponds to cases where the benefit is taken without paying 

the cost. One specific prediction made by social contract theory is that the choices should be the 

same if the rule is switched; 

“If you pay the cost, then you take the benefit” (cost → benefit).  

Social contract theory predicts that favoured choices with the switched rule will continue to 

be those where the benefit is taken without paying the cost. However because the rule is now 

“cost → benefit”, the logically correct choices, corresponding to p and ~q, are those where cost 

is paid and the benefit is not accepted. The data favour the social contract theory prediction, 

that is, cases where the benefit is taken without paying the cost, are chosen. 

It is possible however that the cheater detection schema could be used by analogical 

mapping as shown in Figure 2C. The rule benefit → cost is isomorphic to the conditional. It is 

really another interpretation of the permission rule. Therefore, while Cosmides and Tooby may 

well be correct in their claim that cheater detection is a powerful schema for reasoning about 

the WST, the phenomena they observe are quite consistent with the principle that performance 

on the task reflects a general purpose, analogical reasoning process.  

The tendency to make the same choices with the original and switched rules might simply 

reflect a tendency by participants to transform the rule to a more familiar form.  Thus the rule 

“If you pay the cost, then you take the benefit” might be transformed to “If you take the benefit, 

then you pay the cost”. They might switch rules based on the principle of  the complementarity 

of rights (Holyoak & Cheng, 1995). There is plenty of evidence throughout cognition and 

cognitive development that the problem participants solve may be very different from the one 



that experimenter intends (e.g., Cohen, 1981). The undoubtedly powerful tendency to apply the 

cheater-detection schema, irrespective of the surface form of the problem, might simply reflect 

a universal tendency to map the problem into a familiar schema. Viewed this way, cheater-

detection is another reasoning schema that is isomorphic to the conditional, and the reasoning 

mechanism might be another case of analogy. 

Analogy and relations in higher cognition 

We have been exploring the potential of relational knowledge to provide a basis for the 

theory of higher cognitive processes. We have argued that the implicit-explicit distinction may 

be captured by the contrast between associations and relations (Phillips, Halford & Wilson, 

1995) and that the theory of relational knowledge captures the properties of higher cognition  

and accounts for processing capacity limitations (Halford et al., 1998a,b). This theory has been 

implemented as a neural net model (Halford et al., 1998a). Analogy plays a central role in this 

theory, so it is essential to demonstrate that analogy can be implemented in the architecture of 

the neural net model. That is the primary purpose of the STAR model of analogy, to be 

presented next. 

The STAR model of analogy 

The Structured Tensor Analogical Reasoning (STAR) model of analogical reasoning 

(Halford et al., 1994) is a neural net model, and the representations used are designed to be 

consistent with human processing capacity limitations. 

An analogy is a structure-preserving map from a base or source to a target (Gentner, 1983). 

The structure of base and target are coded in the form of one or more propositions. An 

analogical mapping between base and target consists of a mapping of the propositions in the 

base to the propositions in the target. Each proposition consists of a binding between a relation-

symbol (e.g. bigger-than or CAUSE) and a number of arguments (e.g. bigger_than(dog, cat) or 

CAUSE(pressure-difference, water-flow)).  A proposition is like a relational instance in that a 



proposition with n arguments and an n-ary relation both comprise a subset of the cartesian 

product of n sets. However a proposition, unlike a relational instance, need not be true. True 

and false propositions correspond to different subsets of the cartesian product  (Halford et al., 

1998a, section 2.2.2).  

The STAR-1 model  

The problem for any neural net model of analogy is how to represent the propositions that 

comprise the base and target of the analogy. This is essentially the same problem as how to 

represent relational instances. There are two major classes of approaches to this problem. One 

is based on synchronous oscillation model (Hummel & Holyoak, 1997; Shastri & Ajjanagadde, 

1993) while the other is based on product operations such as circular convolution (Plate, 1998) 

or tensor products (Smolensky, 1990).  Our approach is based on a tensor product 

representation of relational knowledge. The first version, which we now designate STAR-1, 

(Halford et al., 1994), is briefly described below. A further development, STAR-2, is described 

in detail in this chapter.  

Our approach to representing propositions and relational instances is to represent the 

relation symbol and each argument by a vector. The binding is represented by computing the 

tensor product of the vectors. Thus the n-ary relation R on A1 × A2 × ... × An is represented on 

a tensor product space VR ⊗  V1 ⊗  V2 ⊗  ... ⊗  Vn. The vectors used to represent concepts in 

each space Vi are orthnormal (i.e.  orthogonal to each other and of length 1). To illustrate, 

binary relational instances mother-of(mare, foal)and loves(woman, baby) are represented by 

vmother-of ⊗  vmare ⊗  vfoal and vloves ⊗  vwoman ⊗  vbaby. The representing vectors vmother-of and vloves 

are orthogonal, and so are the pairs vmare and vwoman, and vfoal and vbaby. The representation 

handles all of the properties of relational knowledge as well as providing a natural explanation 

for limits to human information processing capacity (Halford et al., 1998a).   



