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Abstract

A relation-based theory of cognition proposes that cognitive capacity is limited, in part,
by the maximum arity of a relation that can be processed in working memory (Halford,
1993; Halford, Wilson, & Phillips, submitted). Children below age �ve are limited to binary
relations, hence have great di�culty on transitive inference tasks, which require integration
of two binary relations into a ternary relation. This theory attempts to integrate cognitive
and developmental data on the basic of a single metric - relational arity (number of related
arguments). However, the lack of formal analysis into relational information involved in cog-
nitive tasks threatens to undermine its utility. I propose using Natural language Information

Analysis Method from relational database theory to analyze relational information in cogni-
tive tasks. To demonstrate the utility of this method, I analyze two tasks: (1) simple oddity;
and (2) dimension abstracted oddity. The analysis identi�es the peak arity of simple oddity

as binary and dimension abstracted oddity (like transitive inference) as ternary. Therefore,
the relational theory predicts that dimension abstracted oddity cannot be performed until
the median age of �ve years, while simple oddity can be performed earlier. The analysis also
suggests variations on these tasks, and the peak arity for each variation is examined. 1

Introduction

A relation-based theory of cognition posits that cognitive ability is limited, in part, by
the maximum arity of relations that can be processed in working memory (Halford, 1993;
Halford et al., submitted). For example, children below age �ve are said to be limited
to binary relations. Hence, they have di�culty performing transitive inference (e.g., the
inference that a is-taller-than c, given that a is-taller-than b and b is-taller-than c) as it
requires integrating two binary relations into a ternary relation. Children below eleven
(limited to ternary relations) have di�culty on the balance-scale task (i.e., given a beam and
two weights [w1; w2] at distances [d1; d2] from a pivot point, determine whether the beam
will balance, tip left, or tip right), which requires a quaternary relation.

An extensive review of the experimental literature has shown that many tasks attain-
able by a particular age group can be categorized on the basis of common relational arity
Halford (1993), Halford et al. (submitted), Andrews (submitted). Examples of reasoning
tasks incorporated by the theory include: class inclusion, which consists of a superordinate
class, a subclass and its complement (e.g., fruit, apples and non-apples); various con�gural
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discrimination tasks such as conditional discrimination and negative patterning, which are
analogous to exclusive OR; and others (Halford, 1993). The theory has also been applied to
language comprehension, and planning tasks, such as the Towers of Hanoi (Halford et al.,
submitted).

The essential point of the theory is that relational arity is an important factor in the
ability of subjects to perform cognitive tasks. Consequently, tasks that require processing
relations of the same arity should impose the same degree of di�culty, other factors being
equal. Tasks of known di�culty form a benchmark against which new tasks are compared.
For example, given experimental results suggesting transitive inference is di�cult for children
below age �ve years, and that transitive inference requires processing a ternary relation, then
other tasks requiring ternary relations should also be di�cult for children below age �ve.

The question as to whether young children can perform transitive inferences has been the
subject of some dispute (see Halford, 1993, for a review). Recently, apparent demonstrations
of transitive inference in 3- and 4-year-olds by Goswami (1995) have challenged the claim
that transitive inference cannot be performed before the median age of �ve. Although, the
generality of these results was subsequently questioned by Halford et al. (submitted). Impor-
tantly, a deeper experimental investigation of the processes involved in transitive inferences
revealed that children below the age of �ve could perform transitive inference only in the
case where the task could be decomposed into two serial steps of one binary relation each
(Andrews & Halford, submitted). Performance for 4-year-olds dropped to chance level when
the task demanded integration of both binary relations into a single ordered triple (ternary
relational instance) in a single step. The results suggest that although young children may
have some understanding of the concept of transitive inference (in that such inferences were
performed by serialization), they lack the capacity to perform transitive inferences in the
general case. It gives strong support for the claim that young children cannot process ternary
relations.

The appeal of the relational theory is that it integrates a range of cognitive behaviour on
the basis of a single metric - relational order (arity), which is closely related to the number
of interacting variables in an experimental design (Sweller, 1993). Yet its weakness is that
in the psychological literature, the concepts of relation and relational order have a wide
interpretation - one person's quaternary relation may be another person's ternary relation.

