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Computing phase-locking values between EEG signals is a popular method for quantifying functional
connectivity. However, this method involves large-scale, high-resolution datasets, which impose a serious
multiple testing problem. Standard multiple testing methods fail to exploit the information from the complex
dependence structure that varies across hypotheses in spectral, temporal, and spatial dimensions and result in
a severe loss of power. They tend to control the false positives at the cost of hiding true positives. We
introduce a new approach, called optimal discovery procedure (ODP) for identifying synchrony that is
statistically significant. ODP maximizes the number of true positives for a given number of false positives, and
thus offers a theoretical optimum for detecting significant synchrony in a multiple testing situation. We
demonstrate the utility of this method with PLV data obtained from a visual search study. We also present
simulation analysis to confirm the validity and relevance of using ODP in comparison with the standard FDR
method for given configurations of true synchrony. We also compare the effectiveness of ODP with our
previously published investigation of hierarchical FDR method (Singh and Phillips, 2010).
ail.com (A.K. Singh).
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Introduction

Brain dynamics is increasingly the focus of neuroimaging studies
in recent years (Chialvo, 2010; Dauwels et al., 2010; David et al., 2004;
Deshpande et al., 2011; Ponten et al., 2010; Schevon et al., 2007). In
particular, there is a greater appreciation for the complex role that
synchrony plays in cognitive tasks, and how synchrony varies along
spatial, temporal and spectral dimensions. For example, significantly
greater frontal-parietal synchrony has been reported at a lower
gamma band frequency in the visual search task for conditions
emphasizing top–down over bottom–up control of attention in
monkeys (Buschman and Miller, 2007) and humans (Phillips and
Takeda, 2009).

For EEG, computing phase-locking values (PLVs) has become a
popular measure for quantifying functional connectivity in terms of
synchronization between brain regions (Lachaux et al., 1999). PLVs
are computed by wavelet decomposition of EEG signals, providing
instantaneous measures of phase differences between two signals at
any desired frequency. The advantage of this method over methods
based on correlation, covariance, or spectral coherence is that PLV
measures are directly applicable to non-stationary signals and treat
phase and amplitude independently. Hence, PLV allows one to address
more specific questions pertaining to when, where, and at what
frequencies do synchronies occur.

Although PLVs permit one to ask more detailed questions
pertaining to the nature of brain synchrony, the accompanying
increase in data dimensionality raises a serious multiple testing issue.
As the distributions of neural events are not uniform and are likely to
be dependent on time, frequency and location in the brain, PLV data
has a dependence structure, that varies in each dimension. The
conventional methods for controlling family-wise error rate (FWER)
and false discovery rate (FDR) do not fully exploit the information
from this dependence structure, which results in a severe loss of
power. They evaluate each hypothesis as a single test ignoring the
data and results from across other tests. Therefore, they tend to
prevent false positives (Type I error) at the cost of increased false
negatives (Type II error). An increase in Type II error leads to missed
discoveries, i.e., it fails to detect even the true effects. Although FDR
based methods are known to provide a better balance between false
positives and false negatives than FWER based methods, dependent
and multi-dimensional data attenuate this advantage.

The problems of identifying statistically significant functional
connectivity in high-dimensional space–time–frequency synchrony
data have been reported by various authors in neuroimaging
literature over the last decade (Bhattacharya and Petsche, 2005;
Fingelkurts et al., 2003; Kitajo et al., 2010; Krieg et al., 2011;
Razoumnikova, 2000; Rodriguez et al., 1999; Singh and Phillips,
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Table 1
Variables associated with the number of true negatives (TN), false negatives (FN), false
positives (FP) and true positives (TP), for multiple testing of m null hypotheses.

Declared
Non-significant

Declared
Significant

Total

True H0 U (TN) V (FP) m0

False H0 T (FN) S (TP) m−m0

Total m-R R m
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2010; von Stein et al., 1999; Weiss and Rappelsberger, 2000). There is
a need to change the current approach for identifying the significant
synchrony from PLV data with a complex multi-dimensional
dependence structure. Standard approaches to controlling FDR
consider all hypotheses as belonging to a single family, and the
significance of each hypothesis is evaluated using a t-statistic, or
F-statistic that was originally designed for single-hypothesis tests.
Most FDR methods extend single-hypothesis testing to multiple-
hypotheses testing by combining all hypotheses into one family. An
FDR cutoff is then determined based on p-values that are calculated
from each point test individually, ignoring information from the other
tests. Both steps in this approach fail to exploit information related to
dependence structure.

This problem was first identified in context of fMRI imaging of
brain activity by Chumbley and Friston(2009) and Chumbley et al.
(2010), who advocated an approach based on random field theory.
Inference using random field theory is about topological features of
the SPM, e.g., number of regions, their spatial extent, or peak height,
and thus explicitly accounts for the dependence in neuroimaging data
(Worsley et al., 1992). Although the concept of topological FDR has
been introduced in context of EEG time–frequency analysis, the
method is yet to be applied to an EEG dataset (Kilner and Friston,
2010). For sparsely sampled EEG space–time–frequency data, the
topological inference requires a priori knowledge about the region of
interest in at least one dimension. This restricts the potential
application of topological FDR to either space–time analysis, when
the frequency band of interest is known a priori, or time–frequency
analysis, when the sensor of interest is known a priori (Kilner et al.,
2005; Kilner and Friston, 2010). The computational and conceptual
reasons behind this limitation are detailed in Kiebel and Friston
(2004).