Information can be retrieved from this representation using a generalized dot-product 

operation. For example the query “what is mare the mother of?” can be answered by defining 

the probe mother-of(mare, -) and computing the dot product of the tensor product representing 

the probe with the tensor product representing the proposition, thus;  

vmother-of⊗ vmare •   vmother-of⊗ vmare⊗ vfoal = Vfoal 

Any one or more components of the proposition can be retrieved in this way, as we will 

illustrate below. 

Other propositions can be superimposed on the same represention. Thus mother-

of(mare,foal) and mother-of(cat,kitten) can be superimposed by adding the corresponding 

tensor products thus; 

vmother-of⊗ vmare⊗ vfoal  + vmother-of⊗ vcat⊗ vkitten 

Simple proportional analogies of the form A is to B as C is to what (A:B::C:?) were 

simulated by superimposing an appropriate set of propositions on the same neural net 

representation as shown in Figure 3. We define a tensor product representation, T,  of a set of 

propositions as; 

T = vmother-of⊗ vmare⊗ vfoal  + vmother-of⊗ vcat⊗ vkitten + . . + vlarger-than⊗ vmare⊗ vrabbit  + vlarger-

than⊗ vcat⊗ vkitten 

It is important that not all the stored propositions contribute to the required mapping. A 

proportional analogy, such as cat:kitten::mare:? can be solved by using the retrieval operation 

defined above. First we use “cat” and “kitten” as input, and the output is all the relation-

symbols of the propositions that have “cat” in the first argument position and “kitten” in the 

second argument position.   Thus the analogy cat:kitten::mare:foal can be performed by the 

following operations, as illustrated in Figure 3B .  

vcat⊗  vkitten  •  T =  Bp   = vmother-of + vfeeds+  vprotects + . .   + vlarger-than 



This output is called a “relation-symbol bundle”, and comprises the sum of the relation-

symbols that are bound to cat and kitten. The relation-symbol bundle is then used as input in 

the second step. 

 Bp⊗ vmare •  T =  w1.vfoal + w2.vrabbit 

With w1 and w2 being the weighting of each vector in the output bundle, w1 > w2 due to foal 

satisfying more propositions in T than rabbit satisfies.  

The ambiguity in the output is realistic, because cat:kitten::mare:rabbit is a valid, though not 

very satisying, analogy. Just as a cat is larger than a kitten, a mare is larger than a rabbit. 

However the solution “foal” is more satisfying because the arguments mare-foal are bound to 

more relation-symbols than the pair mare-rabbit. Thus we have mother-of(mare,foal), 

feeds(mare,foal), protects(mare,foal), larger-than(mare,foal), whereas the only proposition with 

the argument pair mare-rabbit is larger-than(mare,rabbit). The fact that w1 > w2 reflects the 

larger number of relation-symbols bound to mare and foal.   

STAR-1 was also able to perform other forms of analogy, including those in which the 

relation-symbol was missing, and those where a base had to be retrieved. It also incorporated 

realistic processing capacity constraints, and was in fact the first model to do so. A metric for 

quantifying the complexity of structures that can be processed in parallel was required, and it 

was also necessary to explain how problems that exceed this capacity are processed. We 

proposed that a metric in which complexity of relations is quantified by the number of 

arguments is the best for this purpose (Halford et al., 1994; 1998a). 

Capacity and Complexity 

It is important that a model of human analogical reasoning should conform to human 

processing capacity limitations. This in turn raises the question of how to quantify processing 

capacity. The STAR model is designed to conform to the theory that capacity limitations can be 

defined by the complexity of relations that can be processed in parallel (Halford, 1993; Halford 



et al., 1994; Halford et al., 1998a). In this section we will outline the relational complexity 

approach to defining processing capacity limitations.  

 The number of arguments of a relation corresponds to the dimensionality of the space on 

which the relation is defined. An N-ary relation can be thought of as a set of points in N-

dimensional space. Each argument provides a source of variation, or dimension, and thereby 

makes a contribution to the complexity of the relation. A unary relation (one argument) is the 

least complex, and corresponds to a set of points in unidimensional space. A binary relation 

(e.g. BIGGER-THAN) has two arguments, and is defined as a set of points in two-dimensional 

space. A ternary relation has three arguments (e.g. love-triangle is a ternary relation, and has 

arguments comprising three people, two of whom love a third) is defined on three-dimensional 

space, and so on.  

Relations of higher dimensionality (more arguments) impose higher processing loads. The 

working memory literature, plus some specific experimentation, has led to the conclusion that 

adult humans can process a maximum of four dimensions in parallel, equivalent to one 

quaternary relation (Halford et al., 1998a).  

The tensor product representation provides a natural explanation for observations that 

processing load increases as a function of the arity of relations, and also explains why 

processing capacity would be limited to relations with only a few arguments. As Figure 3A 

illustrates, the number of binding units equals the product of number of units in all vectors, and 

increases exponentially with the number of arguments. Representation of an n-ary relation 

requires n+1 vectors, one for the relation symbol and one for each argument. If the relation 

symbol and each argument are represented by a vector with m elements, then the number of 

binding units for an n-ary relation is mn+1.  