In the computer science literature, however, the concepts of a relational data structure,
its associated operators, and methods for analysis (e.g., what constitutes a relation of a
particular arity) are well-de�ned and formalized (Codd, 1990; Halpin, 1995). Of course, the
goals of the computer scientist di�er from the cognitive scientist, but they share a common
ground: a relational theory for information storage and process. Thus, a potentially fruitful
line of research is to incorporate the formal concepts and methods from relational database
theory towards understanding the sources of relational complexity in cognitive tasks. The
working hypothesis of this work is that:

a signi�cant potion of cognitive behaviour (an interaction between an architecture
and an environment) is relation-based; together the cognitive architecture and its
environment constitute a relational information system, which can be modeled,
analyzed and tested using methods from relational database theory.

Halford's theory identi�es relational arity as a metric for complexity in cognitive tasks.
One technique from relational database theory called Natural language Information Analysis

Method, NIAM (Halpin, 1995) is used to decompose information systems into an essential
collection of connected relations. If one treats cognitive behavior as a relational information
system, then cognitive tasks can be analyzed using NIAM into an essential collection of
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relations. From there one can identify the peak complexity (maximum arity of a relation)
that must be processed to perform the task of interest.

To demonstrate the utility of NIAM, transitive inference, simple oddity, and dimension
abstracted oddity are analyzed here. The point will be that the analysis method clari�es the
source of relational complexity in these tasks. It identi�es dimension abstracted oddity as
having the same peak complexity as transitive inference - it requires integration of two binary
relational instances into a ternary relation instance, where simple oddity does not require
integration. Therefore, Halford's theory predicts that simple oddity can be performed before
the median age of �ve years, whereas dimension abstracted oddity cannot.

Relational complexity and working memory capacity

Relational complexity is closely linked to the number of interacting variables. Intuitively,
a decision based on one variable requires less \e�ort" than one based on two variables,
which in turn requires less \e�ort" than one based on three variables, etc. For example,
if a decision on rented accommodation was based solely on \cost" (by simply comparing
prices), then this would be a relately e�ortless decision compared to one based on \cost"
and \oor space". Since in the second case we would need a way of weighting both \cost" and
\oor space" variables. Similarly, if we include further variables such as \distance to work"
and \surrounding environment", the decision becomes increasingly e�ortful, since each new
variable interacts with previous variables requiring further consideration.

The essential idea in Halford's theory is that the capacity to perform cognitive tasks is
limited, in part, by the number of independent interacting pieces of information that can
be processed in working memory (i.e., the maximum relational arity). Higher arity relations
can be \chunked" into lower arity relations, thus circumventing a working memory capacity
limitation. However, chunking requires a strategy, which must be learned. Therefore, on
\novel" tasks where the availability of such strategies is highly unlikely, maximum relational
complexity will be the determining factor. It will constitute the peak processing load for a
given task.

In understanding Halford's theory, it is important to distinguish two dimensions of po-
tential development in working memory: (1) the number of independent objects; and (2) the
number of interacting objects that can be processed. Traditionally, theorists have pointed
to the �rst dimension as the factor that limits subject's ability to perform tasks. Halford
(1993), by contrast, identi�es the second dimension as another critical factor.

Traditionally, using the computer metaphor, one thinks of memory capacity as the num-
ber of slots or positions where chunks of information (e.g., letters, numbers, symbols) are
held for processing. A more appropriate metaphor illustrating Halford's theory is to think
of working memory as a slotted box, such as the ones used to store compact discs. Not
only is there a limit to the number of slots, but there is also a limit to the height of the
box corresponding the arity of relational information that can be stored for subsequent pro-
cessing. A shallow box is su�cient to hold mini-discs (corresponding to instances of unary
relations, say), but not su�cient to hold compact discs (corresponding to instances of binary
relations). Likewise, a deeper box su�cient for holding compact discs, is not necessarily
su�cient for holding laser discs (ternary relational instances).

A cognitive task may involve a series of operations on a number of relations of varying
arities. \Peak" relational complexity refers to the maximum arity of the relations computed
in a task. Capacity refers to the maximum arity of a relation that can be processed in working
memory. Using the \slotted-box" metaphor, capacity will be the depth of the box, not the
number of slots. If peak relational complexity exceeds working memory capacity then the
task cannot be performed above a chance-level baseline (Andrews & Halford, submitted).
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Relational complexity, however, does not necessarily equate to apparent relational arity.
Some apparently higher arity relations can be decomposed into a collection of lower arity re-
lations without loss of information. Conversely, some tasks require integration of lower-arity
relations into higher-arity relations to extract the target information. As shall be demon-
strated here, determination of relational complexity requires analysis of the information
relevant to the task.

