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Abstract

Research on neural network learning within the super-
vised learning paradigm has focused on e�cient search
(or optimization) over the error surface. Less atten-
tion has been given to the e�ect representation has on
the error surface. One interesting question to ask is,
how does the choice of data points a�ect learning time
for a neural network on linearly separable problems.
This paper examines the issue of class representation
in the light of its a�ect on error surface. Error sur-
face plots visually suggest that an equal representation
of points for each class decreases learning time. This
hypothesis is supported by simulation results for a sim-
ple classi�cation problem.

1 Introduction

In the supervised learning paradigm learning can
be conceptualized as a search through weight space
(guided by an error surface) for a region where the
error is acceptably low. For backpropagation [10],
the most commonly used network learning algorithm,
search is performed by gradient descent on the error
surface. Although backpropagation is a generally ap-
plicable algorithm it is considered too slow for large
problems.
Improvements on backpropagation can be charac-

terized as either more e�cient traversal of an error
surface, or, use of a better error surface. Examples of
more e�cient traversal algorithms are the quadratic
surface approximators such as Quickprop [4] and con-
jugate gradient [3]. The error surface is determined in
part by the network's activation function, error func-
tion and architecture. These three aspects have also
been sources for improvement. Examples include, use
of tanh [12] and gaussian [11] activation functions;
cross-entropy [2] instead of sum of squares error func-
tion; and constructive/destructive algorithms such as
Cascade Correlation [5].
The error surface is also determined by the repre-

sentation of patterns (e.g., reachable targets [13]); the
choice of training patterns (e.g., boundary points [8]);
and the pattern selection strategy (e.g., Repeat Until

Bored [9], Selective Pattern Presentation [6], and Don't
Care margins [1]).

Issues regarding the bene�ts of representation are
somewhat intuitive. Statements like `ill-conditioned
ravines', although true in some sense do not give the
experimenter any better understanding of the e�ect
representation has on learning. What this paper pro-
poses is the judicious use of error surface plots to gain
stronger intuitions (through visualization) as to the
e�ect representation has on the error surface and con-
sequently on learning. This paper investigates how the
choice of data points representing the target classes af-
fects error surface and therefore learning time.

In the second section, error surfaces were plotted for
the two cases for a simple one-dimensional input space
classi�cation problem. From these plots an hypothesis
was put forward which was tested by simulation in
section 3. Section 4 discusses the implication of these
results and conclusions are �nally drawn.

2 Error surfaces

With all a networks complexity and exibility comes
the di�culty of understanding exactly what is
does. McClelland and Rumelhart in [7] used two-
dimensional error surface plots for a simple network to
show the location of local minima in the error surface.
Here three-dimensional error surfaces are plotted for a
simple classi�cation problem to demonstrate the e�ect
the distribution of data points representing classes has
on error surface.

Since error surface plots are limited to three-
dimensions (two for the weights and one for the error),
the classi�cation problem was simpli�ed to recognition
of positive real numbers encoded in a one-dimensional
input space by a network consisting of one unit with
bias and weighted input using tanh as the activation
function. The e�ect of class representation was ex-
amined on two extreme cases. The �rst case, called
1-N, containing one point from one class and N points
from the other is representative of distributions heav-
ily biased towards one of the classes. The second case,
called N-N, represents a more even distribution of data
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points. For the 1-N case the following data set was
used

f(�0:1)! 0; f(0:1)! 1; f(1:0)! 1; f(2:0)! 1.
For the N-N case,

f(�2:0)! 0; f(�1:0)! 0; f(�0:1)! 0;
f(�0:1)! 0; f(0:1)! 1; f(1:0)! 1.

The error surfaces resulting from the two cases is
shown in �gures 1 and 2 respectively.
The error surface for the 1-N case consisted of four

ridges and a ravine. The solution space (region of
weight space where all inputs are correctly classi�ed)
lies in the ravine. What is interesting about the ridges
is their faces in general point away from the solution
space. A search based on local gradient information
is likely to move away from the solution space to the
at region before heading back in the direction of the
solution. A gradient descent technique which moves
through the weight space in proportion to the gradi-
ent (like backpropagation) will take considerable time
to �nd its way back to the solution space. Comparing
this to the second case the e�ect of even distribution
between classes is evident. The previous at region
now includes additional ridges pointing in the direc-
tion of the solution space.
A visualization of the two error surfaces was sug-

gestive of the following hypothesis: learning from a
more even between-class distribution of training points
is faster than a biased between-class distribution. A
simple simulation was conducted to support this hy-
pothesis.