Structures more complex than quaternary relations must be processed by either conceptual 

chunking or segmentation. Conceptual chunking is recoding a concept into fewer dimensions. 



Conceptual chunks save processing capacity, but the cost is that some relations become 

temporarily inaccessible. Segmentation is decomposing tasks into steps small enough not to 

exceed processing capacity, as in serial processing strategies. 

Even a relatively simple analogy, such as that between heat-flow and water-flow shown in 

Figure 4 has a structure that is too complex to be processed entirely in parallel by humans.  

Consequently it is segmented into propositions that do not exceed processing capacity, and 

which are processed serially. The most efficient way to do this is to construct a hierarhical 

representation, as illustrated for heat-flow and water-flow in Figure 4 . However STAR-1 was 

not able to process hierarchically structured knowledge representations. This therefore was the 

primary motivation for STAR-2.  

The STAR-2 Model 

STAR-2 processes complex structures that are represented hierarchically, as illustrated in 

Figure 4. Each argument is either an element, representing a basic object (e.g. water) or a 

chunked proposition (e.g. water-flow is a chunked representation of the proposition 

flow(vesselA, vesselB, water, pipe)).  The height of a proposition in a hierarchy gives an 

indication of how much chunked structure it contains. First-order propositions have elements as 

arguments, while higher-order propositions have chunked propositions as arguments. First-

order propositions are of height 2, and the height of a higher-order proposition is the height of 

the highest unchunked argument plus one. 

The STAR-2 model forms mappings between domains containing multiple propositions 

while conforming to the working memory limitation of only mapping a single pair of 

quaternary propositions at a time.  In order to do this, the model sequentially selects 

corresponding pairs of propositions from the base and target. The relation symbols and 

arguments in each selected pair of propositions are mapped in parallel before a new base and 

target pair of propositions are selected.  The sequential selection of pairs of propositions can be 



seen as a form of segmentation, sequentially focusing on propositions of acceptable 

dimensionality in order to form a mapping between higher dimensional concepts (e.g. the heat 

flow and water flow domains).  Both the parallel mapping of relation symbols and arguments as 

well as the sequential selection of proposition pairs are performed by constraint satisfaction 

networks, indicating a degree of computational similarity between the sequential focus 

selection and the parallel mapping processes.  

The model consists of three main structures: the Focus Selection Network, the Argument 

Mapping Network, and the information storage structures, which include a map-storing 

network.  To illustrate the process of the model and the interaction of these structures we will 

consider the heat-flow/water-flow analogy (Figure 4).  The basic steps involved in the model 

are as follows: 

1. Initially, the information storage structures are established to represent the domains 

being mapped.  These structures store information such as similarity of items in the 

domains, salience of propositions, item-types (e.g. relation symbol, number, animal) and 

chunked-proposition/unchunked-proposition associations.  This information is specified 

as input to the model. 

2. The focus selection network is established and used to select a single base/target pair of 

propositions that will form the first pair of propositions to be mapped (ie. the first focus).  

This selection is influenced by a number of heuristics detailed later.  In the heat-

flow/water-flow example the causal propositions of each domain were selected, largely 

due to their height and the “Cause” relation symbol that was common to the propositions 

in base and target. 

3. The argument mapping network is established and forms mappings between the relation 

symbols and arguments of the currently selected propositions.  In the heat-flow/water-

flow example the mappings formed are Cause ↔ Cause, and the propositions Greater 



Pressure ↔ Greater Temperature and Flow ↔ Flow.  These mappings are then stored in 

the map storing network which maintains a store of all the mappings currently formed. 

4. Connectivity in the focus selection network is modified to incorporate the mappings 

formed in step 3 and to ensure that previously selected propositions are not re-selected.  

The network then selects another pair of propositions to be mapped.  In the example, the 

Greater Pressure proposition and the Greater Temperature proposition are selected due to 

their height and the mapping formed between them in step 3.  These propositions then 

form the next focus. 

5. The argument mapping network is then re-established to map the relation symbols and 

arguments of the current propositions.  The mappings Greater ↔ Greater, 

Pressure(Vessel A) ↔ Temperature(Coffee) and Pressure(Vessel B) ↔ 

Temperature(Ice) are formed and stored in the map storing network. 

6. The model then repeatedly:   

A. Updates the connectivity to the focus selection network.   

B. Selects a new pair of propositions. 

C. Maps the components of the selected propositions in the argument mapping network. 

D. Stores the new mappings in the map storing network, 

until a termination criterion is met.  The order of selection of propositions in the example 

is indicated by the superscript numbers in Figure 4 and the order of mappings formed is 

also indicated in the figure. 

On termination of the algorithm, all mappings for the analogy are retrievable from the map 

storing network.  We will now consider each of the components of the model in more detail. 

Argument Mapping Network 



This is a constraint satisfaction network1 and consists of up to five rows and five columns of 

mapping nodes.  Each row corresponds to either the relation symbol or an argument position of 

the currently selected base proposition, while each column corresponds to either the relation 

symbol or an argument position of the currently selected target proposition.  Each mapping 

node, therefore, represents a potential mapping between a relation symbol/argument in the base 

proposition and a relation symbol/argument in the target proposition.   

