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Review
Glossary

Categorical syllogism: Categorical syllogisms consist of two premises and a

conclusion, each with a single quantifier, which can be ‘All’, ‘Some’, ‘Some not’

or ‘None’ (e.g. All X are Y, No Y are Z therefore No X are Z).

Class inclusion: if A and A’ are non-empty subclasses that are included in B,

then there are more instances of B than of A or A’.

Coordinate system: A system that uses a set of numbers or other ranked

entities to uniquely determine the position of points or objects, where position

is identified by an ordered tuple of numbers (one for each dimension of the

coordinate system).

Error backpropagation: A neural network learning algorithm that allows

multilayer networks to learn by computing the error (i.e. the difference

between actual and target outputs), ‘backpropagating’ this error to compute

notional errors for nodes in earlier layers, and using these (notional) errors to

adjust connection strengths between nodes.

Inner (dot) product: The inner (dot) product u � v of vector u = (u1, u2, . . ., un)

with vector v ¼ ð1; 2; . . . ; nÞ in Euclidean space is the scalar
Pn

i¼1 ui i .

Mental model: A constructed representation incorporating instances that make

a set of premises true, and which permit valid conclusions to be drawn [3].

Modus ponens: Given that P implies Q, and that P is true, we can infer that Q is

true that is P) Q, P therefore Q.

Predicate: A logical formula consisting of an n-ary predicate symbol P followed

by n terms t1, t2, . . ., tn, and written P(t1, t2, . . ., tn). Terms can contain variables,

and P(t1, t2, . . ., tn) can evaluate to either true or false when all variables are

instantiated. A predicate is essentially a truth-valued n-ary function.

Predicate calculus: A form of logic where formulas contain variables that can

be quantified, such as the formula 9x Man(x), where x is an existentially

quantified variable, and Man is a predicate.

Premise: Propositions that appear in the antecedent position of an argument

(distinct from conclusion which appears in the consequent position).

Proposition: An expression that has a truth value, for example ‘dogs purr’ has a

truth value (false) but ‘dogs’ has no truth value, and is not a proposition.

Relation: An n-ary relation is a subset of the Cartesian product of n sets. The

ordered n-tuples that comprise the extension of a relation can be generated

from the Cartesian product.

Schema: A structured cognitive representation for example a restaurant

schema represents the relation between ordering, receiving and paying for

food; the ordering schema in Figure 2 represents relations between the

positions top, middle and bottom.

Structure: A set of elements together with the relations defined between them.

Tensor product: The tensor product of two vectors u = (u1, u2, . . ., um) and

v ¼ ð1; 2; . . . ; nÞ is a 2-subscript object similar to a matrix, B = (bij) where

bi j ¼ ui j . Higher rank tensor products are defined analogously, for example the

product T = (tijk) of u, v and w ¼ ðw1;w2; . . . ;w pÞ would have ti jk ¼ ui j wk .

Tensor products have several convenient mathematical properties.

Transitive inference: Given that the relation r holds between A and B, and
Accumulating evidence on the nature, function and ac-
quisition of relational knowledge indicates a crucial role
of such knowledge in higher cognitive processes. In this
review, we specify the essential properties of relational
knowledge, together with the role it plays in reasoning,
categorisation, planning, quantification and language.
Furthermore, we discuss the processes involved in its
acquisition and how these processes have been imple-
mented in contemporary neural network models. We
present evidence demonstrating that relational knowl-
edge integrates heuristic and analytic cognition, is im-
portant for symbolic processes and the creation of
novelty, activates specific regions of the prefrontal cor-
tex, and is the most recently evolved and slowest-devel-
oping cognitive process. Arguably, relational knowledge
represents the core of higher cognition.

The role of relational knowledge in higher cognition
Relations are a core concept in mathematics [1], computer
science [2] and cognition [3–7]. In the latter domain, there
is converging evidence from both empirical research and
computational modelling on the nature, function and ac-
quisition of relational knowledge. As we will argue, this
evidence indicates that relational knowledge plays a core
role in higher cognitive processes.