What constitutes relational complexity?

The attraction of the relational complexity approach of Halford's is that data indicating
capacity limitations from many developmental and cognitive psychological tasks have been
analyzed and shown to be consistent within this framework (Halford, 1993; Halford et al.,
submitted). However, there is some argument as to what constitutes the arity of a relation,
and what contributes to the complexity of processing a relation (anonymous reviewers of
Halford, Wilson, & Phillips, submitted).

For example, in the oddity discrimination tasks, it is not clear what part of these tasks
constitutes the peak relational complexity. In simple-oddity discrimination a subject is re-
quired to determine which object di�ers from the other objects (e.g., given two triangles and
a circle, the circle is the odd object). In dimension-abstracted oddity, objects vary along two
or more dimensions (e.g., shape and colour), only one of which determines the odd object.
For example, given a green circle, a blue triangle and a blue square, the green circle is the odd
object because this object is green, while the other objects are blue. Shape does determine
the odd object because every object has a di�erent shape.

Simple oddity tasks can be performed by children below �ve, whereas dimension-abstracted

oddity cannot. Although the complexity of discrimination tasks has not been completely an-
alyzed, Halford (1993) suggested that this di�erence could be due to simply oddity requiring
only the single binary relation \Di�erence(Object1, Object2)", whereas dimension-abstracted

oddity requires integration of the two binary relations \Same(Object1, Object2)" and \Dif-
ference(Object1, Object3)" into a ternary relation. Since children below �ve are limited to
binary relations they can perform the �rst task, but not the second.

A more complete analysis of relational information must specify the relations and opera-
tions needed to determine the odd object. When speci�ed we see that determining relational
complexity is a complex issue. In simple oddity, for instance, the odd object is an element
of the complex relation: And(Di�erent(Odd, Object2), Same(Object2, Object3)), which is
constructed from binary relations \And", \Same" and \Di�erent". Now, what is the re-
lational complexity of this example? If we treat relational complexity as the arity of the
relation with the greatest number of arguments then it is binary. Yet, the \And" relation
is operating over two binary relations of two arguments each, and so can be considered as a
quaternary relation. Yet again, two of these arguments are over the same object (Object2).
Removal of the redundant argument results in a ternary relation. So, for one task we have
three di�erent measurements of complexity.

Relational complexity is well-de�ned in the relational database literature as the min-
imum arity that a relation can be reduced to without loss of information (Codd, 1990).
Furthermore, analysis methods such as NIAM (Halpin, 1995) can be used to formally an-
alyze existing information systems into a minimum set of minimal arity relations (called
optimal normal form) su�cient for representing and processing relational information in
some domain. Although NIAM has proven successful in the area of database systems it has
not been applied to cognitive systems.
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Relational processing and transitive inference

Formally, an n-ary relation is a subset of tuples from the cartesian product of n sets, such
that each tuple represents a truth about the domain of interest. For example, the binary
relation \Taller" may be the set: RT (P1; P2) = f(Mark;Bill); (Bill;Tom); (Bill;Paul)g, where
RT is the symbol of the relation \Taller", and P1 (P2) are the �rst (second) arguments to
the relation. If we consider a relation as a table, where rows are instances of the relation and
column names are the arguments of the relation (Figure 1(a)), then the relational operator
select (�CR) returns rows (elements) of the table (relation R) satisfying condition C, and
project (�AR) returns columns with argument name A. Questions such as who is taller than

Bill? are answered as: �P1(�P2=BillRT )! Mark. That is, by retrieving the row with \Bill" at
argument P2 (Figure 1(b)), and then the element at argument P1 of that row (Figure 1(c)).

Mark Bill

P1 P2BillT(P1,       )

(b)

BillT     (P1)

Mark

P1

(c)

Mark Bill

Bill Tom

PaulBill

P1 P2T(P1,P2)

(a)

Figure 1: The relation \Taller" depicted as a table (a), and the result of successively applying
the operations of select (b) and project (c).