An example of the network is shown in Figure 5, mapping the top proposition of water-flow 

to heat-flow. That is, it is mapping the causal relation between pressure-difference and water-

flow to the causal relation between temperature difference and heat flow. Each of the nodes has 

an associated activation value that is updated by the excitatory and inhibitory input from each 

of the other nodes. Inhibitory connections between all nodes in the same row or column tend to 

make mappings unique; that is each base element is mapped to at most one target element and 

vice verse. Excitatory connections exist between all nodes not in the same row or column to 

allow a stable growth of activation. When the activations stabilise, winning nodes are selected 

due to their greater activation, and indicate the mapping adopted.  The shaded nodes in Figure 5 

show the winning nodes, that represent mapping of the relation-symbol and arguments of the 

base to the relation-symbol and arguments of the target. 

Mapping heuristics bias the mappings selected in the network towards conforming to various 

informational constraints. They are implemented by influencing nodes that provide constant 

excitatory or inhibitory input to the mapping nodes, biasing them towards or away from 

becoming winning nodes. These include: 

Corresponding argument positions. This node provides a bias towards mapping relation symbol 

to relation symbol, and to mapping arguments in corresponding positions in base and target. For 

                                                           
1 Constraint satisfaction networks have been used in a number of PDP analogy models since first introduced by 
ACME. A detailed explanation of constraint satisfaction operational mechanics as well as details of ACME 



example, if the proposition R(a,b) was being matched to the proposition R’(c,d) then there would 

be a bias towards the mappings R ↔ R’, a ↔ c, b ↔ d.  

Similarity  - there is a bias to map identical or similar entities. Semantic similarity of items is 

specified as input to the model, and identical items are identified through a common label.  

Type - items are initially specified with a type such as relation symbol, object, number or animal 

and there is a bias to map items of identical or previously mapped types. As mappings of the 

elements of the domains are formed and stored in the map storing network (detailed later), the 

corresponding types of elements also form type-mappings, which are also stored to the map 

storing network. These mappings then influence later instances of the argument mapping 

network.  

Salience. Items are initially specified with a salience and there is a bias towards mapping pairs of 

items with a higher salience and a bias away from mappings between items with a difference in 

salience.  

Consistency. There is a bias towards mappings that are consistent with previous mappings and a 

bias against mapping unlike components, such as elements to propositions, or relation symbols to 

arguments. The strength of potential mappings is derived from the map storing network in the 

form of a mapping score (detailed later) as each argument mapping network is instantiated. This 

allows connectivity to be established that biases towards strong mappings, but is not a hard 

constraint so one-to-many and many-to-many mappings can still be formed if implied by the 

domains. 

 
Focus Selection Network 

The Focus Selection Network (see Figure 6) is a two-layer constraint satisfaction network 

designed to select the pair of propositions that will form the next focus, to be passed on to the 

                                                                                                                                                                      
can be found in Holyoak & Thagard (1989).  



argument mapping network. Each layer has a structure similar to the argument mapping 

network. Within a layer each row represents a proposition from the base, and each column a 

proposition from the target. Thus each node represents a base/target pair of chunked 

propositions. For example, in the water-flow/heat-flow analogy in Figure 4, one node 

represents the pair of  causal propositions from base and target. The constraint satisfaction 

process eventually results in a winning node that indicates the next pair of  propositions to be 

mapped.  

Layer One  (the lower layer) is influenced by many of the same sources of activation as the 

mapping network, with  additional heuristics, biasing towards selecting propositions with 

similar height in the hierarchy, similar number of arguments and with corresponding relation-

symbols and arguments.  

Excitatory connections are placed between focus selection nodes in which the propositions 

represented by one node are arguments to the propositions represented by the other node.  For 

example, referring to Figure 4, in the heat-flow/water-flow domain an excitatory connection 

exists between the node representing the pair of CAUSE propositions (superscript 1) and the 

node representing the pair of FLOW propositions (supercript 3). This connectivity provides a 

bias towards matching similarly-shaped tree structures. To illustrate, if the node representing 

the pair of CAUSE propositions developed a significant activation, the excitatory connection to 

the node representing the pair of FLOW propositions would increase the activation of  this 

node and also the node representing the pair of GREATER propositions (superscript 2). Over 

the entire analogy this will mean that nodes in the corresponding positions in the heat-flow and 

water-flow trees will support each other.  The connectivity results in Layer 1 settling to a state 

in which a group of nodes develops a strong activation, representing a set of consistent 

base/target proposition pairs to potentially be mapped. 

                                                                                                                                                                      
 



The first layer is influenced by a number of heuristics through influencing nodes, including 

heuristics based on the height and height difference of propositions, saliance, similarity, types 

associated with propositions and common or previously mapped propositions, arguments and 

relation symbols. The connectivity from the influencing nodes can be modified between runs of 

the network to accommodate newly formed mappings. For example, in heat-flow/water-flow 

analogy, if the argument mapping network had been loaded with the pair of CAUSE 

propositions, resulting in mappings being formed between the pair of GREATER and the pair 

of  FLOW propositions, excitatory connectivity from the appropriate influencing node to the 

nodes representing the GREATER and FLOW proposition pairs will be established and 

increase the likelihood of these proposition pairs winning in the next selection. 