In what follows, we first outline the core properties of
relational knowledge and then discuss the role of working
memory as the workspace where relational representations
are constructed. We subsequently discuss the foundational
role of relational knowledge in reasoning, language, cate-
gorisation and planning. We briefly present evidence on the
neural basis of relational processing before discussing ac-
quisition processes, including formal models. Taken togeth-
er, the evidence we present makes a compelling case for a
foundational role of relational knowledge in higher cogni-
tion. This thesis is in line with current thinking in the field
[6,8], as well as with earlier proposals [4,9–11].

Core properties of relational knowledge
Relational representations can be conceptualised as a
binding between a relation symbol and a set of ordered
tuples of elements [3,5]. For example, the relation-symbol
larger is bound to the set of ordered pairs: {(elephant,
mouse), (pig, cat)...} (Figure 1a). The symbol represents
the ‘intension’ of a relation and specifies which relation is
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intended; for example, elements are ordered by size in
Figure 1a and by fear in Figure 1b. The ordered tuples
represent the ‘extension’ of a relation, can include knowl-
edge learned by experience (either case by case or incorpo-
rating regularities), and can provide statistical knowledge
of the world. For example, representations of the larger
relation include instances of horses being larger than dogs,
and exceptions in which horses are not larger than dogs.
between B and C, then if r is a transitive relation, we can infer that r holds

between A and C, that is ArB and BrC implies ArC.
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[(Figure_1)TD$FIG]

Figure 1. Relational representations can be conceptualised as a binding between a relation symbol and a set of ordered tuples of elements (a) Dots indicate the ordered

pairs belonging to the relation larger (larger = {(elephant, mouse), (pig, cat)...}). (b) Dots indicate the ordered pairs belonging to the relation afraid_of (afraid_of = {(mouse,

cat), (cat, elephant), (elephant, mouse)}).
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These representations provide a knowledge base for esti-
mating conditional probabilities (e.g. of a horse being
larger than a dog). Therefore relational knowledge can
serve as the basis for heuristics consistent with Bayesian
cognitive theory [12].

Relational representations have several core properties,
which we outline below. By core properties, we intend
those properties that are essential to relational knowledge
and which distinguish it from other forms of cognition such
as association, or automatic and modular processes, to
which we will refer collectively as nonanalytic processes
[13].

Structure-consistentmappings, a crucialpropertyof rela-
tions, are correspondences between representations that
preserve structure in the sense illustrated below. One ex-
ample would be the way relations between dots on a map
correspond to relations between the places they represent,
even though the dots have no resemblance to the places.
Structural correspondence is defined by consistentmapping
ofelementsandrelations [11].This is illustrated inFigure 2:
a spatial schemacomprising the elements ‘top’, ‘middle’, and
‘bottom’,with the relationabovedefinedbetween them,used
to represent order or position. The premises ‘Tom is taller[(Figure_2)TD$FIG]
Figure 2. An example of explicit transitive inference. The premises ‘Tom is taller than P

formed in working memory by mapping onto an ordering schema, such as top-mid

correspondence: the taller relation consistently corresponds to the above relation. Map

shorter in the other case, and a valid transitive inference cannot be made. Map (c) is s

structure-consistent but the truth of the premises is not preserved (taller has been repl
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thanPeter’ and ‘Bob is taller thanTom’ aremappedonto this
schema. InMap (a), the elements ‘top’, ‘middle’ and ‘bottom’
in the schema are mapped to the elements ‘Bob’, ‘Tom’ and
‘Peter’ respectively in the premises. The relations are
mapped to correspond with the element mappings, so the
relation above is consistently mapped to the relation taller.
Although mappings can also be influenced by other factors,
including element similarity and relational similarity,
structure-consistent mappings are crucial both to cognitive
representations and to analogies [10]. They enable analytic
cognition that has some degree of independence from simi-
larity of content, and theypromote selection of relations that
are common to several relational instances,which is amajor
step towards abstraction and representation of variables
[14,15]. In fact, structure-consistent mapping between rela-
tional representations is a core property of higher cognition,
and has been identified as the process that best distin-
guishes human cognition from that of other animals [16],
with chimpanzees possibly being transitional in that they
can onlyperformsimple analogies suchas ‘small square is to
large square as small circle is to large circle’ [17].

