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Abstract. Artificial General Intelligence (AGI) seeks theories, models
and techniques to endow machines with the kinds of intellectual abilities
exemplified by humans. Yet, the predominant instance-driven approach
in AI appears antithetical to this goal. This situation raises a question:
What (if any) general principles underlie general intelligence? We app-
roach this question from a (mathematical) category theory perspective
as a continuation of a categorical approach to other properties of human
cognition. The proposal pursued here is adjoint functors as a universal
(systematic) basis for trading the costs/benefits that accompany physical
systems interacting intelligently with their environment.
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1 Introduction

The purview of Artificial General Intelligence (AGI) is the development of the-
ories, models and techniques for the endowment of machines with intellectual
capabilities that generalize to a variety of novel situations. This characterization,
however, belies important questions about what we mean by intelligence and gen-
eralize. In the absence of precise criteria, researchers look to the archetype of
general intelligence, human cognition, for examples of model behaviour [19].

Such (behaviourist/operationalist) approaches afford clear criteria to com-
pare methods, but there are some significant drawbacks. Firstly, complex behav-
iour can be realized in more than one way. A machine that requires many more
training examples to achieve a comparable level of human performance on a
complex intellectual activity (e.g., chess) may not capture essential properties
of general intelligence [13]. Secondly, humans also make (logically) irrational
decisions [12]. Failures of logical reasoning, however, do not warrant rejecting
human cognition as an example of general intelligence. So, specific behaviours
may provide neither necessary nor sufficient criteria for general intelligence.

This problematic state of affairs raises an important question: What (if any)
general principles underlie general intelligence? Discerning principles for cog-
nition is a concern of cognitive scientists when comparing/contrasting mental
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capacity across cohorts (e.g., age groups, or species). A typical recourse is to
look at relationships between mental capacities, rather than individual behav-
iours [10]. In the remainder of this introduction, we recall one such relation-
ship that motivates our approach to AGI, which is presented in the subsequent
sections.

1.1 Systematicity, Generalization and Categorical Universality

The so-called cognitive revolution in psychology was a shift in focus from behav-
iour to the underlying structures that generate it, or more pointedly, a shift
towards the (structural) relations between the underlying cognitive processes
that cause the structural relations between behaviours generated [3]. An example
is the systematicity property of cognition. Systematicity is when having a capac-
ity for some cognitive ability implies having a capacity for a structurally-related
ability [8]. An example is having the capacity to understand the expression John
loves Mary if and only if having the capacity to understand Mary loves John.
These two capacities are related by the common loves relation. Systematicity, in
general, is an equivalence relation over cognitive capacities, which need not be
confined to language [15]—a kind of generalization over cognitive abilities.

The systematicity problem is to explain why cognition is organized into par-
ticular groups of cognitive capacities [8]. Although this problem was articulated
three decades ago, consensus on a solution remains elusive (see [4] for a recent
reappraisal). Cognitive scientists generally agree that systematicity depends on
processing common structure, though they may disagree on the nature of those
processes, e.g., symbolic [8], or subsymbolic [20]. However, the sticking point
is over a specification for the (necessary and sufficient) conditions from which
systematicity follows: the why not just the how of systematicity [1,8]. Central to
(ordinary) category theory [14] is the formal concept of universal construction:
necessary and sufficient conditions relating collections of mathematically struc-
tured objects. In this sense (of necessity and sufficiency) one can regard category
theory as a theory of structure, which should make category theory well-placed
to provide an explanation for the why of systematicity [17].

A category consists of a collection of objects, a collection of morphisms (also
called arrows, or maps), and a composition operation for composing morphisms.
In the context of cognition, morphisms may be regarded as cognitive processes
that map between objects that are sets of cognitive states. A universal mor-
phism (universal construction) is a morphism that is common to a collection of
morphisms, hence its relevance to an explanation for systematicity [17].

1.2 Cost/Benefit Cognition: Dual-Routes and Duality

If cognition is supposed to be systematic, then why are there failures of sys-
tematicity? Cognitive systems are physical systems, hence resource sensitive.
So, alternative ways of realizing task goals may trade one kind of resource
for another. For example, parallel computation typically involves more mem-
ory (space) but less time than serial computation; faster response is typically

steve@ni.aist.go.jp



General Intelligence: Adjointness 59

accompanied by lower accuracy. We hypothesized that failures of systematic-
ity arise from a cost/benefit trade-off associated with employing a universal
construction, and an experiment designed to manipulate the cost of computing
a task with versus without a universal construction provided support for this
hypothesis [16].