Layer Two is designed to select a single winning pair of chunked propositions from the set 

of winning terms in layer one. Within layer two, inhibitory connections are formed from each 

mapping node to every other mapping node.  This connectivity forms competition between all 

the layer two mapping nodes and therefore results in a final, stable state of only one node 

winning. This single winning node represents the pair of chunked propositions that becomes the 

next focus.  

The connectivity between layer one and two is displayed in figure 6. It is unidirectional so 

layer two cannot affect layer one. An excitatory connection is formed from each node in layer 

one to the corresponding node in layer two.  This connectivity results in strong units (winning 

nodes) of layer one providing strong input to the corresponding unit in layer two, and losing 

nodes of layer one providing no significant input to layer two. Additional connectivity is 

formed between unit i in layer one and unit j in layer two if the chunked propositions 

represented by unit i are arguments to the propositions represented by unit j or vice versa.  This 

corresponds to the excitatory connections between mapping nodes in layer one, and provides a 

bias for layer one winning nodes which are part of a layer one ``winning tree''. If a pair of 



chunked propositions has already been a successful focus, then the weight of the connections 

between the units in layer one and the unit in layer two representing these chunked 

propositions, as well as all other units in the same row or column, is set to 0.  This stops the 

input to these units, and ensures that a previous focus, or foci inconsistent with it, will not be 

selected in future focus selections. 

In addition to the above, connectivity is formed from some of the influencing nodes in layer 

one to the focus selection nodes in layer two.  While the influencing nodes in layer one biased 

which combination of nodes (tree) would win, in layer two the bias is to which of the nodes in 

the winning combination becomes the focus. The heuristics for influencing connectivity to 

layer two are based on the height of propositions and common or previously mapped relation 

symbols. 

Information storage structures 

Information storage structures are used to store information about the entities (propositions, 

elements and relation-symbols) in the base and target. A number of tensor networks store 

information about similarity between pairs of entities, salience of entities, entity - type 

associations and chunked proposition - unchunked proposition associations.  In addition to 

these networks, a rank two tensor ``mapping tensor'' (or “map storing network”) is used to store 

mappings between entities as they are formed by the argument mapping network.  

Mapping Scores are designed to reflect the uniqueness of mappings from base to target,

and also the salience of the mapped entities. Uniqueness is a soft constraint, and non-unique 

mappings can occur if an element in the target is mapped to different base elements, or vice 

verse, on different foci. When a base item a is mapped to a target item b, a weighted form of 

the tensor product a ⊗  b is superimposed on the mapping tensor. If a mapping formed by the 

argument mapping network is the same as one stored from a previous focus, the new mapping 

is still superimposed on the mapping tensor to increase the strength of the mapping.  



Corresponding type mappings are stored as each atomic element and relation symbol mapping 

is stored. 

To reflect salience, the tensor product a ⊗  b is weighted by multiplying the resulting 

binding units by either: 

1. The average salience of the two propositions that formed the focus from which the 

mapping was made. 

2. The single specified salience if only one of the two propositions has a specified 

salience. 

3. The average of all specified saliences of propositions if neither of the two propositions 

has a specified salience. 

This weighting results in mappings formed in salient foci being considered more important 

than mappings formed in less salient foci.  

The first step in computing the mapping score is to retrieve the vector bundle comprising all 

target (base) elements mapped to base (target) item a, from the mapping tensor.  The ``base to 

target mapping score'' for the a-b mapping is calculated as follows: 

base to target mapping score = b •  vector_bundle/  |vector_bundle|  

where vector_bundle is the vector retrieved from the calculation a •  mapping tensor 

This mapping score will be in the range 0 to 1 and indicates the degree of uniqueness of 

the mapping.  A value of 0 means that b has never been mapped to a, and 1 means that b is the 

only item mapped to a. A value between 0 and 1 (exclusive) indicates the number of items, 

including b, that have been mapped to a. The higher the value the greater the strength of the a-b 

mapping relative to other mappings into which a has entered. 

The target to base mapping score can be calculated in analogous manner, but it is not 

necessarily equal to the base to target mapping score (e.g. if item a in the base was mapped to 

several items in the target, including b, but item b was only mapped to item a in the base).  To 



provide an overall indication of the strength of the a-b mapping, an overall mapping score is 

calculated as follows: 

overall mapping score = (base to target mapping score + target to base mapping score) / 

2. 

This overall mapping score is used to determine biases in the Argument Mapping Network 

and the Focus Selection Network. 

Termination Criteria 

In the current implementation a test for termination occurs when either the Focus Selection 

Network selects a previous focus, or a focus that is inconsistent with a previous focus, or the 

Argument Mapping Network converges to a state in which a set of mappings cannot be 

interpreted from the result. The percentage of chunked propositions in the smaller domain that 

have formed a focus is calculated and labeled the percentage focused. If this percentage focused 

is greater than 90% then the algorithm terminates and has successfully found an analogy. 