Compositionality is another core property of relations.
Representations of complex entities are compositional
eter’ and ‘Bob is taller than Tom’ are presented once only, and a mental model is

dle-bottom. Four mappings are shown. Map (a) is based on abstract structural

(b) is not structure-consistent because above corresponds to taller in one case and

tructure-consistent because shorter consistently corresponds to above. Map (d) is

aced by shorter without converting the order of the elements).
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when the constituent entities from which they are con-
structed retain their identity in the compound representa-
tion and are accessible. Given larger (horse,dog) we can
determine the answer to ‘‘what is larger than a dog?’’
(horse) and the answer to ‘‘what is the specified relation
between horse and dog?’’ (larger) and so on.

Systematicity means that certain cognitive capacities
are intrinsically connected in that, for example, the capac-
ity to understand ‘John loves Mary’ implies the capacity to
understand ‘Mary loves John’ [18]. Systematicity enables
generation of novel instances. With a representational
format loves(-, -), whereby agent (lover) and patient (loved)
slots are bound together by the predicate ‘loves’, we can
generate an unlimited set of propositions by binding ele-
ments to the slots: loves(Mary, John), loves(Wendy, Bob)
and so on. A more formal explanation is given by [19].

These core properties of relations (as well as the impli-
cations and applications of relational knowledge presented
in Box 1) help explain their foundational role in higher
cognitive functions which we address in detail in a subse-
quent section.

The role of working memory in constructing relational
representations
Working memory is recognised as the workspace where
relational representations are constructed [5,15,20,21]. It
plays a role in the determination of structural correspon-
dence [22,23] because the mapping between elements is
Box 1. Applications and implications of relational

knowledge

� An instance of a relation is a proposition that is true, for example

larger(elephant, mouse) is an instance of the larger relation and is

a proposition.

� Symbols inhabit symbol systems, that is symbol structures in a

relational environment [4,79].

� An operation is a kind of function, and a function is a special kind

of relation. Thus arithmetic addition is a function of two addends,

and is a ternary relation comprising a set of ordered 3-tuples;

+={(x, y, z)|x, y, z 2 N & x + y = z}. A function is a relation in which

every element in the domain (input) is mapped to only one

element in the co-domain (output). Thus addition is a function, but

parent_of(S,S) is not.

� Higher-order relational representations, with lower levels em-

bedded within higher levels and the same operation being

performed at each level, form a basis for recursion [80].

� Relations differ from associations. Relations are distinguished by

symbols for example contains(cup, drink) and stands_upon(cup,

saucer), whereas associations cup ! drink, and cup ! saucer are

not [5]. An associative link per se cannot be an argument to another

association, so associations cannot be recursive [80]. However,

relational frames can be superimposed on associative learning [81].

� Rules are widely used to describe higher cognitive processes, but

rules can be expressed as relations that have the advantage of an

established mathematical definition. In practice, rules are often

compressed or compact representations of relations.

� Structure is defined as a set of relations between elements.

� Novel instances can be created, as noted under systematicity.

Mapping new phenomena into existing representations, as in the

transitive inference in Figure 2, also creates novelty. Furthermore,

substituting a different relation symbol activates a different set of

relational mappings, for example changing from + to � switches

from mappings 3,5 ! 8 to 3,5 ! 15 and so on [5]. Change

of representations in working memory can change strategies ([21]

§ 2.2.2).
temporary and because validity of a mapping can be estab-
lished by activating the representations without external
input. Notice that, in Figure 2, a structurally consistent
mapping can be determined from the correspondence be-
tween the premises and the ordering schema.