There are at least two alternatives that avoid the difficulties with
topological FDR just mentioned. One way is to organize hypotheses
into a hierarchy of families. This approach is employed in the
hierarchical false discovery rate (hFDR) procedure (Yekutieli, 2008).
Another way is to modify the test statistic so that it explicitly shares
the dependence information from across all the tests. This approach
was suggested by Storey(2007) in his optimal discovery procedure
(ODP). We outline these two approaches.

The problem of testing multiple hypotheses that are naturally
organized into a hierarchical structure is ameliorated by the hFDR
procedure (Yekutieli, 2008). A simplified scenario illustrates its
advantages over single-family hypothesis testing. If two tests are
independent, then the effective significance threshold of either test
result is halved, because the chance of exceeding the threshold for
declaring a discovery in the absence of a true effect is doubled. If two
tests are dependent, in the sense of being identical, then halving the
significance threshold is unduly conservative, because the same test is
counted twice. Although we do not know in advance precisely which
tests are dependent, domain knowledge, or the sorts of hypotheses we
wish to entertain help determine a hypothesis-tree hierarchy. Suppose
synchrony is known to localizewithin four frequency bands. Arranging
20 frequency-specific PLV tests into four families (one for each band)
and treating each family as a single test explicitly assumes that each
test within a family is dependent. Hence, our adjustment for effective
significance of each test is reduced from 20 to four, thus raising the
sensitivity of our testing procedure. For each family-level test that
exceeds threshold, the procedure is recursively applied. For example,
we may also wish to test the more detailed hypothesis of synchrony
within a particular time band (within a particular frequency band).
Since the frequency-bandhypotheses that failed to reach threshold are
no longer considered, sensitivity is also raised at this second level
in the hierarchy. In practice, we found that hFDR was effective in
detecting true effects without raising the level of false discoveries
beyond the expected level. This method could detect significant
instances of synchrony that were consistent with the previously
reported findings in the case of the real EEG data and with the true
synchrony in the case of simulation (Singh and Phillips, 2010).

A potential difficulty with hFDR occurs when there is no natural, or
a priori reason for arranging multiple hypotheses into a particular
hierarchy. An alternative method, ODP (Storey, 2007) does not
require hierarchically organized families of hypotheses. Instead of
employing a single hypothesis test, where information pertaining to
the other hypotheses is ignored, ODP uses a statistic designed to
simultaneously use information obtained from all other hypotheses
for testing the current hypothesis. ODP is defined as the rule that
maximizes the number expected true positives (ETP) for each fixed
number of expected false positives (EFP), and it also guarantees the
optimal FDR (Storey, 2007). The optimizing property of ODP comes
from the fact that it is designed to take into consideration the
dependence structure among the expected true effects, thus explicitly
preventing both false positives and false negatives. An important
advantage of using ODP is that it assigns a direct significance measure
of FDR to each of the test, eliminating the need to determine a cutoff.

The formulation of the ODP statistic requires estimation of true
null and alternate probability densities of the data, which are
unknown and vary across application domains. Hence, each applica-
tion of ODP needs to be developed with careful investigation and
consideration to the specific research domain. In this article, we
develop an application of ODP for analysis of brain synchrony data
obtained from EEG. We show how the ODP statistic can be estimated
using the general methodology described in Storey et al.(2007), and
evaluate the effectiveness of this procedure in the context of high-
dimensional EEG phase locking data. The specificity and sensitivity of
ODP is evaluated using simulations, and demonstrated using the
experimental data from a visual search study. ODP provides a
significant increase in the number of detected true positives (i.e.,
synchronized electrode pairs for specific times and frequencies) while
maintaining FDR compared to standard FDR methods. We also
evaluate the effectiveness of ODP in comparison to hFDR and discuss
their differences.

Materials and methods

This section includes an overview of the concepts related to ODP
and the steps involved in implementing the procedure. A brief
overview of hierarchical FDR is also included in the end for the
purpose of comparing ODP with hFDR. The details for computing PLV
(Lachaux et al., 1999) and with specific application to visual search
(Phillips and Takeda, 2009) are not repeated here.

False discovery rate (FDR)

The false discovery rate method introduced by Benjamini and
Hochberg(1995) (FDRBH) has become a standard method for
controlling Type I error in applications involving multiple testing of
brain imaging data (Chumbley and Friston, 2009; Genovese et al.,
2002; Hemmelmann et al., 2005; Singh and Dan, 2006). FDR is
defined as the expected proportion of falsely rejected hypotheses
among the rejected ones, which is zero if there are no discoveries:
FDR=E(V/R|RN0)Pr(RN0) (see Table 1). FDRBH, like most other
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conventional multiple testing methods, follows a fixed error rate
approach, where the error rate is the desired level of FDR, which
determines the rejection region as follows. Let pi and α denote the
ordered p-values and the pre-specified error rate, respectively. Then
the rejection region for controlling FDR can be determined as
γ = maxfpi : pi≤α i

m g, where all null hypotheses corresponding to
pi≤γ are rejected. This method controls FDR at level π0α, where
π0=m0/m is the proportion of true null hypotheses. Therefore, when
all the null hypotheses are true (m0=m), FDR is controlled at level α,
and when some of the null hypotheses are rejected (m0bm), the
procedure controls FDR at a level far below α. The power of an FDR
controlling procedure can be improved by substituting π0 with an
estimate, π̂0 (Benjamini et al., 2006; Storey, 2002).