Successful termination also occurs when all chunked propositions in the smaller domain have 

formed a focus. None of the tested domains required a failure termination.  

Analogies Solved 

In addition to heat-flow/water-flow, a number of other analogies have been solved by the 

model.  These include: 

The Rutherford analogy between the structure of the solar system and the structure of the 

hydrogen atom has more propositions than heat-flow/water-flow and has a more complex 

structure, but is successfully handled by the STAR-2. The same representation adopted for 

SME (Falkenhainer et al., 1989) was used, as shown in Figure 7.  This included a structured 

representation of the solar system involving the gravitational attraction of the sun and planets, 

the mass difference of the sun and planets and the revolution of the planets around the sun.  The 

corresponding structure of the atom was partly represented, omitting some of the higher order 



relations. Irrelevant details were added to both the solar system and the atom in the form of the 

temperature difference of the sun and planets and the mass difference of the electron and the 

nucleus. 

STAR-2 successfully mapped all the corresponding structure of the two domains, initially 

focusing on the highest available corresponding causal relationships, and then moving down 

the corresponding structures.  Once the corresponding structures were mapped, STAR then 

went on to map the irrelevant sun/planet temperature difference to the irrelevant 

electron/nucleus mass difference. 

Jealous animals problem is an analogy between isomorphic children’s stories where animals 

play the roles in the story (Gentner & Toupin, 1986) (See Figure 8).  A number of versions 

were tested in which the corresponding animals’ similarity was varied as well as the presence 

of higher order propositions (see Holyoak & Thagard, 1989 for details of these analogies).  The 

model correctly solved most versions of the analogy, but also made incorrect mappings on 

versions that are difficult for humans (e.g. where animal similarity worked against the 

structurally correct mappings). Six versions, designed to vary systematicity (defined by 

existence of higher-order relations) and transparency (defined as the same animal filling 

corresponding roles in base and target stories) in the same manner as Gentner and Toupin, were 

tested. Animal similarity was specified as an element similarity in the input. The solutions 

produced by STAR-2 to this analogy corresponded closely to those found by Gentner and 

Toupin (1986). For the systematic versions, all representations resulted in correctly mapped 

corresponding chunked propositions and relation symbols. For the unsystematic versions, the 

case where animal similarity worked against the structurally correct solution resulted in 

incorrect mappings of  both animals, relation symbols and propositions. The other cases were 

mapped correctly.  



Addition/Union was solved by ACME to demonstrate the ability to find isomorphisms 

without semantic or pragmatic information (Holyoak & Thagard, 1989). It is an analogy 

between the properties of  associativity, commutativity and the existence of an identity element 

on numeric addition and set union. The properties of addition and union are in fact isomorphic, 

involve higher order propositions but have no common relation-symbols or arguments between 

the two domains (see Figure 9).  STAR-2 solves this analogy despite the lack of common items. 

In the representation solved by ACME all propositions were considered to be single level 

(height = 1), with additional elements introduced to represent intermediate results of additions 

(unions). For example, commutativity of addition (a + b = b + a) would be represented as Sum 

(a, b, c), Sum (b, a, d), Number_equal (c, d). In this form STAR-2 was unable to solve the 

analogy, as there was no heuristics to distinguish between the many first level propositions, a 

lot of which adopted the same relation-symbol (Sum or Union).  STAR was however able to 

solve the same problem with the domains re-represented to incorporate chunking and higher 

order relations. In the modified representation commutativity of addition would be represented 

as follows: 

Sum (a, b)  chunk as sum_ab, and considered to be a number. 

Sum (b, a)  chunk as sum_ba and consider to be a number. 

Number_equal (sum_ab, sum_ba) chunk as commutativity 

The representation containing higher order relations corresponds to our introspections when 

performing this analogy, and appears to be more cognitively realistic.  In a complex physics 

equation components would be chunked and higher order relations adopted that use the 

chunked components. For example velocity is distance divided by time, but is normally 

chunked as a single variable (e.g. d/t is chunked into v). Then v is used to represent acceleration 

= (v2 - v1) / (t2 - t1).  Here, acceleration could be considered a higher order concept than 



velocity, rather than both single level concepts with intermediate values used to hold the results 

(as ACME’s representation would imply). 

Adopting these hierarchical representations, STAR was able to successfully map the entire 

analogy representing commutativity, associativity and identity.  It would first focus on a pair of 

higher order propositions (associativity of union and addition) and then focus on the arguments 

of the selected higher order propositions, moving down the hierarchical structure. It would then 

repeat this for commutativity and identity existence.  