The di�culty with performing transitive inference has been identi�ed with the inte-
gration of two binary relations into a ternary relation of ordered triples (Andrews & Hal-
ford, submitted). Formally, integration corresponds to performing an equi-join operation
(	A1;A2), which joins two relations on the basis of common elements at positions A1 and
A2 of the �rst and second relations, respectively. For example, the inference \Taller(Mark,
Tom)" is realized as �(P1=Mark^P3=Tom)RT 	P2;P1 RT . The equi-join operator returns relation:
RTT (P1; P2 = P1; P3) = f(Mark;Bill;Tom); (Mark;Bill; John)g, and the select operator re-
turns the row with \Mark" (\Tom") in the �rst (third) position of RTT (Figure 2).

Now, the important point of this formalism with respect to Halford's theory is that it
identi�es the peak complexity of the transitive inference task as the ternary relation RTT

constructed from the binary relation RT using the equi-join operator. If we continue the
analysis on the oddity discrimination tasks we see that dimension-abstracted oddity has the
same peak complexity as transitive inference (i.e., requires the same equi-join operation),
whereas simple oddity does not. Therefore, dimension-abstracted oddity should present the
same degree of di�culty to children as transitive inference, which is consistent with Halford's
(1993) prediction.

At this point, it should be noted that the analysis is not committed to a particular way
of implementing, for example, an equi-join operation. Its purpose is to identify common
relational data structures and operations. If particular operations have been identi�ed as
the source of di�culty in one task (e.g., transitive inference), then they are expected to be
the source of di�culty in other tasks requiring the same operations.

NIAM applied to discrimination tasks

The NIAM procedure consists of identifying the relevant atomic components (called en-
tities) and the facts to be stored and processed about these entities. The relevant facts are
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Mark Bill

Bill Tom

PaulBill

P1 P2T(P1,P2)

Mark Bill

Bill Tom

PaulBill

P1 P2T(P1,P2)

Mark Bill

P1 P2P2=P1

Tom

PaulBillMark

Mark

P1 P2

Tom

T(           ,         )TomMark

Join at P2 and P1

Select on P1=Mark and P2=Tom

TT(P1,P2=P1,P2)

Figure 2: Transitive inference on the \Taller" relation.

identi�ed by writing down statements about the domain of interest and then removing or
decomposing those statements so that only:

� facts relevant to the task; and

� facts relating relevant atomic entities are provided.

Simple oddity discrimination

The task requirement of simple oddity is to identify the object that di�ers from the other
objects, where the other objects are all the same. For example, given three objects where
the �rst and second objects have a square shape and the third object has a triangle shape,
the third object is the odd object as the other two objects are both squares. So, the sorts of
entities and relations relevant to this task are object, shape, the number of shapes, and the
relations \same" and \di�erent". The �rst step is to make explicit the facts relevant to this
task. These facts are identi�ed in Table 1. (Starred numbers indicate facts from previous
facts.)

A number of other facts are possible (Table 2). However, they are not included in the
collection of basic facts about this task for several reasons. Firstly, the entity �rst square
is complex in that it consists of the two atomic entities, �rst object and square. Complex
entities must be decomposed into the relevant atomic entities for the task. The relevance of an
atomic entity depends on whether it is used in the task. One could, for example, decompose
the entity of square into its lines, angles and vertices. However, such a decomposition is
unnecessary as these component entities are not relevant to the task. All that is required is
for a subject to determine whether two shapes are the same or di�erent. This part of the
task itself is potentially di�cult. For example, determining whether an object is a 11-pointed
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Table 1: Basic facts relevant to the simple oddity task.

No. Basic facts
1 the �rst object is a square
2 the second object is a square
3 the third object is a triangle
4 the �rst object is the same shape as the second object
5 the �rst object is a di�erent shape to the third object
6 the second object is the same shape as the �rst object
7 the second object is a di�erent shape to the third object
8 the third object is a di�erent shape to the �rst object
9 the third object is a di�erent shape to the second object
10* there are two squares
11* there is one triangle
12* the third object is the odd object

star or a 13-pointed star may impose higher cognitive load than say di�erentiating between
a triangle and a square. However, for the purposes of simple oddity discrimination, it is
assumed that the materials are such that determining whether two shapes are the same or
di�erent imposes little cognitive load.