Characterizations of cognition as dual-process (route) abound in psychol-
ogy: e.g., fast versus slow, domain-specific versus domain-general, resilient ver-
sus sensitive to working memory load, and associative versus relational [7,10,12].
Although identifying such distinctions are important, they do not explain why
cognition appears this way. Our study [16] suggested that failures of systematic-
ity are themselves systematically related. Since the categorical explanation says
that a universal construction underlies each and every instance of systematicity,
we propose that another kind of universal construction, called an adjunction,
underlies cognitive dual-routes and general intelligence.

An adjunction can be considered as a collection of universal morphisms for
the opposing constructions as dual-routes. Each collection affords a system-
atic alternative path that realizes a cost/benefit trade-off. General intelligence
involves the effective exploitation of this trade-off. The link from dual-route to
adjunction is formally illustrated using a familiar example of dual from elemen-
tary algebra, in Sect. 2, which also serves as an aid to understanding the basic
category theory that follows for application to cognition and general intelligence,
in Sect. 3. This general principle for AGI is discussed in Sect. 4.

2 Categorical Dual (Adjunction): An Elementary
Example

Computing with very small or large numbers creates precision errors when results
exceed a machine’s representational capacity. These computational “potholes”
are avoided by taking a dual route, which is illustrated using the following equa-
tions relating addition to multiplication:

a × b = elog a+log b and (1)

a + b = log(ea × eb) , (2)

which show that one can be computed in terms of the other.

Definition 1 (Category). A category C consists of

– a collection of objects, O(C) = {A,B, . . . },
– a collection of morphisms, M(C) = {f, g, . . . }—f : A → B indicates A as

the domain and B as the codomain of f , and HomC(A,B) as the collection
of morphisms from A to B in C—including the morphism 1A : A → A for
every object A ∈ O(C), called the identity morphism at A, and

– a composition operation, ◦, that sends a pair of morphisms f : A → B and
g : B → C to the composite morphism g ◦ f : A → C,
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that together satisfy

– identity: f ◦ 1A = f = 1B ◦ f for every f ∈ M(C), and
– associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f for every triple of compatible morphisms

f, g, h ∈ M(C): the codomain of f is the domain of g; likewise for g and h.

Example 1 (Set). The category Set has sets for objects, functions for mor-
phisms, and composition is composition of functions: g◦f(a) = g(f(a)). Identity
morphisms are identity functions: 1A : a �→ a.

Example 2 (Monoid). A monoid is a set M with a binary operation · and an
identity element e ∈ M such that a ·e = a = e ·a for every element a ∈ M . Every
monoid (M, ·, e) is a one-object category whose morphisms are the elements of
M , with e as the identity morphism, and composition is the monoid operation.
The set of real numbers R under addition and multiplication are the monoids
(R,+, 0) and (R,×, 1) and therefore categories. For instance, the composition of
morphisms 2 : ∗ → ∗ and 3 : ∗ → ∗ is the morphism 3 ◦ 2 = 5 : ∗ → ∗, which
corresponds to the addition of their corresponding numbers, 2 + 3 = 5.

Remark 1. Category Cop is opposite to C, which is obtained by morphism
reversal: morphism f : A → B in C is fop : B → A in Cop. A dual (e.g.,
coproduct) in C is just the primal (product) in Cop.

Definition 2 (Functor). A functor F : C → D is a map from category C to
category D sending each object A and morphism f : A → B in C to (respectively)
the object F (A) and the morphism F (f) : F (A) → F (B) in D such that

– identity: F (1A) = 1F (A) for every object A ∈ O(C), and
– compositionality: F (g ◦C f) = F (g) ◦D F (f) for every pair of compatible

morphisms f, g ∈ M(C).

Example 3 (Monoid homomorphism). A monoid homomorphism is a map
h : (M, ·, e) → (N, ⋆, e′) such that h(e) = e′ and h(a ·b) = h(a)⋆h(b) for all a, b ∈
M . Every monoid homomorphism is a functor. For instance, the exponential
function exp : a �→ ea is a monoid homomorphism, since e0 = 1 and ea+b =
ea × eb, and therefore a functor. Likewise, the log function defined over R − {0}
(denoted R0) is a functor, since log(1) = 0 and log(a × b) = log(a) + log(b).