Positive false discovery rate (pFDR)

Storey(2002) introduced an alternative measure, positive false
discovery rate (pFDR), conditional on there being positive findings, i.e.,
at least one discovery: pFDR=E(V/R|RN0) (see Table 1). Instead of the
fixed error rate approach, Storey's pFDR method follows a fixed
rejection threshold approach. The rejection region for this procedure
(defined next) is fixed, and then FDR and pFDR are estimated by
incorporating π̂0 .

The procedure for determining the rejection region, which
assumes that all null hypotheses are identical with an identical region
Γ, is based on observed p-values, p1,…, pm for all tests. Let Γ=[0, γ],
where γ∈ [0, 1], then we reject all the null hypotheses with p-values
less than γ. Since pi are uniformly distributed and π0m p-values are
expected to be null, a conservative estimate of π0 can be given as
follows:

π̂0 λð Þ = #fpi Nλg
1−λð Þm ð1Þ

where, λ is a tuning parameter, 0≤λ≤1, and # indicates the number of
times the conditionwithinparentheses holds true. Theoptimal choice of
λ is determined from a set of possible cutoff values, e.g., R={0, 0.05,
…,0.95}, by selecting the value that minimizes the mean squared error
over the choice of possible λ, M̂SE λð Þ, based on an algorithm suggested
by Storey(2002) (see steps 2 to 5 in Appendix A).

The total number of rejected hypotheses can be computed as, R(γ)=
#{pi≤γ}, and the total numberof thenull hypotheses that are rejectedas,
V(γ)=mγπ0. Incorporating π̂0, FDR and pFDR can be estimated as
follows.

F̂DR γð Þ = mγπ̂0

max R γð Þ;1ð Þ ð2Þ

p̂FDR γð Þ = F̂DR γð Þ
Pr R γð Þ N 0ð Þ =

mγπ̂0

1− 1−γð Þmð Þmax R γð Þ;1ð Þ ð3Þ

The storey's pFDR method is more powerful than FDRBH, because
it directly measures pFDR by incorporating the information of the true
null and alternative hypotheses by fixing the rejection region.
However, fixing the rejection region may not always be convenient.
A more flexible and useful method would be to provide each test with
a measure of significance that can be easily interpreted. This is
accomplished by q-values, which were introduced as part of pFDR
controlling procedure in Storey(2002). A q-value is a pFDR analog of
the p-value. It is estimated by calculating the minimum estimated
pFDR from among all thresholds, γ, at which the test is called
significant from a set of observed p-values (see Eq. (8) in context of
ODP). The algorithm for computing q-values is covered in Appendix A.
An R package for applying pFDR and computing q-values is also
available (http://genomics.princeton.edu/storeylab/q-value/).

Optimal discovery procedure

The core concept of ODP is based on Neymann–Pearson (NP)
lemma, which provides a basis for constructing an optimal test statistic
for a single testing situation with the observed data (Neyman and
Pearson, 1933). Given the observed data, x=x1, x2,…, xn the optimal
single test statistic can be defined as a likelihood ratio test, as follows.

SNP xð Þ = prob x jH1ð Þ
prob x jH0ð Þ ; ð4Þ

According to NP lemma, for a given significance level, α, if above
likelihood ratio exceeds a given cutoff, say λ, then H0 can be rejected
in favor of H1. The above NP test is optimal because it is the most
powerful among other tests for each fixed Type I error rate. ODP is an
extension of NP lemma to facilitate simultaneous testing of multiple
hypotheses. ODP reformulates the SNP statistic as the ratio of the sum
of the probability of a given test's data under each alternative
distribution to that under each null distribution (Eq. (5)). The
algorithm for applying ODP involves three steps, which are described
below in the context of our EEG application:

1. Computing ODP statistics: Let fj and gj represent the respective true
null and alternative densities for the jth hypothesis, j∈{1,...,m}, for
the observed PLV data, xi, from the ith(i=1,…, m) electrode pair.
Let m0 be the number of true null hypotheses. ODP statistic can be
computed as

SODP xið Þ = ∑m
j = m0+1

gj xið Þ
∑m0

j=1 fj xið Þ ð5Þ

The data xi for ith electrode pair is evaluated at the estimated
probability density functions for all electrode pairs. As true
alternative and null densities are unknown, they can be estimated
using the observed data. For example, under the assumption that
PLVs follow a normal distribution, the probability densities can be
computed using means and variances of the observed data.
Substituting the normal density function ϕ(. |μ, σ2) with the
parameters μ and σ2 in Eq. (5),

SODP xið Þ =
∑m

j = m0+1
ϕ xi jμj1;σ 2

j1

� �

∑m0
j=1ϕ xi j0;σ 2

j0

� � ð6Þ

where (μj1, σj1
2) and (0, σj0

2) are the mean and variance under
alternative and null distributions, respectively.

The intuition behind ODP is that the relative significance of each
observed xi increases when multiple true positive results are likely
to have similar values. For example, if xi corresponds to a true
alternative hypothesis, then its density, ϕ(xi|μi1, σi1

2 ) will make a
substantial contribution to SODP(xi). Furthermore, if there are other
true alternatives with μi1≈μj1, then the likelihood of xi under ϕ
(xi|μj1, σj1

2 ) will also make a substantial contribution to SODP(xj). It
makes sense to increase the significance of a test if there exist other
tests with the similar results to maximize ETP for each fixed EFP.