A contemporary working-memory theory [21], based on
dynamic binding to coordinate systems (i.e. ordered sets of
elements), grounds relational knowledge theory inworking
memory. The ordering schema in Figure 2 would be an
example of a coordinate system [5,15,20,21,23].This refor-
mulated working-memory theory provides a general-pur-
pose mechanism that can build, maintain, manipulate and
update structural representations. The representations
are based on activation of long-term memory, and there
is a region of direct access, a focus of attention, and a
procedural working memory that together constitute an
analytic processing subsystem [21]. New structural repre-
sentations can be transferred to long-term memory. The
amount of information required to establish consistency,
and therefore the working memory load, can be quantified
by the relational complexity metric [5,8] summarised in
Box 2. Themapping process ismodelled in the DiscoveryOf
Relations by Analogy (DORA) [20] and Structured Tensor
Analogical Reasoning (STAR) [5] models, considered later.

Working memory accounts for approximately 50% of
variance in fluid intelligence [24,25] and it shares substan-
tial variance in reasoning that is not accounted for by
processing and storage demands, or by processing speed
[26]. This indicates that the shared variance at least partly
reflects ability to form structured representations.

In other words, working memory is the workspace
where relational representations are constructed and it
is influenced by knowledge stored in semantic memory.
Therefore, it plays an important role in the interaction of
analytic and nonanalytic processes in higher cognition.

The foundation of reasoning, language, categorisation
and planning
Reasoning and structure-consistent mappings

Relational knowledge integrates nonanalytic and analytic
cognition, sometimes called Type 1 and Type 2 respectively
Box 2. The relational complexity metric

The complexity of relations is assessed by the number of entities

that are related, which corresponds to the number of slots in the

representation of a relation [5,8]. Thus the binary relation larger-

than has two slots, one for a larger entity and one for a smaller. In

the transitive inference in Figure 2, the mental model is a ternary

relation, monotonically_taller(Bob, Tom, Peter), relating three

entities, and it imposes a higher processing load than the premises

taller(Bob, Tom) and taller(Tom, Peter) that are binary relations [5].

Human processing capacity is limited to one quaternary relation

in parallel [84]. Concepts too complex to be processed in parallel are

handled by segmentation (decomposition into smaller segments

that can be processed serially) and conceptual chunking (recoding

representations into lower complexity, but at the cost of making

some relations inaccessible). These principles lead to objective

assessment criteria embodied in the Method for Analysis of

Relational Complexity (MARC) [8].Working-memory limitations

causing complex relations to be segmented makes serial processing

inevitable in complex relational cognition [84]. The relational

complexity metric has wide applicability [35,43,47,54,85–88] (see

also main text).
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[13,27]. Implicit transitive inferences [28] are nonanalytic
to the extent that they reflect associative learning. Explicit
transitive inference, based on construction of a mental
model in working memory as in Figure 2a, is analytic
because it reflects the logical consequences of the relevant
relations. However, transitive inferences based on rela-
tional knowledge can also be influenced by beliefs. Given
premises ‘the tractor is faster than the train’ and ‘the car is
slower than the train’ participants tend tomake the invalid
inference ‘the car is faster than the tractor’ [29] because of
acquired knowledge of the relative speeds of cars and
tractors.

Although it is assumed that analytic and nonanalytic
processes are supported by one system [13,27], there is a
need formore information about the basis and properties of
this integrated system. Relational knowledge processes
incorporate real-world knowledge and also the ability to
construct mental models that reflect the logical conse-
quences of premises. Therefore, relational processes have
properties of both analytic and nonanalytic cognition, and
provide a natural way of dealing with their interdependen-
cy and interaction. We will consider some of the cognitive
processes that depend on relational processing.

Analogy is a basic reasoning process that has a role in a
wide range of higher cognitive processes [6,30] and exem-
plifies well the core properties of relational processing,
including structure-consistent mapping [31,32]. In analo-
gy, the mapping can be influenced by element or relational
similarity, by semantic knowledge, by motivational factors
and by structural correspondence [33]. For example, con-
sider a picture analogies task [34] that comprises picture A,
in which a boy restrains a dog that chases a cat, and picture
B, inwhich a tree restrains the dog that chases the boy. In a
relational match, ‘boy’ in A is mapped to ‘tree’ in B because
both restrain the dog. In an element (featural) match, ‘boy’
in A is mapped to ‘boy’ in B. Similarity also depends on
structural correspondence, so ‘woman feeding squirrel’ is
not similar to ‘squirrel feeding woman’ because the ele-
ments, although identical, are not in corresponding slots.
Mappings based on abstract structural correspondence are
also important because they permit inferences that go
beyond experience, and have some independence of seman-
tic knowledge.