Remark 2. A functor F : Cop → D is called a contravariant functor. Con-
travariant functor Iop : Cop → C sends fop to f .

The following definition is needed before defining adjunction. We delay giving
examples until the next section, because the natural transformations associated
with the current example of a dual are trivial (i.e. identities).

Definition 3 (Natural transformation, isomorphism). A natural trans-
formation η from a functor F : C → D to a functor G : C → D, written
η : F

.
→ G, is a family of D-morphisms {ηA : F (A) → G(A)|A ∈ O(C)} such

that G(f) ◦ ηA = ηB ◦ F (f) for each morphism f : A → B in C. A natural
isomorphism is a natural transformation where every ηA is an isomorphism, i.e.
a morphism that has a (left/right) inverse.
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Remark 3. A natural isomorphism is indicated by the following diagram:

F (A)
ηA ��

F (f)

��

G(A)

G(f)

��

η−1
A

��

F (B)
ηB ��

G(B) ,
η−1

B

��

(3)

which yields two identities:

F (f) = η−1
B ◦ G(f) ◦ ηA and (4)

G(f) = ηB ◦ F (f) ◦ η−1
A , (5)

hence their importance in exploiting dual-routes.

Definition 4 (Adjunction). An adjunction (F,G, η, ǫ) : C ⇀ D consists of
functors F : C → D and G : D → C, and natural transformations η : 1C

.
→

G ◦ F and ǫ : F ◦ G
.

→ 1D satisfying Gǫ ◦ ηG = 1G and ǫF ◦ Fη = 1F , where 1F

and 1G are identity natural transformations (on F and G). F is the called the
left adjoint of G, and G is called the right adjoint of F , written F ⊣ G; natural
transformations η and ǫ are called (respectively) the unit and counit.

Remark 4. Definition 4 induces equalities f = G(g) ◦ ηA and g = ǫB ◦ F (f),
which are shown by the following diagrams:

A
ηA ��

f
���

�

�

�

�

�

�

�

�

GF (A)

G(g)

��
�

�

�

F (A)

g

��
�

�

�

A

f

��
�

�

�

F (A)

F (f)

��
�

�

�

g

���

�

�

�

�

�

�

�

�

G(B) B G(B) FG(B)
ǫB

�� B .

(6)

Dashed arrows indicate uniqueness. The pair (F (A), ηA) is the universal mor-
phism from A to F ; the pair (G(B), ǫB) is the universal morphism from G to B.
In other words, every morphism f factors through ηA; every morphism g factors
through ǫB, hence the importance of universal morphisms to systematicity.

Remark 5. Derived hom-functors Hom(F−,−),Hom(−, G−) : Cop×D → Set
and natural isomorphism φ : Hom(F−,−)

.
→ Hom(−, G−) : ψ (see [14]) are

indicated by the following diagram:

(A,B)

(h,k)

��

HomD(F (A), B)

Hom(F (h),k)

��

φA,B
��
HomC(A,G(B))

ψA,B

��

Hom(h,G(k))

��

(A′, B′) HomD(F (A′), B′)
φA′,B′

��
HomC(A′, G(B′)) ,

ψA′,B′

��

(7)

hence the importance of adjunctions to duality and dual-routes.
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Example 4 (exp ⊣ log). Setting F and G in diagram 7 to functors exp and log,
hence HomD(F (A), B) = R0 and HomC(A,G(B)) = R, we have for (h, k) set
to (0, b) and (h, k) to (a, 1) the following (respectively, left and right) diagrams:

(∗, ∗)

(0,b)

��

R0

×b

��

log(−)
�� R

+ log b

��

(∗, ∗)

(a,1)

��

R0

ea×

��

R

a+

��

e(−)
��

(∗, ∗) R0 R
e(−)

�� (∗, ∗) R0
log(−)

�� R .

(8)

For all a ∈ R0, traversal of the left square recovers Eq. 1; for all b ∈ R, traversal
of the right square recovers Eq. 2 (cf. Eqs. 4 and 5).

Remark 6. Functions/functors log and exp are mutual inverses, hence isomor-
phisms. Every isomorphic functor and its inverse form an adjunction, but every
adjoint functor is not an isomorphism (see, e.g., next section). One can think of
adjoints as conceptual though not necessarily actual inverses.