2. Computing bootstrap null distribution: The null distribution of an
ODP statistic can be generated by using the following bootstrap
procedure. For each ith pair, compute x0i=xi−μi, and construct a
bootstrap sample xi

0b by randomly drawing n observations with
replacement from x0i. Repeating this B times (b=1,..., B) for each ith

http://genomics.princeton.edu/storeylab/q-value/
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(i=1,..., m) pair and computing the ODP-statistic from xi
0b

generates the bootstrap null distribution of SODP(xi). The p-value
can be computed from this null distribution as follows:

pi =
∑B

b=1∑m
j=1 SODP x0bj

� �
≥ SODP xið Þ

� �

mB
ð7Þ

Note in the above equation that the p-value for each ith test takes in
to consideration the information from across all j(=1,…, m) tests.

3. Computing q-values for ODP: ODP statistics can be directly
thresholded by rejecting all the tests with SODP(xi)≥λ for a pre-
specified significance cutoff, λ, without computing q-values.
However, when fixing a cutoff beforehand is inconvenient,
computation of q-values provides a flexible alternative (Storey,
2002, 2003). The q-value of a test measures the minimum false
discovery rate that is incurred when calling that test significant.
The q-values can be estimated from the p-values and substituting
p̂FDR γð Þ from Eq. (3) as follows:

q̂ pið Þ = min
γ ≥ pif g

p̂FDR γð Þ ð8Þ

For computing p̂FDR γð Þ, we need an estimator for π0, which in turn
determines the optimal choice for the cutoff, λ, as described in the
detailed algorithm for computing q-values (Appendix A). A q-value
threshold is equivalent to directly thresholding the ODP statistic,
SODP(xi)≥λ. Using this direct threshold, ETP(λ) and EFP(λ) can be
estimated from the bootstrap distribution of ODP statistic, and
FDR(λ) can be determined in terms of these estimates. Theoretical
derivations of the proof can be found in Storey et al.(2007).

Note that in the above equation, pFDR estimates are used to
compute the q-values. It is possible to compute q-values using FDR
estimates in similar terms, i.e., by replacing p̂FDR γð Þ with F̂DR γð Þ
from Eq. (2). However, these FDR analogue of p-values are not
robust, as they converge to zero for small p-values, making the
inference unreliable (Storey, 2002).

A GUI-based tool for ODP can be downloaded for an implemen-
tation in R (http://www.genomine.org/edge/). An R ODP script is
also available with the EDGE package to run in it a batch mode.
EDGE implementation of ODP generates estimates of q-values and
π0 for a given FDR level. ODP shows the additional information on
q-values, such as π0 over a range of λ and detected discoveries for
each q-value cutoff in q-value plots (see Fig. 2 for an example).

Hierarchical FDR

The detailed procedure for hierarchical FDR (hFDR) is described in
Yekutieli(2008), and in the context of PLV analysis in Singh and
Phillips(2010). The hFDR procedure is implemented by organizing the
hypotheses into a family-subfamily tree hierarchy, where each (sub)
family is associated with a single hypothesis. For instance, the tests for
PLV data are grouped into M frequency and N time families based on
the frequency and time band associatedwith the test. TheM frequency
families constitute the first level of the hierarchy. In this case, there are
N time subfamilies at the second level for each frequency family, and
within each time subfamily are the test statistics, one for each
electrode pair, at the third (lowest) level. Alternatively, the hierarchy
may include the time families at the first level, and the frequency
families at the second level, and the hypotheses for the electrode pairs
at the third level. The data associated with each test within a family is
summarized (i.e., averaged) to become the data for that family and its
associated single hypothesis. The testing begins at the first level by
applying a single-sample t-test and FDRBH control to test the M
hypotheses in frequency family. If any hypothesis is rejected, then
testing continues by testing the corresponding time subfamily at the
second level. This process continues by recursively checking each child
hypothesis of a parent that was rejected, and terminating upon not
rejecting any children. The FDR bound on a hypothesis tree is defined
recursively as the sum of the expected proportion of the number of
false discoveries to total discoveries for each family. Yekutieli (2008)
derived an approximate bound

bound = q δ
Nd + Nf

Nd + 1
; ð9Þ

where Nd is the number of observed discoveries, Nf is the number of
families tested, and δ, a multiplicative constant, is set to 1. This bound
varies in an interval [q, 2q], where q is the expected FDR level. When
the number of discoveries far exceeds the number of family tested, the
FDR bound in Eq. (9) converges to q. Note that q as defined here
should not be confused with q-value, which is defined as a
significance measure of FDR in Optimal Discovery procedure section.

Simulation

Simulations were performed to access the specificity and sensitivity
of ODP for multidimensional EEG data. As in our previous study, true
effects were assigned to particular frequency–time bands. Hence, we
associated PLV differences (between conditions) with 2 frequency
bands, 12 time bands, 10 participants, and 25 electrode pairs (i.e., all
pairwise combinationsof 5 frontal and5parietal electrodes) constituting
a 2×12×10×25 array. For frequency–time windows containing
significant effects, 10 out of 25 pairs were defined as truly significant.
The proportion of electrode pairs with true synchronies, π1, varied from
8% to 48% over a range of time–frequency windows. To induce
dependence across the time windows for specific frequency bands, the
PLVs for their corresponding electrode pairs were generated from a
multivariate normal distribution with the parameters μ and ∑=σ2R.
The mean vector, μ was assigned zero PLV effects for true null
hypotheses, and positive PLV effects to represent the true effects
pertaining to alternative hypotheses. The covariance matrix, ∑=σ2R
was constructed by assigning the variance, σ2 and correlation matrix, R
from a real PLV dataset. The tuning parameter λ was automatically
chosen using a bootstrap distribution with 100 resamples following
Storey(2002) (refer to Appendix A for the algorithm).