Mental models, which account for many forms of rea-
soning [35–38], are iconic in that they have a structure that
corresponds to the structure of the subject matter that is
represented [3]. Consequently, structure-consistent map-
pings play an important role. Mental models also have
other properties of relational knowledge including compo-
sitionality and systematicity, they are constructed in work-
ing memory, and they reflect content and context [3,39]. A
mental model for transitive inference, referred to by Wil-
liam James [40] as the fundamental principle of inference,
can be formed by mapping premises into existing schemas,
as shown in Figure 2. The mapping in Figure 2a forms a
mental model ‘Bob_taller than Tom_taller than Peter’,
from which a valid transitive inference, ‘Bob is taller than
Peter’, can be made. However, premises such as ‘Bob was
taller than Tom, Tom was taller than Peter’ are not transi-
tive because of possible change over time (e.g. if Peter grew
faster than Bob). Consequently, participants tend not to
500
form an integrated mental model, thereby reflecting the
semantic content of the premises [39]. This reflects the
interaction of content and structure that is inherent in
relational knowledge.

Mental models of conditional reasoning are also rela-
tional and reflect semantic and syntactic information. The
initial mental model of a basic conditional P!Q (P implies
Q) comprises only the conjunction that is seen as making
the conditional true, that is P Q. Fleshing out into a full
model entails adding not-P Q and not-P not-Q, and depends
on information retrieved from semantic memory [41]. How-
ever with a promise, the initial model contains the con-
junctions P Q and not P not Q, reflecting the semantic
properties of a promise, which implies a reward if, and only
if, the required task is performed [42]. This also reflects the
content–structure interaction that characterises relational
knowledge.

Mental models of categorical syllogisms can be
expressed as relations between categories implied by the
premises [43] and their difficulty can be predicted by the
relational complexity metric, summarised in Box 2 [5,8].
Mental models are typically constructed by the reasoner,
but reasoning can be performed by mapping into pre-
existing logical schemas, such as modus ponens
[28,44,45]. Therefore structure-consistent mappings are
also relevant to reasoning by logical schemas.

Mental models embody the core properties of relational
knowledge, including structure-consistent mapping, com-
positionality, systematicity, and construction of mental
models in working memory. Relational knowledge, as em-
bodied in mental models, also incorporates nonanalytic
knowledge and provides an account of its interaction with
analytic knowledge.

Language

Relational knowledge is increasingly recognised as impor-
tant in cognitive linguistics. Structural alignment facili-
tates learning of both word meanings and grammar [14].
The acquisition of verbs includes frames or slots [46], which
are components of relational representations, and the
relational complexity metric accounts for difficulty of sen-
tence comprehension [47] as well as specialised language
metrics do [48]. The syntactic structure of language, al-
though conventionally expressed as rules can, in principle,
be expressed as relations. Our proposal that the core
properties of relational knowledge incorporate syntactic
and semantic information for use in decision making and
reasoning is consistent with parallel phonological, syntac-
tic and semantic architectures, with interfaces, for lan-
guage [49]. Furthermore, recursion has been proposed as
an essential foundation for language [50] and relational
knowledge is recursive (see Box 1). This might be the most
important implication of relational knowledge for lan-
guage.

Categorisation

Relational categories, such as parenthood, which is defined
by relation to an offspring, have high frequency and im-
portance [51]. Theory-based categories [52] can be concep-
tualised as relational categories: for example, the category
of orbiting objects can be based on relations such as
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gravitational attraction and difference in mass causing
planets to orbit the sun. Theory-based categorisation is
sensitive to alignment of explanatory structures [53].
Equivalence classes of cognitive processes can be defined
by mappings between mathematical structures. Thus, al-
though transitivity is superficially dissimilar to class in-
clusion [54] analysis of mathematical structures shows
underlying commonalities [55].