The boy-dog analogy (Holyoak & Thagard, 1989) is an analogy in which the base and target 

have isomorphic structure, but there are no higher order propositions and no common relation 

symbols or arguments (see figure 10). The basic version is difficult for humans to solve, and it 

is not clear how participants succeed on it. One possibility would be back tracking, that is 

partially undoing an incorrect solution. Back tracking was not used in STAR2 because there 

does not yet appear to be definitive evidence that humans partially undo a failed attempt at 

analogy. Alternatively participants might start the analogy again, avoiding previously incorrect 

solutions. Neither approach is implemented in STAR2 as it stands, with the result that it fails 

the basic version of the boy-dog analogy. However humans are more successful with a 

modified order of presentation or additional information about similarities of relation symbols 

(see Keane, Ledgeway & Duff, 1994, for details on the versions of this analogy). Order of 

presentation was handled in STAR2 by an additional higher order proposition indicating which 

proposition was presented first (see Figure 10).  Two additional versions with different sets of 

similarity ratings were also used. In accordance with human results STAR2 failed the basic 

analogy but was able to form all of the modified analogies.  

Conclusion 

The STAR-2 model of analogical mapping maps complex analogies through a combination 

of serial and parallel processing.  Base/target pairs of propositions are selected sequentially 



while mappings between the components of the propositions are formed in parallel.  This 

corresponds to a form of segmentation over capacity limited relational domains and thus 

conforms to observed psychological capacity limitations in the complexity of relations that can 

be processed in parallel.  The model has been tested on five analogies and displays a 

correspondence with psychological results.  
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Each card contains a letter on one side and a number on the other side. Which cards 
must be turned over to determine if the rule “if there is an A on one side there is a 
4 on the other side” is valid? 
 
The rule, A → 4 is equivalent to p → q. 
 
The correct choices, A and 7, are equivalent to p and q

A  (p) 4  (q)B (p) 7 (q)
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Water-flow

CAUSE1

GREATER2 FLOW(vessel A, vessel B, water, pipe)3 GREATER

PRESSURE(vessel A)5     PRESSURE(vessel B)4 DIAMETER(vessel A)6  DIAMETER(vessel B)

LIQUID(water) FLAT_TOP(water)7

Heat-flow

CAUSE1

GREATER2 FLOW(coffee, ice,  heat, bar)3 LIQUID(coffee)6

TEMPERATURE(coffee)5     TEMPERATURE(ice)4 FLAT_TOP(coffee)7

Mappings

Focus No. Water-flow Heat-flow Final Overall Mapping Score
1 Cause Term Cause Term
1 CAUSE CAUSE 1
1 Greater Pressure Term Greater Temperature Term
1 Flow Term Flow Term
2 GREATER GREATER 1
2 Pressure Vessel A Term Temperature Coffee Term
2 Pressure Vessel B Term Temperature Ice Term
3 FLOW FLOW 1
3 vessel A coffee 0.9743
3 vessel B ice 1
3 water heat 0.8535
3 pipe bar 1
4 PRESSURE TEMPERATURE 1
6 Diameter Vessel A Term Liquid Term
6 DIAMETER LIQUID 1
7 Flat Top Term Flat Top Term
7 FLAT_TOP FLAT_TOP 1
7 water coffee 0.5117
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Solar System

    CAUSE

AND REVOLVES_AROUND(planet, sun)6

CAUSE1

GREATER GRAVITY2 ATTRACTION(sun, planet)3

MASS(sun)4 MASS(planet)5 GREATER7

TEMPERATURE(sun)8        TERMPERATURE(planet)9

Atom

CAUSE1 REVOLVES_AROUND(electron, neutron)6

GREATER7 OPPOSITE_SIGN2  ATTRACTION(neutron, electron)3

  MASS(neutron)8 MASS(electron)9   CHARGE(neutron)4 CHARGE(electron)5

Mappings

Focus Solar System Atom Final Overall Mapping Score
1 Attraction Cause Term Attraction Cause Term
1 CAUSE CAUSE 1
1 Gravity Term Opposite Sign Term
1 Attraction term Attraction term
2 GRAVITY OPPOSITE_SIGN 1
2 Sun Mass Term Neutron Charge Term
2 Planet Mass Term Electron Charge Term
3 ATTRACTION ATTRACTION 1
3 sun neutron 1
3 planet electron 1
4 MASS CHARGE 1
6 Revolves Term Revolves Term
6 REVOLVES_AROUND REVOLVES_AROUND 1
7 Greater Temerature Term Greater Mass Term
7 GREATER GREATER 1
7 Sun Temperature Term Neutron Mass Term
7 Planet Temperature Term Electron Mass Term
8 TEMPERATURE MASS 1



 
 
 
 

Jealous Animals (dog, seal, penguin)

CAUSE1 CAUSE9 CAUSE11

     CONJOIN2 ANGRY(object_dog)3  RECKESS(object_dog)10   ENDANGERED(object_dog)12

  JEALOUS(object_dog)5 PLAYED(object_seal, object_penguin)4 PENGUIN(object_penguin)14

  FRIENDS(object_dog, object_seal)15     SEAL(object_seal)13      CAUSE6 DOG(object_dog)16

SAVE(object_penguin, object_dog)7     BEFRIEND(object_dog, object_penguin)8

Jealous Animals (cat, walrus, seagull)