Table 2: Complex and/or irrelevant facts for the simple oddity task.

No. Other facts
13 the �rst square is left of the second square
14 the �rst object is the same as the second, but is di�erent from the third object

Fact 13 also identi�es a spatial relation that is not relevant to the task. Since the odd
object does not depend on its position relative to the other two objects, such facts are not
included for analysis. Fact 14 is omitted as it can be decomposed, without loss of information,
into the two simpler facts: Fact 4 and Fact 5. The point being that by decomposing the
task into its simplest and relevant facts, one can identify the minimum relations necessary to
identify the target. If one started with complex entities and facts, then there is the possibility
of missing a solution that uses less complex relations.

Now, assuming that Facts 1-12 are the only facts relevant to the task, the next step of
NIAM is to make explicit the entities and relations. Typically, entities are the nouns and
relations are the verbs in each statement. This stage of analysis is potentially the weakest
since it relies on common sense knowledge of the relevant concepts1; knowledge which may
not be available to the subject, particularly in the case of children. However, one of the
major strengths of NIAM is that it makes explicit what conditions are being assumed.

The relevant entities are object, for which there are three instances (i.e., �rst, second
and third, which one can simply label as o1; o2; o3, respectively); the shape entity having
instances square and triangle; and the number entity (e.g., 1, 2, etc). The relevant relations
are: \Same", \Di�erent", \Has (shape)"; and \Occurs". Slightly more formally then the
facts are recast into a standard form, such as:

1Although, the choices are not completely arbitrary as demonstrated by showing examples of facts not
relevant to the task.
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1. the object with object-label o1 is the Same as the object with object-label o2;

2. the object with object-label o1 Has shape with shape-name square;

3. the shape with shape-name square Occurs with number of occurrences 3 ; etc.

The conceptual schema that captures these facts is shown in Figure 3(a). Circles indicate
entities, which are sets of objects in the domain of interest. Rectangles indicate relations and
the number of partitions in each rectangle identi�es the arity of the relation. In this case,
all relations are binary. The elements in each relation are shown next to the rectangles. The
starred box indicates a derivable relation (i.e., a relation constructed from other relations).
It is assumed that the counting process does not require more than a rehearsed procedure,
which runs through pairs of associations between a number and its successor.

Has

O F

wb

wb

o1 o2
o3

o2
o1o3

Has *

O S S N

o1

Same O1 O2

Differ O1 O2
o1 o3

o2
o1 o2

o2 o3
o3 o1
o3 o2

o1

o3
o2

2
1

(a)

{o1,o2,o3}
Object

Shape
{ }, {1,2,...}

Simple Oddity

Dimension Abstracted Oddity

Occurs
Occurrence

D

*

NF

F

ShShShCoCo
w
b

1

1
1

Sh
Co 2

3

o2
o2 b

o1 w

Feature
{ } {1,2,...}

{Co, Sh}
Dimension

Is

Occurrence

Occurs

O1 O1 O2O2Differ-shape

colour
Differ-

O1 O2Same-colour

o2 o3
o3 o2

o1
o1

o2o3

o1
o1

ND *Varies

1

2

o1

o3 b
o3

Object
{o1,o2,o3}

(b)

o1 o2
o3

o2
o2 o3
o3 o1

Figure 3: Conceptual schema for simple oddity (a) and dimension-abstracted oddity (b) tasks.

Previously, I suggested that simple oddity could entail a ternary relation. From the
relations speci�ed in the conceptual schema one can determine the odd object by per-
forming an equi-join on the \Di�erent" and \Same" relations resulting in the relation:
RDS = RD 	O2;O1 RS = f(o3; o1; o2); (o3; o2; o1)g, and then a project on the �rst argument:
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�O1RDS ! o3. (Note that since relations are sets duplicates are eliminated.) However, the
conceptual schema also identi�es an alternative strategy using the derivable relation \Oc-
curs", which relates shape to the number of times it appears in the task. Using this relation
one can avoid constructing the intermediate ternary relation by a two step serial process: 1.
�O(�N=1RO) ! 4, which returns the shape that occurs once; and 2. �O(�S=4RH) ! o3,
which returns the object that has shape triangle. This two step serial strategy avoids the
expensive join operation and requires processing at most a binary relation.