Planning

Planning depends on creating sequences of actions or
operations that transform the current state into a goal
state as well as on representing relations [5]. Strategy
acquisition can be based on relational representations.
For example, strategies for ordering objects can be ac-
quired using an ordered set of three or more elements as
a template [56]. Cognitive control can be based on repre-
sentation of motivationally relevant relations [57], such as
those that predict rewards or punishments. An example
would be the 1 – AX and 2 – BY task in which context cues 1
or 2, change the contingencies AX or BY that lead to reward
[58].

Processes with the core properties of relational knowl-
edge, including structure-consistent mappings, play a sig-
nificant role in a wide range of higher cognitive functions,
including reasoning, which depend on analogy, mapping
onto mental models or logical schemas, as well as lan-
guage, categorisation and planning.

The neuroscience of relations
Anterior regions of the prefrontal cortex that are known to
be involved in higher cognition are activated by processing
relations [59–61]. The frontopolar cortex (lateral Brod-
mann area 10) is involved in relational integration [62–

65], maintaining dynamic binding between representa-
tions in working memory [66] and when processing highly
abstract information [67]. The prefrontal cortex is also
involved in dynamic mappings between representations
in analogy [68,69]. The growing evidence that relational
processing involves these most recently evolved and slow-
est developing regions of the brain [70] is consistent with
relational processing being the core of higher cognition.

The acquisition of relational knowledge
The acquisition of relational knowledge depends on pro-
cesses that are relatively unique and are crucial to under-
standing the nature of relational knowledge itself.
Relational knowledge can be acquired from experience
with examples and is partly autonomous and self-super-
vised [20]. Implicit learning, including artificial grammar
acquisition [71], can be triggered by relatively automatic
recognition of regularities, without explicit rules. Implicit
learning is evolutionarily and developmentally early, is
robust to neurological damage andmakes low information-
processing demands [72]. Further development of relation-
al representations can occur through theory revision and
redescription [73] and by structural alignment, recoding,
binding to symbols and analogical mapping [15]. Relation-
al representations can be established autonomously in
working memory, based on structure-consistent mappings
[15,20]. The following subsections discuss three neural net
models that implement explicit relational knowledge ac-
quisition processes (Figure 3).

The Semantic Cognition model

The Semantic Cognition model [74] demonstrates that
some relational properties can be captured without formal
representations of structure. It consists of five layers of
interconnected units, as shown in Figure 3a. There are two
layers of input units: item units represent plants and
animals, and relation units represent relational inputs
or ‘contexts’ (ISA, is, can, has). Each item unit is connected
to every unit in a layer of Representation units. Every
Representation and Relation unit is connected to all units
in a layer of Hidden units, which in turn are connected to
all units in a layer of Attribute (output) units that repre-
sent attributes (e.g. living thing).

A backpropagation learning algorithm adjusts the con-
nection weights between layers so that activation of an
item (e.g. robin) and a relation (e.g. ISA) activates appro-
priate attribute(s) (e.g. bird) in the output layer. This
results in patterns of activations in Representation and
Hidden layers that reflect similarities within and between
categories (e.g. robin and salmon are more similar than
robin and daisy). Similarity is simulated even when not
directly perceptible (e.g. robin and salmon are both living,
grow etc.). This mechanism exemplifies the way represen-
tations that code structural features can form in internal
layers of feed-forward networks as a result of learning to
compute input–output links [75]. It is consistent with the
idea [76] that categorisation can develop in infants through
observation of events in which entities take part, some-
times independent of perceptible similarity. The model
potentially explains children’s ability to generalise propo-
sitions (e.g. dog has a spleen) on the basis of category
membership rather than perceptual similarity [77,78].
Other relational properties include implicit representation
of slots because predicates can bind different items and
attributes (e.g. the predicate has can bind robin to wings,
fish to gills etc.). The model can also interpret new infor-
mation, so if taught sparrow is a bird, it generalises to
sparrow, can fly.

