
Exponential Generalizations from a Polynomial Number of Examples in a

Combinatorial Domain

Steven Phillipsy and Janet Wilesz

Departments of Computer Scienceyz and Psychologyz

The University of Queensland, QLD 4072 Australia.

Abstract

Combinatorial domains are of interest because they
allow a large repertoire of behaviours to be described
from a few relatively simple rules. However, the prob-
lem that combinatorial domains pose for machines
that learn from examples, such as Connectionist net-
works, is: how can target behaviour be adequately
learnt without a corresponding explosion in training
examples? We show, both theoretically (by using an
existing corollary [9]) and empirically, that a feedfor-
ward network can generalize to an order of examples
greater than that on which it was trained. Speci�cally,
for the encoding of N-tuples, where the example space
grows exponentially with N, only a polynomial number
of training examples was required to achieve a �xed
degree of accuracy over the entire domain.

Introduction

Acquiring appropriate behaviour over combinatorial
domains (such as language) is seen as particularly
di�cult for machines that learn by examples, yet
children acquire their �rst language with no formal
instruction (e�ectively, by example). The di�culty
such domains pose for Connectionist networks is in
obtaining a good coverage of the space (i.e. system-
atic behaviour) from a reasonable (no more than poly-
nomial) number of examples. It is this issue regard-
ing the necessary acquisition of systematic behaviour
that is seen as a weakness in the Connectionist ap-
proach to modeling cognition [5]. In this paper, we
demonstrate a network that generalizes over an ex-
ponential space of examples from only a polynomial
number of examples.

In section 1, the combinatorial learning domain
(auto-association of N-tuples) is described and pre-
vious work on this problem is reviewed. Here, the
problem is restated in terms of the probably approx-
imately correct (PAC) learning framework [11]. In

section 2, an existing result due to Shawe-Taylor and
Anthony [9] is applied to this problem to show that
in fact generalization to within a �xed degree of accu-
racy over this exponential space of patterns requires
at most a polynomial number of training examples.
This bound however is quite high and in section 3,
we show empirically that far fewer training examples
are needed. We also show that these examples can
be learnt in reasonable time. A discussion of these
results is given in section 4.

1 Auto-associating N-tuples

One of the simplest combinatorial domains is the
auto-association of N-tuples, where say, an object
represented as N instantiated variables, must be en-
coded and later recovered. The set of N-tuples S is de-
�ned (using Z-notation [10]) as: S = S1� : : :�SN =
fx1 : S1; : : : ;xN : SN � (x1; : : : ; xN)g, where Si is the
set of possible values at position i of the tuple. We
will consider the case where S1 = : : : = Sn. The auto-
association of N-tuples is simply the identity function
that maps every element in S to itself.

Brousse and Smolensky [3] studied the auto-
association of N-tuples (strings of length N) by a
feedforward network. They showed that from a �xed
number of training examples, the number of gen-
eralizations and virtual memories (patterns learnt
within �ve additional learning trials) grew exponen-
tially with the order of the tuple (see [3]; Figures 5 &
7, respectively). However, this growth did not match
the growth in the total number of patterns. In fact, a
plot of tuple order versus percentage of pattern space
for generalizations, and generalizations plus virtual
memories (reconstructed from [3], Figures 5 & 7),
shows, in both cases, exponential decreases with re-
spect to tuple order (Figure 1).

It is precisely this lack of generalization over such
structured domains (i.e. lack of systematic be-
haviour) that has lead to the strong criticism of the

0



Connectionist approach to cognitive modeling [5]. If
we regard systematic behaviour as almost equal ca-
pability over a particular domain, then we can restate
the problem in terms of PAC learning by asking two
questions. First, how many training examples are re-
quired to maintain a �xed degree of accuracy over
the entire space? (In other words, what is the sample
complexity?) Second, how long will it take to learn
these examples? (In other words, what is the time
complexity?) In the next section, we give a theoret-
ical upper bound on the sample complexity for this
problem.

0.001

0.01

0.1

1

10

100

2 3 4 5 6

P
er

ce
nt

ag
e 

of
 s

pa
ce

 c
or

re
ct

 (
%

)

Tuple order (n)

Generalizations
Generalizations plus Virtual memories

Figure 1: A log-linear plot of tuple order (N) versus
the number of generalized and generalized plus vir-
tual memories. The linear relationship indicates an
exponential decrease in percentage of space correct.
Reconstructed from Brousse & Smolensky, 1989; Fig-
ures 5 & 7.