ODP explicitlymaximizes the number of expected true positives for
a given level of FDR. Hence, wewere also interested in comparing ODP
andhFDRmethods on grounds of the false positives and false negatives
that they incur. A direct comparison betweenODP and hFDR is difficult
as each works on a distinct operating principle, using a different
measure of false positives. Nevertheless, a comparative evaluation of
their detection power and actual FDR incurred with synthetic data,
where configurations of true discoveries are known, would be useful
for exploring any specific conditions that may warrant the use of one
method over the other. For hFDR analysis, we constructed a 3-level
hierarchical FDR tree so as to cast the hypotheses belonging to the
frequency dimension at the first level, those belonging to the time
dimension at the second level, and to each electrode pair at the third
level. A 5% FDR threshold was used in ODP, hFDR, and FDRBH.

The simulations were performed in R, and ODP was applied using
the R script. Reported numbers of detected discoveries, false positives,
false negatives are averages over 100 runs, for both ODP and hFDR
applications. In the case of ODP, we also reported the estimated π0 for
each case of assigned true positives.

Experimental data analysis

To confirm the effectiveness of ODP on real data, we reanalyzed
EEG data acquired from a visual search experiment (Phillips and

http://www.genomine.org/edge/
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Takeda, 2009). The purpose of the experiment was to test the
hypothesis that top–down driven control of visual attention in
humans is accompanied by frontal-parietal synchrony in the lower
gamma-band. Top–down signals were induced using distractors that
share a feature (e.g., color, or orientation) with the target, yielding a
steep search slope (search time increasing with display set size)—
inefficient search. Bottom–up signals were induced using distractors
with no feature in common with the target, yielding a flat slope
(search time independent of set size)—efficient search. Participants
showed significantly greater synchrony between frontal and parietal
electrodes in the lower gamma-band during inefficient than efficient
search, which replicated the same effect observed in monkeys
(Buschman and Miller, 2007). Our region of interest was confined to
25 electrode pairs, i.e., five frontal electrodes (F7, F3, Fz, F4, F8) by five
posterior electrodes (T8, P3, Pz, P4, T6), located according to the
International 10–20 system. Frequency was partitioned into lower
(22–34 Hz) and upper (36–48 Hz) gamma bands, corresponding to
the original studies (Buschman and Miller, 2007; Phillips and Takeda,
2009; Singh and Phillips, 2010). Time was partitioned into twelve
50 ms windows for the first 600 ms after stimulus (search display)
onset. ODP was performed using R EDGE software. The estimation of
π0 was done with bootstrap option. The FDR level was specified as 10%
and λ=[0, 0.05,…, 0.95].

For FDRBH, all 600(=2×12×25) hypotheses were regarded as a
single family, the resulting p-values were thresholded by FDRBH at a
level of 10%.

For hierarchical FDR, we used a 3-level tree, with 2 hypothesis for
each frequency band at the first level, 12 hypotheses for the time
bands at the second level, and 25 electrode pair hypotheses
corresponding to each time band at the third level. See Singh and
Phillips(2010) for detailed application of hFDR. The results from ODP
and hFDRwere overlaid on synchronymaps using matlab. The level of
FDR was set at 10% at each hierarchical level.

Results

Simulation

The main purpose of performing the simulations was to evaluate
how well ODP extracts the true effects while maintaining FDR, within
a pre-defined FDR level, at given proportions of true synchronies
Fig. 1. Comparison between BHFDR, hFDR, and ODP. Each T-F window with assumed true
proportion of true positives; the graph panels represent: the total number of detected posit
negatives (bottom-left), and false discovery rate (bottom-right).
under typical dependence structure of PLV data from EEG. In addition,
we also wanted to compare the performance of ODP against hFDR and
FDRBH when the ground truth was known. The simulation results are
summarized in Fig. 1. ODP exhibited a linear increase in the number of
false positives, a linear decrease in the number of false negatives, and a
linear increase in FDR as the proportion of true discoveries, (π1=1−π0),
increased. FDR was maintained within the specified level of 5%, except
when proportion of true discovery was 48%. For hFDR, there was a linear
increase in both thenumber of false positives, and FDR,whichwas below
5% in all the cases. hFDR detected more discoveries than ODP when the
proportion of true discoveries was less than 20%. In the case of FDRBH,
fewer discoveriesweredetected thanODP. In comparison toODP, FDRBH
registeredhigher levelsof falsepositives andFDR for lowerproportionsof
true discoveries, i.e. when π1≤.24 and higher levels of false negatives for
all proportions. The level of FDR inFDRBHremainedmoreor less constant
within the specified cutoff. The estimates of the proportion of null
hypotheses, π̂0 were lower than the proportion of assigned null
hypotheses (π0=1−π1) for all simulations (see Table 2).