Dimension abstracted oddity discrimination

Dimension-abstracted oddity consists of three or more objects with features that vary
along two or more dimensions. The task is to identify the object with a feature that di�ers
from all other objects where those objects share the same feature. For example, given the
three objects with feature pairs: (white, circle); (black, square); (black triangle), respectively,
the white circle object is odd because its colour is white, whereas all other objects are black.
Shape is not the discriminating dimension because it does not partition the objects into two
groups where all objects in the same group share the same shape.

Suppose a dimension-abstracted oddity task consisting of a white circle, a black square,
and a black triangle. The basic facts concerning this task are given in Table 3. The con-
ceptual schema that captures these facts is shown in Figure 3(b). The schema records
facts such as: \the Feature with feature-name circle () Is a Dimension with dimension-
name Shape (Sh)"; \the Feature with feature-name black (b) Occurs with number of oc-
currences 2"; etc. The interesting feature of this schema is that the two step procedure
in the previous task cannot be applied since more than one feature has a single occur-
rence (i.e., �F (�N=1RO) ! fw;4;u;g). The structure of this task requires �rst deter-
mining the discriminating dimension, which is the dimension with only two values (i.e.,
�D(�N=2RI) ! Colour), and second integrating the \Is" relation with the \Occurs" rela-
tion using the equi-join operator (i.e., �F (�(D=Colour^N=1)RC 	F;F RO) ! w, where w is the
white feature). The third and �nal step simply selects the object having the white feature
(i.e., �O(�F=wRH)! o1). The important point to take from this analysis is that dimension-

abstracted oddity, like transitive inference requires a ternary relation, implying the same level
of di�culty for children below age �ve.

Variations on dimension abstracted oddity

The essential lesson to take from NIAM is that domain complexity depends on the facts
that must be operated on. If one alters the facts then task complexity may change. Here,
two variations on the dimension abstracted oddity task are examined.

Dimension abstracted oddity with deletion

The analysis of dimension abstracted oddity assumed that the facts remained unchanged
throughout the task. One can also consider the e�ect of task complexity if the subject is
permitted to alter (in this case, delete) facts.

Dimension abstracted oddity �rst requires the subject to identify the discriminating di-
mension (i.e., the dimension with only two possible features). In the example, this dimension
was colour. Colour becomes the cue to the \Is" relation, which returns two possible features:
black and white. To decide between which colour, one joins the \Is" relation with the
\Occurs" relation along the common position \F" (feature), resulting in the ternary relation
RIO(D;F;N). The target is accessed using the additional cue \1" to return instance (colour,
white, 1).

9



Table 3: Basic facts relevant to the dimension abstracted oddity task.

No. Basic facts
1 the �rst object is a circle
2 the second object is a square
3 the third object is a triangle
4 the �rst object is white
5 the second object is black
6 the third object is black
7 a circle is a shape
8 a square is a shape
9 a triangle is a shape
10 white is a colour
11 black is a colour
12* there is one circle
13* there is one squares
14* there is one triangle
15* there is one white object
16* there is one black object
17* there are two colours
18* there are three shapes
19* the �rst object is odd
20 the �rst object is a di�erent shape from the second object
21 the �rst object is a di�erent shape from the third object
22 the �rst object is a di�erent colour from the second object
23 the �rst object is a di�erent colour from the third object
24 the second object is a di�erent shape from the �rst object
25 the second object is a di�erent shape from the third object
26 the second object is a di�erent colour from the �rst object
27 the second object is the same colour as the third object
28 the third object is a di�erent shape from the �rst object
29 the third object is a di�erent shape from the second object
30 the third object is a di�erent colour from the �rst object
31 the third object is the same colour as the second object
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An alternative strategy, suggested by Graeme Halford2, is to permit subjects to remove
objects in the task not relevant to the solution. In this case, having identi�ed the determining
feature as being either black or white, the subject chooses one of them. With the chosen
feature, they determine the number of occurrences in the task by selecting from the \Occurs"
relation (a single binary relation operation). Now, if the retrieved number of occurrences
is not one, then remove all objects with that feature, otherwise the selected feature is the
feature that determines the odd object. So, for example, if the subject chooses black, which
they determine has 2 occurrences, they remove all black objects. Deletion of these objects
leaves only one object which must be the odd object. However, had they chose white, which
has only one occurrence, they use this feature to cue the \Has" relation which identi�es the
�rst object as the odd object. In both cases, only binary relations are used. There is no
joining to form ternary relations. Using a deletion strategy permits the task to be performed
with only binary relations. If such a strategy is available to subjects, then Halford's theory
predicts that this task can be perform below the median age of �ve years.