The importance of these achievements is partly in
showing how relational knowledge can be based on se-
mantic similarity of activations in Representation and
Hidden layers. These layers do not include formal repre-
sentation of structure, so they would not enable solution
of a problem such as: ‘If there are both boys and girls in
city X, are there more children or more boys?’ This is
because there is no representation of the inclusion rela-
tion between the superordinate set of children and the
(non-empty) subordinate sets of boys and girls [78]; there
is no mapping between representations on the basis of
structural correspondence, and there is no active con-
struction of relational representations in working memo-
ry. Representations in this type of model have restricted
accessibility, due to lack of symmetry between input and
output layers. Given inputs such as Robin ISA the output
is bird but there is no way to generate Robin in response
to queries such as ____ ISA bird. Symbolic connectionist
models, including DORA and STAR, complement seman-
tic knowledge models.
501



[(Figure_3)TD$FIG]

Figure 3. (a) The Semantic Cognition model (adapted, with permission, from [74]). The net comprises five layers of units: item (input) units represent plants (pine, daisy)

and animals (robin, salmon). Each item unit is connected to every unit in a layer of representation units. Relation units represent relational inputs or ‘contexts’ (ISA, is, can, has).

Every representation and relation unit is connected to all units in a layer of hidden units, which in turn are connected to all units in a layer of attribute (output) units that represent

attributes (e.g. living thing). The activations shown (filled circles) represent ‘robin ISA bird’. (b) Outline of the architecture of the DORA model (adapted from [20]). Semantic units

that represent features of objects (e.g. male, adult. . .has-emotion) are linked to P (e.g. lover) and O (e.g. John) units that are linked to RB units that code role-filler bindings. The

relation instances so formed are represented by P units. (c–d) The STAR model [5] representation of binary relations. Throughput is multidirectional so input of any two

components (using the dot product operator) produces the third component. (e–f) Two relations superimposed on the same representation. The input units, representing the

relation symbol (loves) and arguments (John and Sally), are shown only in figures (c–d), whereas figures (e–f) show only binding units, to avoid clutter.

Review Trends in Cognitive Sciences Vol.14 No.11
The DORA model

Relations are represented in DORA [20] by four layers of
units, as shown in Figure 3b. At the top are Proposition (P)
units that are linked to Predicate and Object (PO) units via
Role-Binding units (RB). The PO units are connected to
Semantic units that represent features of objects (e.g.
male, adult. . .has-emotion). Relations are represented by
binding roles to fillers, so loves(John, Sally) would be
represented by binding John to the lover role and Sally
to the loved role; these bindings are coded by the RB units.
Role-filler bindings are dynamic, and are coded by firing in
close temporal proximity: units representing lover fire in
close temporal proximity with units representing John, but
out of temporal proximity to units representing loved or
Sally. Retrieval from long-term memory occurs due to
activation that originates with the P unit, passes through
RB and PO units to Semantic units, which excite units in
long-term memory. Structure-consistent mapping occurs
by concurrent activation of units in two analogues, taking
account of structure and semantic similarity. The model
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accounts for several important properties of relational
knowledge, including acquisition from examples, and inte-
grates semantic and syntactic information.

The STAR model

In the STARmodel [5] (Figure 3c-f), the relation symbol and
arguments are each represented by activations on sets of
neural units that correspond to vectors: loves(John, Sally) is
represented by activations on three vectors of input units,
representing loves, John, Sally (Figure 3c). The relation
symbol is bound to elements by an array (tensor) formed
by the outer products of the vectors representing the inputs.
Activations of the internal units in the tensor are formed
dynamically in working memory as the direct result of
activations in the input units. The relation symbol and roles
are represented by positions in the representation, so the
symbol loves and roles lover and loved correspond to differ-
ent axes of the array. This gives a natural correspondence to
relational representations in predicate calculus expressions
such as loves(John, Sally), in natural language (‘‘John loves



Box 3. Questions for future research

� What is the precise nature of the link between dynamic binding in

working memory and acquisition of relational knowledge?