3 Cognitive Dual-Routes and Adjoints

With the formal concept of adjunction at hand, we present two examples of how
adjunctions underlie cognitive dual-routes. Both examples involve categorical
products, which relate cognitive development across reasoning tasks [18].

3.1 Stimulus-Response

To examine a potential cost/benefit trade-off associated with categorical prod-
ucts, subjects were tested on a stimulus-response task involving a product of two
maps: a character-to-colour map char2colour : Char → Colour and a character-
to-shape map char2shape : Char → Shape, e.g., (G,P) �→ (red,♣), (P,K) �→
(blue,�) [16]. Subjects could learn each task as a single map of pairs (n2), or as
a pair of maps between singletons (2n). The former alternative does not afford
generalization, as each pair is interpreted as a unique, indivisible element; the
latter alternative affords generalization after inducing the component maps. The
map learned depended on set size: stimulus-response associations were learned
wholistically when the number of mappings was small, but componentially when
the number of mappings was large, and this difference depended on the order
of learning [16]. Here, we show that the categorical basis for this duality is the
adjoint relationship between diagonal and product functors.

Definition 5 (Diagonal, product functor). The diagonal functor Δ : C →
C × C;A �→ (A,A), f �→ (f, f) sends each object and morphism to their pairs.
The product functor Π : C×C → C; (A,B) �→ A×B, (f, g) �→ f ×g sends pairs
of objects and morphisms to their categorical products.
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Remark 7. The categorical product in Set is the Cartesian product.

Example 5 (Δ ⊣ Π). Diagonal and product functors form an adjoint pair. The
natural transformations are: 〈1, 1〉 : 1C

.
→ Π ◦ Δ and (π1, π2) : Δ ◦ Π

.
→ 1C×C.

In Set, π1 and π2 are projections, i.e. π1 : (a, b) �→ a, and π2 : (a, b) �→ b.
Instantiating F and G in diagram 7 as Δ and Π over Set yields

(A,B)

(f,g)

��

A × B

f×g

��

φ
�� (a, b)

�

(f,g)

��

〈a, b〉
�

f×g

��

�

φ
��

(A′, B′)
ψ

�� A′ × B′ (f(a), g(b)) �

ψ
�� 〈f(a), g(b)〉 .

(9)

For the stimulus-response task, A and B (diagram 9) correspond to Char ,
and A′ and B′ to Colour and Shape. The dual-route realized by the adjunction
trades the cost of maintaining a pair of maps (left vertical arrows in each square)
with the benefit on only needing about 2n training examples for correct response
prediction on all n2 of the single product map (right vertical arrows).

3.2 A Measure of Intelligence: Raven Progressive Matrices

Raven Progressive Matrices (RPM) is an inference task. Subjects are presented
with a 3× 3 matrix of stimuli, whose bottom-right cell is empty, and an array
of choice stimuli from which they choose the stimulus that belongs in the empty
cell. Examples are shown in Fig. 1, with stimuli varying along one (number) or
two (number, shape) dimensions. Various factors influence the difficulty of RPM,
such as recognizing the relevant relations to infer the missing attributes for the
row/column [5], and the number of such variable relations [6,21]. Dimensionality
pertains to (unary/binary) products (see [18] for the relationship between dimen-
sionality, product arity and difficulty for the closely related matrix completion
task), hence the aforementioned diagonal-product adjunction, albeit for partic-
ular algebras instead of just sets. So, here, we focus on the missing attribute
aspect of RPM, as involving another instance of an adjunction.

Fig. 1. RPM-like examples with (a) one and (b) two dimensions of variable relations.
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The adjunction involves constructing a free object. Typically, the left adjoint
is a free functor that sends each set to the free algebraic structure (e.g., monoid,
group, etc.) on that set. The right adjoint is the associated forgetful functor
that sends each algebraic structure to its underlying set, forgetting the algebraic
operations. For example, the free monoid on the set (alphabet) A is the monoid
(A∗, ·, ε) consisting of the set of “words” A∗ (i.e. strings of 0 or more characters
a ∈ A) composed from the concatenation operation ·, where ε is the empty
(length zero) word. The universal construction is shown in diagram 10 (left),
where len is the monoid homomorphism returning word length, ι is the universal
(initial) morphism, and 1 is the constant function assigning 1 to every alphabetic
character. Initial morphism ι is an injection of generators a ∈ A; equivalently,
the completion of word set A∗ from alphabet A.