D > 2 dimension abstracted oddity

Another variation on this task is the situation where objects vary along three or more
dimension. Suppose a task of four objects3 with size being the additional dimension of
variation. Now, the a�ect of adding a third dimension will depend on the number of values
along this dimension that appear in the group of objects to be discriminated.

In the case of the four objects: big white circle, big black square, medium black square,
and small black triangle, there are three values along the size dimension (i.e., small, medium
and big). The \Varies" relation now contains three pairs: (colour,2),(shape,3),(size,3). How-
ever, the addition of the third pair does not change the relational complexity of the task,
because the discriminating dimension is still uniquely identi�ed as the dimension with only
two values (i.e., �N=2RV ! Co). The determining feature is then retrieved by use of the
equi-join operator as before. Thus, the relational complexity of this variant is still ternary.

Relational complexity does not preclude other factors contributing to the increased di�-
culty of a task. One can imagine the task of discrimination being more di�cult when objects
vary over many dimensions, since there more dimensions must be checked, most of which
would be irrelevant. Yet, in this case, the increase in di�culty would be attributable to other
factors (e.g., time), which are outside the scope of the relational theory. Simply having to
check more dimensions, or more objects takes more time. To take an extreme example,
searching for a needle in a haystack is no more demanding, cognitively, than looking for a
needle in a handful of straws. Yet, people are more likely to fail on the �rst task either out
of lack of patience, or an inappropriate strategy (e.g., in situ search).

Another alternative is where the third dimension has only two possible values, as for
example in the group of objects: big white circle, big black square, small black square
and small black triangle. In this case, the size dimension consists of only two possible
values: small and big, yet size is not the discriminating dimension. Although, the relation
\Varies" contains the three pairs: (colour,2); (shape,3); (size,2), the discriminating dimension
cannot be uniquely identi�ed using the cue \2" (i.e., �N=2RV ! fCo; Sig). To identify the
determining feature, one must perform an equi-join on relations \Varies" and \Is" at the
common position \D" (i.e., RV 	D;D RI ! RV I(N;D; F )), and then another equi-join on
the resulting ternary relation with the relation \Occurs" to construct a quaternary relation

2Personal communication
3The number of objects does not necessarily change the relational complexity of a task. For example,

even if one adds an extra square object to the simple oddity task example, the relational complexity is still
only binary.
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(i.e., RV I 	F;F RO ! RV IO(N;D; F;N
0)). This operation is depicted graphically in Figure

4. Cuing this quaternary relation with the number of variations (N = 2) and the number
of occurrences (N 0 = 1), returns the instance (2,Colour,white,1), where white is the feature
that determines the odd object. Thus, it is expected that children at a median age of �ve
years who can perform D = 2 dimension abstracted oddity, cannot perform this variation.
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Figure 4: Quaternary relation.

Discussion and conclusion

The purpose of NIAM is to analyze information systems into a minimum collection of
minimal arity relations. Once this collection has been identi�ed, one can determine the rela-
tional operations needed to extract the target information. Thus, NIAM and the conceptual
schemata that are produced by this analysis technique are statements at the algorithmic (re-
lational) level. They are not statements about how relational data structures and processes
should be implemented. So, the concepts introduced here to analyze relational complexity in
cognitive tasks, should not be confused with the concepts used in relational database tech-
nology, which are concerned with speci�c implementations of relational information systems.
Whereas in database design it is appropriate to consider such concepts as balance-trees and
hash tables to maximize speed and e�ciency, in cognitive modelling and in particular con-
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nectionist modelling it is more appropriate to consider concepts such as distributivity and
connectivity for neural plausibility (Halford et al., submitted).