CAUSE1 CAUSE9 CAUSE11

     CONJOIN2 ANGRY(object_cat)3  RECKESS(object_cat)10   ENDANGERED(object_cat)12

  JEALOUS(object_cat)5 PLAYED(object_walrus, object_seagull)4 SEAGULL(object_seagull)14

  FRIENDS(object_cat, object_walrus)15  WALRUS(object_walrus)13      CAUSE6 CAT(object_cat)16

SAVE(object_seagull, object_cat)7     BEFRIEND(object_cat, object_seagull)8

Mappings
Focus No. (dog, seal, penguin)  (cat, walrus, seagull)           Overall mapping score
1 Conjoin Cause Angry Term Conjoin Cause Angry Term
1 CAUSE CAUSE 1
1 Conjoin Term Conjoin Term
1 Angry Term Angry Term
2 CONJOIN CONJOIN 1
2 Jelous Term Jelous Term
2 Played Term Played Term
3 ANGRY ANGRY 1
3 object_dog object_cat 1
4 PLAYED PLAYED 1
4 object_seal object_walrus 1
4 object_penguin object_seagull 1
5 JEALOUS JEALOUS 1
6 Save Cause Befriend Term Save Cause Befriend Term
6 Save Term Save Term
6 Befriend Term Befriend Term
7 SAVE SAVE 1
8 BEFRIEND BEFRIEND 1
9 Angry Cause Reckless Term Angry Cause Reckless Term
9 Reckless Term Reckless Term
10 RECKLESS RECKLESS 1
11 Reckless Cause Endangered Term Reckless Cause Endangered Term
11 Endangered Term Endangered Term
12 ENDANGERED ENDANGERED 1
13 Seal Term Walrus Term
13 SEAL WALRUS 1
14 Penguin Term Seagull Term
14 PENGUIN SEAGULL 1
15 Friends Term Friends Term
15 FRIENDS FRIENDS 1
16 Dog Term Cat Term
16 DOG CAT 1



 
 
 

 
 
 
 
 

ADDITION

NUMERIC_EQUALITY1 associativity NUMERIC_EQUALITY(     , zero)9 identity

   SUM(number3,      )2    SUM(      , number5)4 SUM(number6, zero)10

SUM(number4, number5)3   SUM(number3, number4)5 NUMERIC_EQUALITY6 commutativity

SUM(number1, number2)7   SUM(number2, number1)8

UNION

SET_EQUALITY1 associativity            SET_EQUALITY(     , null_set)9 identity

       UNION(set3,      )2 UNION(      , set5)3 UNION(set6, null_set)10

 UNION(set4, set5)4    UNION(set3, set4)5 SET_EQUALITY6 commutativity

UNION(set1, set2)7  UNION(set2, set1)8

Mappings

Focus Addition Set Final overall mapping score
1 Associativity Term Associativity Term
1 NUMERIC_EQUALITY SET_EQUALITY 1
1 Sum Number 3_45 Term Union Set 3_45 Term
1 Sum Number 34_5 Term Union Set 34_5 Term
2 SUM UNION 1
2 number3 set3 1
2 Sum Number 4_5 Term Union Set 4_5 Term
3 Sum Number 3_4 Term Union Set 3_4 Term
3 number5 set5 1
4 number4 set4 1
6 Commutativity Term Commutativity Term
6 Sum Number 1_2 Term Union Set 1_2 Term
6 Sum Number 2_1 Term Union Set 2_1 Term
7 number1 set1 1
7 number2 set2 1
9 Identity Term Identity Term
9 Sum Number 6_0 Term Union Set 6_null Term
9 zero null_set 1
10 number6 set6 1



 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

Boy

FIRST1

SMART(bill)3 SMART(steve)2 TALL(bill)4 TALL(tom)5 TIMID(tom)6

Dog

FIRST1

    HUNGRY(rover)3 HUNGRY(fido)2    FRIENDLY(rover)4    FRIENDLY(blackie)5    FRISKY(blackie)6

Mappings

Focus Boy Dog Final overall mapping score
1 First Term First Term
1 FIRST FIRST 1
1 Smart Steve Term Hungry Fido Term
2 SMART HUNGRY 1
2 steve fido 1
3 Smart Bill Term Hungry Rover Term
3 bill rover 1
4 Tall Bill Term Friendly Rover Term
4 TALL FRIENDLY 1
5 Tall Tom Term Friendly Blackie Term
5 tom blackie 1
6 Timid Tom Term Frisky Blackie Term
6 TOM FRISKY 1



Table 1 

The Structure of the Permission Schema 

 

 

 

  Permission Schema 

(Symbolic) 

Conditional Biconditional 

(Prediction) 

Permission schema Action → 

Permission  

  A → P A P A → P A ↔ P 

Action permission allowed   A   P + 1 1 1 1 

Action  no permission not allowed   A  P - 1 0 0 0 

No action permission allowed  A   P + 0 1 1 0 

No action no permission allowed  A  P + 0 0 1 1 

 


	The STAR-2 Model for Mapping Hierarchically Structured Analogs
	
	Analogy as a Mechanism in Children†fs Reasoning
	Analogy and relations in higher cognition


	The STAR model of analogy
	
	The Structure of the Permission Schema