3 Simulation

The error surface plots although con�ned to a one-
dimensional input space were qualitative visual de-
scriptions of the e�ect between-class distribution of
training points has on the shape of the error surface.
To gain support for the hypothesis arising from the
plots and its applicability in general to classi�cation
over N-dimensional input domains, simulations were
run on a network trained to recognize the �rst 1024
natural numbers encoded as 10 bit binary numbers.
The input space was 10-dimensional with three allow-
able values (-1, 0, 1) along each dimension. Given an
input pattern the network was required to determine
whether it belonged to the subset of natural numbers.
The network was trained on two di�erent data sets.

The �rst set contained the smallest number of points
necessary to learn correct classi�cation1 (1-N data
set). This is an example of an uneven between-class
distribution of points in N-dimensional space. The sec-

1The smallest set contains the 10 boundary points encoded

with a one and nine zeros as representatives of the class of nat-

urals plus the zero vector representing a boundary point from

the other class.

ond set contained an almost equal number of boundary
points from both classes and is termed the N-N data
set 2. This is an example of a relatively even between-
class distribution of points.
The network was initialized with random weights

between -1 and 1 and trained with a learning rate of
0.1 and a momentum of 0.0 and 0.5. Training stopped
when the network output was on the right side of 0.5.
Weights were updated at the end of each epoch (i.e.,
after each pattern was presented). Table 1 shows the
mean and standard deviation over 20 trials of the num-
ber of pattern presentations before successful recogni-
tion of all patterns.

Table 1: Mean(StDev) training time over 20 trials

Data set Momentum=0.0 Momentum=0.5
1-N 9639(1913) 4513(908)
N-N 444(38) 248(39)

4 Discussion

The error surface plots suggested learning would be
faster when both classes where equally represented.
Mean training time for the two data sets with and
without momentum supported this prediction. Simply
using a momentumterm although improving the abso-
lute learning time for each data set did not change the
relationship between the mean learning time for the
two data sets. With momentum at 0.0 and 0.5, mean
learning times were signi�cantly faster, t(38) = 20.9,
p < .001 and t(38) = 19.7, p < .001, respectively, with
the N-N data set. This suggests that although mo-
mentum decreases the time spent moving across at
regions it does not avoid them.
A network was trained twice, once on each of the

two data sets starting from the same set of weights.
The average sum of squares error per pattern versus
number of training patterns presented was plotted for
each training run (�gure 3). In both cases most of the
average error was reduced quickly, however in the N-N
case error continued to steadily decrease whereas in the
1-N case further reduction in error was very slow con-
�rming the presence of a at region. The error surface
plots suggest that the search moved into the at region
because of the direction of the ridges. These ridges are
a consequence of the training patterns. An uneven dis-
tribution of training patterns results in ridges in the
error surface which when added together point away
from the solution space toward a at region of the error
surface.

2There are actually N+1 points in one class as the zero point

is also included



The implication of this result is that classes should
have roughly equal representation in terms of the num-
ber of points from the input space. The result is not
speci�c to the optimization technique. It simply ap-
plies to the error surface being searched. Any tech-
nique which uses local gradient information should
show relative improvement when using evenly dis-
tributed data.

5 Conclusion

Error surface plots although limited in the number of
dimensions that can be shown at once, if used judi-
ciously, visually provide strong intuitions as to net-
work learning behaviour. In this paper, error surface
plots were used to gain an understanding of the e�ect
choice of data points representing the target classes
has on error surface and consequently learning time.
The error surface plots suggested learning time would
improve if the target classes were equally represented.
This hypothesis was supported by a simulation exper-
iment.
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Figure 1 3-D plot of error surface for the 1-N data set. Plan view of suface showing the solution

space (shaded region), direction of slopes amd the predominant direction around the center of weight space.
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Figure 2 3-D plot of error surface for the N-N data set. Plan view of suface showing the solution

space (shaded region) , direction of slopes amd the predominant direction around the center of weight space.
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Figure 3 Plot of average pattern versus number of training patterns.
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