The value of this approach has been to identify a common source of relational complexity
between transitive inference and dimension abstract oddity tasks, which empirical evidence
suggests is the source of di�culty for children below age �ve (Andrews & Halford, submit-
ted). The work of Andrews and Halford identi�es integration of two binary relations into a
ternary relation as the source of di�culty for young children on transitive inference. This
integration corresponds to performing an equi-join operation at the relational level. There-
fore, using ternary inference as the empirical benchmark, other tasks requiring the same
operation should yield the same degree of di�culty, other factors being constant. Using
NIAM, dimension abstracted oddity was identi�ed as one such task.

One should bear in mind that the conceptual schemata capture information contained
and processed in a relational information system. With respect to cognitive behaviour that
system constitutes the environment (task materials) and the subject. So, not all the informa-
tion will reside in the subject's working memory at any one time. Some of this information
may simply be present in the environment as task materials, which can be retrieved on de-
mand by appropriately focusing on the relevant materials. So, for example, a simple oddity
discrimination task may consist of ten objects (say, nine squares and a circle). This task in-
stance would consist of the binary relation \Has" containing ten pairs. The subject, though,
does not have to store every pair in memory. Probably only two pairs need be stored. That
is (square, 9) and (circle, 1), from which the subject identi�es the determining feature as
the circle. The subject then only has to scan the scene for a circle. Each time the sub-
ject encounters an object, they compute the relational instance RH(oi; sj). If the current
instance contains the shape circle, it is used to determine the odd object, otherwise it can
be discarded and the remaining objects considered.

Although the applications of NIAM by the systems analyst have di�ered considerably
from the cognitive scientist, it is entirely appropriate to use this method because they share
a common goal: the reduction of information systems into the smallest possible collection of
relations. Ful�lling this goal from the analyst's point of view helps enforce data consistency
and integrity. From the cognitive scientist's viewpoint, and in particular with respect to
Halford's theory, it identi�es lower bounds on the maximum arity of relational information
inherent in the task. Therefore, if these bounds exceed the capacity of subject's working
memory, one can predict that such tasks cannot be performed without some strategy for
reducing the maximum arity of relational information. In the previous section one such
strategy was discussed. In the dimension abstracted oddity task using deletion of objects,
\peak" complexity was reduced from ternary to binary.

Conversely, the analysis also identi�es strategies that process relations of higher arity.
For example, simple oddity required a ternary relation when the strategy for determining
the odd object consisted of integrating the \Same" and \Di�erence" relations. So, although
young children may be at the developmental level that permits them to perform simple
oddity, their failures may be due to a strategy that entails processing relations beyond their
level. Furthermore, since NIAM is a fact-oriented analysis method, when additional facts
are added to the tasks, such as in D > 2 dimension abstracted oddity, one can determine the
relational complexity of the modi�ed task and make predictions as to subjects' performance.

The weakest point of this analysis method is the �rst step of identifying the atomic facts.
Atomicity is relative to the cognitive system. An individual face contains many relations
relevant for discrimination from other faces, yet face recognition is one of the earliest acquired
and least cognitively demanding capacities. Even for object categorization, what adults
would regard as two separate dimensions of similarity (e.g., colour and size), young children
below the age of �ve integrate into a single dimension from which they determine relative
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\sameness" (Smith, 1989). In the case of Smith's (1989) results (Experiment 1), NIAM
could account for the di�erence by identifying a binary relation between object pair and
an overall-similarity metric for the young children (e.g., Similarity(Pair, Distance)), and a
ternary relation between object pair, dimension and a dimension-speci�c-similarity metric
for the older children and adults (e.g., Similarity(Pair, Dimension, Distance)). But, this
would beg the question of the psychological reality of the Distance attributes in the two
relations.

The purpose of NIAM is not to provide an explanation for the atomic objects of cognitive
processes. Its purpose is to provide explicit and formal methods for determining relational
information given those atomic objects. Thus, when calibrated against tasks of known dif-
�culty (e.g., transitive inference) it can be used to identify common sources of relational
complexity. Relative to the relational theory, then, tasks sharing common relational com-
plexity should present the same degree of di�culty.

Relational systems have been studied extensively within the relational database com-
munity. As the analysis in this paper demonstrates much understanding of the relational
complexity inherent in cognitive tasks can be gained by treating the cognitive system (ar-
chitecture plus environment) as a relational system, thereby making the cognitive system
subjectable to the formal methods of relational information systems.
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