� What specific working-memory process determines whether two

representations are in structural correspondence?

� Given that some relational processing can be accomplished

without construction of representations in working memory, as

in the Semantic Cognition model, what limits (if any) apply to

semantic models of relational cognition?

� What are the possible correspondences between relational knowl-

edge and executive functions?

� What cortical subregions are involved in dynamic mappings

between representations on the basis of structural correspon-

dence?

� The identification of symbolic processes with relational knowl-

edge raises new questions regarding the ‘subsymbolic to sym-

bolic’ transition. Does dynamic binding in working memory have

a crucial role in the transition to symbolic processes, in analogy,

in the development of strategies, or in the transition from Theory

of Mind based on image schemas to Theory of Mind based on

elicited responses [89]?

� Should relational representations be based on role-filler bindings

[20] or on bindings of symbols to elements, as in STAR [5]?

� Are relations learned one component at a time (as in DORA) or can

relational knowledge acquisition begin with links between up to

four entities (as in STAR)?
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Sally’’) and to representation of structure in the working-
memorymodel ofOberauer [21]. Relational instances can be
accumulated by superimposition, as shown in Figures 3e
and 3f, enabling recognition of their commonalities. Acces-
sibility is implemented by the dot product operator ([5],
§4.2.1) and throughput is multidirectional, so input of any
two components produces the third component. Relational
instances comprising up to four related elements could be
learned initially, whereas inDORA single-place are learned
initially.

Complementary but distinct processes

Thesemodels represent, in different ways, the combination
of semantic and syntactic cognition that characterises
relational knowledge [13]. The overlap between nonana-
lytic and analytic cognition can make these processes
difficult to distinguish, and has resulted in protracted
debate as to the nature, or even the existence, of distinct
cognitive systems [13]. However, relational knowledge has
unique properties, including structure-consistent mapping
and the ability to construct new representations inworking
memory. These confer the ability to break free from previ-
ous experience and are the basis of much human inference
[13,38]. These unique properties are best observed in tasks
that cannot be solved by semantic cognitive processes,
including some instances of categorical syllogisms, explicit
transitive inference and conditional reasoning [28]. These
unique properties are captured in DORA and STAR to a
greater extent than in the Semantic Cognition model.
However, the Semantic Cognition model simulates acqui-
sition and coding processes that could form the basis of
structure-based cognition, so the two types of models are
complementary. At the same time, they are also distinct, so
evidence of one type of knowledge might not imply exis-
tence of the other.

Concluding remarks
The properties of relational knowledge correspond in
many ways to those of higher cognition. Relational knowl-
edge also provides an integrative framework for a broad
range of fields, including inference, categorisation, quan-
tification, planning, language, working memory and
knowledge acquisition. Relational knowledge integrates
semantic and syntactic information used in decision mak-
ing and reasoning, indicating that some theoretical rival-
ries could be replaced by research that identifies
conditions conducive to each process, and defines their
respective strengths and limitations and the nature of
their interaction (Box 3).

The core feature that is unique to relational processes
entails construction of representations in working memory
based on structure-consistent mappings. This property,
together with research on the nature and limitations of
working memory, might offer explanations for the correla-
tion with fluid intelligence, for the serial nature of higher
cognitive processes, for semantic tasks evolving earlier and
being mastered at an earlier age, and for the flexibility and
adaptability of higher cognition. Relational properties pro-
vide a complexity metric that has been shown to have wide
generality, and recent computationalmodels and empirical
research provide an account of acquisition processes. Re-
lational knowledge can be operationalised by a wide range
of empirical paradigms; it can be compared directly with
association, as well as with semantic networks and the
compositional syntax and semantics of classical cognitive
theories. Analogical reasoning, which incorporates relation-
al processing, is linked to an impressive array of cognitive
functions. The extensive literature that we have reviewed
supports the contention that relational knowledge provides
the foundation for higher cognitive processes.
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