Experiment

ODP failed to detect any significant discoveries at 5% FDR level, but
showed 89 discoveries at 10% FDR level (Fig. 3). The figure shows
significantly greater synchrony for the inefficient than efficient
condition (red lines) in the lower gamma band (22–34 Hz),
predominantly over 250–550 ms post-stimulus time interval. There
was not much evidence for significantly greater synchrony for the
inefficient than efficient condition for the high gamma band (36–
48 Hz), and for significantly greater synchrony in efficient than
inefficient condition (blue lines) in either of the bands. In ODP
analysis, we also estimated q-values and π̂0 λð Þ at λ=(0, 0.05,…, 0.95)
as shown in q-value plots in Fig. 2.

For the purpose of comparison, hFDR detected 26 significant pairs
at 5% FDR level as reported in Singh and Phillips(2010), and 45
significant pairs at the 10% FDR level, where the detections were
predominantly over 300–500 ms post-stimulus interval (Fig. 4). There
was no detection of significantly greater synchrony for the inefficient
than efficient condition neither at the high gamma band (36–48 Hz),
nor for significantly greater synchrony in efficient than inefficient
condition in either bands. FDRBH showed only 10 pairs with
significantly greater synchrony in the lower gamma band for
synchrony effects has 10 pairs with true synchrony pairs; the x-axis represents the
ives (top-left), the total number of false positives (top-right), the total number of false



Table 2
True vs. estimated π0 in simulation.

Assigned π1 Assigned π0 Estimated π0 (SD)

0.08 0.92 0.70 (0.016)
0.16 0.84 0.68 (0.050)
0.24 0.76 0.72 (0.036)
0.32 0.68 0.50 (0.040)
0.40 0.60 0.45 (0.030)
0.48 0.52 0.39 (0.038)
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inefficient than efficient condition at 10% cutoff (results for FDRBH are
not shown).

Discussion

This article describes a novel application of optimal false discovery
rate procedure as an answer to the problem of detecting statistically
significant synchrony in multiple testing of EEG phase locking
analysis. EEG phase locking analysis involves a complex dataset,
with a small proportion of significant synchrony effects in multiple
dimensions of time, frequency, and electrode space. The dependence
structure of phase locking values may vary within each dimension.
Most existing FDR procedures, including FDRBH, are implemented by
thresholding p-values that are obtained individually from single
hypothesis tests, e.g., a t-test, in such a way that it prevents the
dependence structure among the expected true discoveries to be
incorporated in the simultaneous evaluation of significance from
multiple hypotheses testing. Therefore, they tend to prove too
conservative to reveal even true significant discoveries. This problem
has been discussed by several authors over the past decade, who
either resorted to a non-confirmatory functional connectivity analysis
or opted for a smaller region of interested based on previous research.
ODP overcomes this problem by minimizing missed discoveries (false
negatives) for each fixed FDR level. There are two key aspects behind
this optimization of power.

First, the ODP statistic is defined as a function of both expected
numbers of false positives and false negatives, which are estimated
Fig. 2. Q-value plots generated by
from the data itself. Second, ODP applies a simultaneous thresholding
procedure to all the tests, where each test is evaluated by including
the relevant information from all the tests. This is evident from
Eqs. (5) and (6) for computing the ODP statistic and in Eq. (7) for
determining its significance. Therefore, if data xi shares any similarity
in its structure with data xj, then its density function under the
alternative null hypothesis will contribute substantially to ŜODP xið Þ
(Eq. (6)). Thus, the estimation of ODP for each hypothesis includes the
dependence information from the entire set of hypotheses. In addition
to sharing commonality, each ODP statistic also takes into account the
variance structure within each electrode pair. The electrode pairs with
smaller variance in PLV have greater chance to contribute to ŜODP xið Þ.

Our simulations showed that ODP optimized the FDR as a linear
function of the proportion of true discoveries. When the proportion of
true discoveries was less than 48%, ODP controlled FDR at the desired
5% level (Fig. 1). We found that when the proportion of true
discoveries was 80%, FDR increased to 8%. Although FDR exceeded
the desired 5% level for high proportion true effects (i.e., greater than
48%), such situations are unlikely to occur in real neuroimaging data,
where the true effects are more likely to be sparsely distributed across
the regions tested. This questions the practice of fixing the FDR level in
advancewithout taking in to consideration the expected proportion of
true effects in the data, which differs in each application domain. The
conventional threshold for FWER controlling procedures is set at 5%.
For FDR, there are no such standards, though most existing FDR
controlling methods impose the need to fix an acceptable FDR level
before any data are seen. ODP eliminates this requirement and offers a
more flexible interpretation of FDR by incorporating a q-value based
measure of significance for FDR. We may report the q-value for every
electrode pair and let researchers choose a level of desirable
significance. A q-value plot, that is available in ODP's EDGE
implementation in R, serves as a reference guide for selecting an
appropriate FDR cutoff by showing the number of significant
discoveries for the selected range of FDR cutoffs, e.g., see Fig. 2 for
experiment data analysis. The minimum q-value is 0.075, which
revealed significant synchrony for 46 electrode pairs. Choosing a FDR
cutoff of 10% reveals significant synchrony in 89 electrode pairs. In the
case of FDRBH, it fails to produce significant evidences of synchrony at
ODP for experimental data.

image of Fig.�2
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this level. In comparisonwith ODP, FDRBH showedmuch higher levels
of false negatives, and tends to bemore conservative as the proportion
of true discoveries increases.