A
ι ��

1
��

�

�

�

�

�

�

�

�

A∗

len

��
�

�

�

(A∗, ·, ε)

len

��
�

�

�

{a, b}
ι ��

f
���

�

�

�

�

�

�

�

�

�

{a, b, c}

g

��
�

�

�

({a, b, c}, ·)

g

��
�

�

�

N (N,+, 0) G (G, ⋆) .

(10)

For RPM, each row/column constitutes a semigroupoid (partial monoid with
identity unneeded). The missing feature (e.g., shape) is obtained from the initial
morphism as the completion of the two given features (circle, square) to obtain
the other feature (pentagon). The initial morphism is the completion of the
two-element set {a, b} to the three-element set {a, b, c}, diagram 10 (right). The
semigroupoid formalizes the notion of obtaining the missing element c from the
given elements a and b, i.e. a · b = c, where · is the semigroupoid operation.1

There is a speed accuracy trade-off with regard to products: considering a single
dimension is faster but less accurate, e.g., neither shape nor number uniquely
identifies the target (two pentagons) in Fig. 1(b), see also Discussion.

4 Discussion

We have looked at three examples of adjunctions as the basis of dual-routes and
cost/benefit trade-offs. Given the diversity of what one may regard as general
intellectual behaviour, claims of a general principle from so few examples may
seem premature. In what sense, then, are adjunctions justifiably a general prin-
ciple for general intelligence? In the remainder of this section, we step back from
the formal details to discuss some broader conceptual motivations.

The conceptual connections between general intelligence and adjunction are
the following. General intelligence is a product of cognition, cognitive systems are
physical systems, physical systems interact with their environment by exchange
of energy (information), and this interaction (adjunction) induces a dual-route.

1 Equivalently, the missing element is obtained from the underlying graph of the free

semicategory (category with identity arrows unneeded) on the graph consisting of
the connected edges a and b: the missing element is the edge c = ab.
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Cost/benefit can be regarded as a duality between system and environment: cost
is the expenditure of system resources on the environment, and benefit is uptake
of environmental resources by the system. Formally, we have regarded this dual
relation as adjunction, and choice depends on which route is more cost effective.

We presented three examples of how cost/benefit trade-off may arise from
adjunction. Directly adding/multiplying very small or large numbers effectively
has large cost when representational capacity is exceeded: enlarge is dual to
compress. Directly inferring a response to a novel stimulus effectively has an large
cost when the correct response is unknown: analyze is dual to synthesize. In the
case of RPM, this dual route derives the one-to-one correspondence assumption,
which often accompanies cognitive models. One route involves working with the
algebra’s operations (i.e. relations between elements); the other route forgets the
operations, which saves time in having to recompute results. We could say that
relation is dual to association. System and environment are considered broadly to
include (pairs of) subsystems within a larger system (e.g., attention and memory
within a cognitive system). From the standpoint of expertise, one can see the free-
forgetful adjunction as exploiting both domain-relevant relations and a reservoir
of learned associations.

One might wonder why we need adjunctions, rather than any pair of alter-
native routes. The claim is that dual-routes are also systematically, as opposed
to arbitrarily related. We have argued that underlying every instance of sys-
tematicity is a universal construction of some kind [17]. If, as claimed, that
dual-routes are systematically related, then adjunctions (which are another kind
of universal construction) provide the basis for a natural explanation. Category
theory affords general principles in the sense that constructions are typically
parametrized by some kind of object, e.g., a category. In this sense, adjoints are
a general principle: each of the three examples is based on the same construction
parametrized by a different pair of (adjoint) functors.

Although adjoints provide a systematic basis for dual routes, there remains
the question of assigning a cost/benefit to each route. As the experimental work
on the stimulus-response task suggested, choice of route depends on the task at
hand and prior learning [16]. One possibility is to incorporate information the-
oretic principles, such as a Kolmogorov complexity-based approach to universal
artificial intelligence [11]. See [22] for a category theory approach to Kolmogorov
complexity. In this way, the route selected is the one with the “shortest” program
able to produce the requisite response, which makes the collection of routes an
order. Ordered sets are categories with arrows as the order relations; universal
morphisms pertain to minimum elements. Though probabilistic models were not
considered here, categorical approaches to probability also exist (see, e.g., [2,9]).
Providing a categorical explanation for route selection, as well as applications
to other instances of dual-routes is a topic of further research.
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