2 Sample complexity

Before sample complexity can be calculated we must
describe the network that can represent the target
function. The auto-association of N-tuples can be
represented by a sequence of N k � l � k encoders in
parallel, where all N � k input units are completely
connected to all N � l hidden units that are com-
pletely connected to all N � k output units. The
sample complexity result of Baum and Haussler [2] is
not applicable in this case as multiple output units
are involved. However, there is a corollary by Shawe-
Taylor and Anthony [9] that, interestingly enough,
provides an upper bound on the number of training
examples independent of the number of output units.
It applies to feedforward networks of threshold units
with one hidden layer. Restated, it says:

Given an accuracy parameter � and a con-
�dence parameter �, for a feedforward net-
work with W variable weights and n com-
putational nodes, with probability greater
than 1� � the network will give correct out-
put with probability greater than 1�� on in-
puts drawn according to some distribution,
provided it correctly computes the function
on a sample (drawn from the same distribu-
tion) of size at least

m0 = m0(�; �) =
1

�(1�p
�)�

ln
�
1:3

�

�
+ 4(W + n)log2(en)ln

�
6

�

��

(Shawe-Taylor and Anthony, 1991: p116 )

where W is the number of variable weights into all
hidden units plus a single output unit, and n is the
number of hidden units. In our network of N k� l�k

encoders, n = N � l, and W = klN2 + 2lN + 1.
If we �x the accuracy and con�dence parameters,

and the number of possible values at each tuple po-
sition (k), then we can determine an upper bound
on sample complexity in terms of N, the tuple order.
Given that the number of input and output units is
N�k (i.e. one input and output unit for each instan-
tiation for each variable), and the number of hidden
units1 is N � dlog2ke, then the upper bound on the
maximum number of training examples required is

m0 = O

�
N2k log2k

�
log2

�
N log2k

�

��
= O(N2log2N )

Thus, the network only requires a polynomial num-
ber of training examples (to within a log factor). Pro-
vided the network can load (acquire the correct be-
haviour on) these examples it will, with high proba-
bly, correctly generalize to an exponential number of
future examples.

3 Empirical results

Given few assumptions regarding the function and
probability distribution, the upper bound in the pre-
vious section is necessarily quite high. The crossover
point where the size of the space of generalized exam-
ples begins to exceed the number of training examples
occurs with training sets of size on the order of tens
of thousands of examples. The result also assumes a
network that can load the training examples in rea-
sonable time.

1The minimum number of threshold units required by a
single encoder of k items is dlog2ke.



In this section we examine the sample complex-
ity and time complexity of a feedforward network of
sigmoidal units on this task. Although the result in
the previous section applied to networks of threshold
units, we hypothesize that sample complexity for a
feedforward network of sigmoidal units on the auto-
association of N-tuples is also polynomial.

Method For this study we examined the number
of training examples required to obtain at least 95%
accuracy (� < 0:05) with at least 99% con�dence (� <
0:01) on future examples for tuples of order N = 2 to
N = 10 (in increments of 2). The number of possible
values at each tuple position was set at ten (jSij =
k = 10).
Each network was trained using the standard back-

propagation algorithm [8] on pattern sets ranging
from 10 to 1500 patterns randomly generated from
a uniform distribution. Training continued until all
output units were on the right side of 0.5 for all train-
ing patterns. Testing was done on a further 1000
randomly generated examples from the same distri-
bution.
For each value of N and each training set size, �ve

trials were conducted. The number of test patterns
for which the output was on the right side of 0.5 for
all output units was recorded, from which the 99%
con�dence intervals could be calculated. For a par-
ticular N, training set size was increased until we were
at least 99% con�dent that the network would be at
least 95% correct on future examples. The training
set size which met this criterion was recorded.
In this simulation we used sigmoidal units (rather

than thresholds) as it reduces the number of nec-
essary hidden units2 to 2N . We also used a block
encoding for the representation of patterns at the
output layer (where half of each group of k units
are on consecutively, with wraparound, and the rest
o�) instead of the more common local encoding (one
unit on, the rest o�). This representation was cho-
sen as it dramatically improves the learning time of
the k � 2 � k encoder problem [1], which has pre-
viously been shown to be particularly di�cult for
backpropagation-style networks [7]. It does not, how-
ever, change the logical nature of the task.

Result A log-log plot of tuple order versus training
set size shows the training set grows much slower than
the total space of patterns (Figure 2). The linear
relationship indicates that growth in training set size
was a low-order polynomial whereas the growth in
total patterns is exponential.
A log-log plot of tuple order versus training time

2Two hidden units being the most required for a single en-
coder of sigmoidal units [6].

1
10

100
1000

10000

1e+06
1e+07
1e+08
1e+09
1e+10

2 3 4 5 6 7 8 9 10
Tuple order (N)

Training set
Total space

1e+05

N
um

be
r 

of
 p

at
te

rn
s

Figure 2: A log-log plot of tuple order (N) versus
number of training patterns and total patterns. The
linear relationship indicates sample complexity as a
low-order polynomial.