Our simulations and experimental data pertained to just 19
electrodes, and yet the problem of multiple comparisons was severe.
The growing popularity of high-density (e.g., 64- to 256-channels)
EEG clearly exacerbates the multiple comparisons problem. We first
advocated the need to change the existing approach to controlling
false positives with complex and high-dimensional PLV data in our
previous study and proposed using a hierarchical approach for
controlling FDR (Singh and Phillips, 2010). hFDR method follows a
hierarchical testing scheme where PLV effects in given instances of
frequency, time, and electrode pairs are tested at different levels in the
hierarchical hypothesis tree. The test data is averaged within each
dimension to split the hypotheses into hierarchically organized
multiple families. This implicitly incorporates the dependence
structure within each dimension. In this way, multiple smaller
families are more likely than a single large family to survive FDR
correction. An overall FDR can be computed by the summing over the
FDRs of all the families that are tested along the hierarchical tree.

hFDR could detect 26 pairs with significant synchrony in our
experimental analysis at 5% overall FDR level, whereas ODP failed to
detect any synchrony at this FDR level. This result with hFDR was
published in Singh and Phillips(2010). On the other hand, when we
raised the expected FDR level to 10%, ODP could detect approximately
twice as many synchronous pairs as did hFDR. In the simulation
analysis, we found that the detection power of each method varied
depending on the configurations of true synchrony. Our simulations
have shown that ODP outperformed hFDR when the proportion of
true effects was large. However, when the proportion of the true effect
was small, hFDR outperformed ODP by detecting more pairs. This
result is consistent with the simulation results of a technical report on
ODP, where the performance of ODP has been reported in comparison
with other multiple comparison methods (hFDR was not included).
The authors observed a tendency of ODP to underperform the other
methods when the percentage of differentially expressed genes was
small (Storey, 2005). The performance of ODP depends on the
homogeneity of the dependence structure among hypotheses. It is
expected to perform better with asymmetric data than symmetric
data. Asymmetry is implied when most PLV effects are in a particular
Fig. 3. The synchrony map for experimental data from ODP application indicating (number
efficient search conditions (red lines) for 10% FDR level, i.e. q−valueb0.1. The top and bot
direction, i.e. they are eithermostly positive ormostly negative, which
indeed seems to be the case with our experimental data, that showed
more significant PLV in inefficient–efficient contrast than in efficient–
inefficient contrast (Figs. 3 and 4). The simulated data was also
asymetric (with greater proportion of positive PLV effects than
negative PLV effects) as it was generated using the parameters
obtained from a real PLV dataset. For a comparison, we ran the
simulation with an induced symmetry by assuming both positive and
negative PLV effects in similar proportions. We observed that
symmetry reduced the number of detections by ODP considerably
when the proportion of true discoveries was smaller than 25%.
Symmetry did not affect the performance of hFDR (results not shown
here).

In the experiment analysis, hFDR and ODP offered almost similar
qualitative results, showing the most prominent synchrony in the
similar post-stimulus time intervals. While the inference obtained
from hFDR and ODP are comparable, each method has its own
advantages. hFDR approach is more amenable for datasets that are
naturally hierarchical and is particularly powerful when the synchro-
ny effects are concentrated in a few families of hypotheses. However,
the PLV effects may not be bound to a given dimension (or a few
families). In such cases, ODP may be more powerful.

Although the result of ODP has a straightforward theoretical
interpretation, each practical application requires some knowledge
about the data, specifically for estimating ODP and setting the tuning
parameter, λ. The computation of the ODP statistic in Eq. (6) is based
on the assumed normal probability density function for the data,
which holds reasonablywell in the case of PLVs (Doesburg et al., 2008;
Lachaux et al., 1999). Note that this assumptionwill only influence the
estimated ODP statistic (as compared to the true ODP statistic). The
significance of ODP is computed using non-parametric bootstrap
procedure, and therefore the correct form of the distribution need not
be known in advance. The selection of λ is important for the accuracy
in estimating π0, and it depends on the distribution of p-values that
varies in each application. Fortunately, options are available for
automating the optimal value of λ from a range of possible values,
namely, the bootstrap option and smoothing spline option as
described in Storey(2002, 2003), respectively. In the bootstrap option,
the optimal choice of λ is determined from the bootstrap distribution
of π0(λ) as the value with the least mean square error (MSE). As this
of) electrode pairs showing significantly greater phase-locking for the inefficient than
tom rows correspond to lower (22–34 Hz) and higher (36–48 Hz) gamma bands.
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Fig. 4. Synchrony map from hFDR application indicating (number of) electrode pairs showing significantly greater phase-locking for the inefficient than efficient search conditions.
The top and bottom rows correspond to lower (22–34 Hz) and higher (36–48 Hz) gamma bands.
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option is considered as safe and conservative for any distributional
form of p-values, we chose this option for presenting our analysis. In
the case of smoothing spline, π0 is estimated by fitting π̂0 λð Þ for all
possible values of λ. The accuracy of this fitting depends on how well
the smoothing order is specified. Over fitting may result in inflated
results. For a small number of p-values, it may be more conservative
than the bootstrap option. For the purpose of comparison, we analyzed
our experiment data using both these options. The range of λwas set as
specified in the algorithm, and for the smoothing spline option we used
3 degree of freedom following Storey(2003). The q-values from this
option were more conservative, and failed to detect any synchrony at
10% cutoff (results are not shown).

The idea of incorporating dependence structure to improve the
significance from point test in neuroimaging studies is not new.
Worsley et al.(1992) introduced random field theory that controlled
FWER to infer on the topological features of SPMs for fMRI images.
This concept was later extended to include a topological FDR method
(Chumbley and Friston, 2009; Chumbley et al., 2010; Kilner and
Friston, 2010). Though these articles discuss the possible implemen-
tation of topological FDR for EEG time–frequency data, there is a lack
of illustrative applications. A topological inference may offer a limited
scope for analyzing PLVs in space–time–frequency domain, especially
with sparsely sampled EEG data due to several reasons. The current
implementations of topological inference methods, e.g. topological
FDR are practically limited to either space–time (when frequency
band of interest is known a priori) or time–frequency (when sensor of
interest is known a priori) search space but not both. The topological
inference for a space–time–frequency PLV analysis needs to be
extended to a 4D (space× space×time×frequency) search space,
and this has not yet been implemented due to computational and
conceptual reasons (Kiebel and Friston, 2004; Kilner et al., 2005).

Furthermore, the sensitivity of a topological inference depends on
how well the assumptions required by RFT hold, e.g., sufficiently
smoothed data and sufficiently high threshold. There is a lack of clear
guidelines on how smooth images should be (Hayasaka and Nichols,
2003; Kilner and Friston, 2010; Kilner et al., 2005). (Kilner et al., 2005)
recommend that the size of smoothing kernel should be selected
based on the reported variability in the latency and frequency peak in
time–frequency effects over subjects, and such information may not
always be available. Similarly, there is no consensus on how high the
threshold should be for random field theory to work. Holmes(1994)
compared different thresholds in a simulation study and found the RF
test to be conservative for low thresholds. Poline et al.(1997) found
that the RF test is anticonservative for low thresholds and becomes
conservative for high thresholds. Kilner et al.(2005) could not detect
any significant time-frequency effect in an EEG study, based on the
corrected height threshold estimated by the random field theory.

ODP offers a more flexible approach, which does not require any
assumptions regarding the smoothness and dependence in the data. A
topological inference may be an interesting perspective of the current
study. However, it requires a separate investigation of the practical
aspects of the existing topological FDR method for analyzing EEG data
in space–time–frequency domain.

Another approach that advocated incorporating dependence by
sharing common information across the test for reducing Type I and
Type II errors was proposed in a method called local FDR by Efron and
Tibshirani(2002). This approach assumed a hierarchical Bayes model,
where the priors of the parameters are common among all tests, and the
priors are hierarchically estimatedbyusing thedata fromall tests. In local
FDR, thedistributionof the test statistics followsamixturedensitymodel,
and the inference is obtained by comparing the density of the null to the
mixture distribution for a given statistic. See Schwartzman et al.(2009)
for the application of local FDR in context of thresholding statistical
parametric maps of fMRI data. ODP and local FDR are equivalent if local
FDR is applied using a statistic compatible to ODP statistic, as shown in a
microarray study that compared the two procedures (Oba and Ishii,
2009). A future investigation on local FDR and its comparison with ODP
would be worth examining in context of multiple testing of PLVs. If local
FDRcanbeadopted tomultiple testingof PLVs such that it offers the same
optimal level of thresholding as ODP, it will serve as a useful Bayesian
alternative to frequentist optimal discovery procedure.

Recent research in brain dynamics has established a number of
methods for quantifying functional connectivity in EEG studies. See
Dauwels et al.(2010) and David et al.(2004) for a review of some of
these methods. Considering that no standard solutions exist to
address the issue of multiple comparison in high-dimensional EEG
synchrony data that result from these methods, this article can serve
as a useful example for other applications too. ODP is readily appli-
cable to the methods, e.g., mutual information, generalized synchro-
nization (Quian Quiroga et al., 2002), single-trial phase locking
(Lachaux et al., 2000), structural synchrony (Fingelkurts et al., 2003),
empirical mode detection PLV (Sweeney-Reed and Nasuto, 2007)
phase resetting (Makinen et al., 2005; Thatcher et al., 2008) and a
recentmethod based on Cohen's class of time–frequency distributions
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(Aviyente et al., 2011) specifically in electrode space whenMR images
are not available.
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Appendix A. Computing q-values

A q-value is computed as the minimum FDR over which a test
statistic can be rejected for the specified range of λ. The following
algorithm is summarized from Storey(2002) (for bootstrap option)
and Storey(2003) (for smoothing spline option).

1. Let pi be the ordered p-values.
2. For a range of λ, say R={0, 0.05,…, 0.95}, compute π̂0 according to

Eq. (1). For smoothing spline option, π̂0 = f̂ 1ð Þ, where f̂ is a natural
cubic spline with 3 df of π̂0 λð Þ on λ, and skip steps 3–5.

3. For each λ∈R, form bootstrap null distributions π̂4b
0 λð Þ, for b=1,…,

B, by taking bootstrap samples of the p-values.
4. For each λ∈R, estimate its mean square error (MSE) as

M̂SE λð Þ = 1
B
∑
B

b=1
π̂
�b
0 λð Þ−min

λ′∈R
π̂0 λ′

� �n oh i2
: ð10Þ

5. Set λ̂ = arg minλ∈RfM̂SE λð Þg. Then, the overall estimate of π0 is
π̂0 = π̂0 λ̂Þ

�
.

6. Set q p̂m
� �

= p̂FDR pmð Þ, where p̂FDR pmð Þ is obtained from Eq. (3)
after incorporating π̂0.

7. Set q p̂i
� �

= min f̂pFDR pið Þ; p̂FDR pi+1ð Þ for i=m−1, m−2,…, 1.
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