1e+09

1e+10

1e+11

1e+12

1e+13

1e+14

2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 w

ei
gh

t u
pd

at
es

Tuple order (N)

Figure 3: A log-log plot of tuple order (N) versus
mean number of total weight updates. The linear re-
lationship indicates time complexity as a polynomial
of N. The error bars indicate one standard deviation.

(total number of weight updates required to load all
training patterns) shows time increasing as a polyno-
mial of tuple order (Figure 3).

4 Discussion

Both theoretical and empirical results showed the
feedforward network generalizing to an exponential
number of examples from a polynomial number of
training examples. Provided the network can load the
training examples, it will generalize (in most cases)
to an exponential number of future examples. The
empirical results also demonstrated that the network
could learn the training examples in reasonable time.
A similar treatment can be applied to the situation

where the tuple order is �xed (say, 2), and the number
of instantiations (k) is varied. By applying the second



equation it can be seen that the sample complexity is
no more than O

�
k (log2k)2

�
. Empirically, we expect

this to be very close to linear.
This result, apart from demonstrating a general-

ization property of feedforward networks, also has an
implication for the Connectionist cognitive modeler.
A major criticism of Connectionist models of cogni-
tive behaviour is that they lack the necessary capacity
for systematic behaviour. The problem that system-
aticity poses for Connectionists is

: : :not to show that systematic cognitive ca-
pacities are possible given the assumptions
of a Connectionist architecture, but to ex-
plain how systematicity could be necessary {
how it could be a law that cognitive capac-
ities are systematic { given those assump-
tions.
(Fodor and McLaughlin, 1990: p202; em-
phasis in the original)

The results reported here suggest systematicity not
as a consequence of a pre-de�ned architectural bias,
but as a consequence of the systematic environment
over which the network optimizes its behaviour. The
network will learn to be as systematic, or unsystem-
atic, as the environment dictates. This then poses
the question: is the systematic nature of cognition
also a consequence of a systematic environment? If
the answer is yes, then this paper shows how Con-
nectionism can demonstrate the acquisition of sys-
tematic behaviour without the heavy reliance on in-
nate architectural biases. However, if the answer is
no, that is, people are systematic almost indepen-
dent of their experience, then Connectionist models
will require stronger architectural biases than previ-
ously used. What role the environment plays in the
acquisition of systematic behaviour, we leave as an
open question.

Acknowledgements

The authors would like to thank Simon Dennis, Peter
Bartlett and Paul Smolensky for helpful discussions,
and Paul Bakker for suggested improvements. This
research was supported by a UQPRA to the �rst au-
thor and an ARC grant to the second author.

References

[1] P Bakker, S Phillips, and J Wiles. The N-2-N
encoder: A matter of representation. In S Gie-
len and B Kappen, editors, ICANN'93: Proceed-
ings of the International Conference on Arti�-

cial Neural Networks, pages 554{557, London,
September 1993. Springer-Verlag.

[2] E B Baum and D Haussler. What size net
gives valid generalization? Neural Computation,
1:151{160, January 1989.

[3] O J Brousse and P Smolensky. Virtual mem-
ories and massive generalization in connection-
ist combinatorial learning. In Proceedings of the
11th Annual Conference of the Cognitive Sci-
ence Society, pages 380{387, Hillsdale, NJ, 1989.
Lawrence Erlbaum.

[4] J A Fodor and B P McLaughlin. Connectionism
and the problem of systematicity: Why Smolen-
sky's solution doesn't work. Cognition, 35:183{
204, 1990.

[5] J A Fodor and Z W Pylyshyn. Connectionism
and cognitive architecture: A critical analysis.
Cognition, 28:3{71, 1988.

[6] L Kruglyak. How to solve the N bit encoder
problem with just two hidden units. Neural
Computation, 2:399{401, 1990.

[7] R Lister. Visualizing weight dynamics in the
N-2-N encoder. In Proceedings of the IEEE In-
ternational Conference on Neural Networks, Pis-
cataway, NJ, 1993. IEEE Service Center.

[8] D E Rumelhart, G E Hinton, and R J
Williams. Learning Internal Representations by
Error Propagation, volume 1 of Computational
models of cognition and perception, chapter 8,
pages 319{362. MIT Press, Cambridge, MA,
1986.

[9] J Shawe-Taylor and M Anthony. Sample sizes for
multiple-output threshold networks. Network,
Computation in Neural Systems, 2(1):107{117,
February 1991.

[10] J M Spivey. The Z Notation: A reference man-
ual. Computer Science. Prentice Hall, New York,
NY, 1989.

[11] L G Valiant. A theory of the learnable.
Communications of the ACM, 27(11):1134{1142,
November 1984.


