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ABSTRACT

Standard feedforward and recurrent networks cannot support strong systematicity when

constituents are presented as local input/output vectors (Phillips, 1998). To explain system-

aticity connectionists must either: (1) develop alternative models; or (2) justify the assump-

tion of similar (non-local) constituent representations prior to the learning task. I show that

the second commonly presumed option cannot account for systematicity, in general. This op-

tion, termed �rst-order connectionism, relies upon established spatial relationships between

common-class constituents to account for systematic generalization: Inferences (functions)

learned over, e.g., cats extend systematically to dogs by virtue of both being nouns with

similar internal representations so that the function learned to make inferences employing

one simultaneously has the capacity to make inferences employing the other. But, humans

generalize beyond common-class constituents. Cross-category generalization (e.g., inferences

that require treating mango as a colour, rather than a fruit) makes having had the neces-

sary common context to learn similar constituent representations highly unlikely. At best,

the constituent similarity proposal encodes for one binary relationship between any two con-

stituents, at any one time. It cannot account for inferences, such as transverse patterning that

require identifying and applying one of many possible binary constituent relationships that

is contingent on a third constituent (i.e., ternary relationship). Connectionists are, therefore,

left with the �rst option which amounts to developing models with the symbol-like capacity

to explicitly represent constituent relations independent of constituent contents, such as in

tensor-related models. However, rather just simply implementing symbol systems, I suggest

reconciling connectionist and classical frameworks to overcome their individual limitations.

Key words. Systematicity, constituent, similarity, novelty, relation, connectionism, classi-

cism, transverse patterning
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INTRODUCTION

Networks generalize. But does the degree of generalization account for, even in principle,

the sort of generalization evident in humans? Generalization is the distribution of functional

capacity over system states. Since generalization is a function of speci�c computational

mechanisms, di�erent architectures exhibit characteristically di�erent types of generalization.

Therefore, a careful characterization of the distribution of cognitive behaviours in humans

can provide insight into the underlying cognitive architecture.

For example, in general, association and relation based architectures di�er on how they

access constituents within a complex representation. Associative systems are basically uni-

directional: constituent A permits retrieval of constituent B, but not the reverse; whereas

relational systems are omni-directional: reverse access is also implied (Phillips, Halford, &

Wilson, 1995). In an associative system, addition may be represented by uni-directional links

(e.g., 1+2 ! 3). The sum of two numbers is retrieved by matching the left side of the link

to retrieve the right side constituent. But, in this state, subtraction cannot be accomplished

without creating extra links (e.g, 3-2 ! 1). In a relational system, both addition and

subtraction are accomplished from the same internal state that represents, in this case,

the triple R+(1; 2; 3): R+(1; 2; ?) ! 3; and R+(?; 2; 3) ! 1. The associative architecture

distributes the capacities for addition and subtraction across two di�erent representational

states; whereas these capacities are localized to the same state in the relational architecture.

Suppose, for the purpose of this example, it is never the case that subjects with the capacity

to perform addition do not have the capacity to perform subtraction. Such an observation

would rule out the associative, but not the relational architecture.

This example, though illustrative, captures the essence of the systematicity argument

Fodor and Pylyshyn (1988) raised against connectionism. They argued that while human

cognitive capacity is organized around groups of \related" behaviours (i.e., capability over
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any one behaviour is systematicity related to any other behaviour within the same group),

connectionist models are indi�erent to this organization. Since the basic resources and

processes of connectionist networks are characteristically nodes for representing concepts

and activation 
ow along weighted connections for making inferences, a network can be

equally con�gured so as to capture, or not the relevant distribution of cognitive behaviours.

Thus, according to Fodor and Pylyshyn, connectionism does not explain the systematicity

property of human cognition.

Acceptance of their argument depends on what one takes to be a group of related be-

haviours; and what one takes to be the basic components of a connectionist cognitive archi-

tecture. Clearly, regarding a connectionist architecture as a collection of nodes and links is

too �ne a characterization, since it a�ords no aggregation of behaviours over states - each

state uniquely realizes each behaviour. When a learning function is considered as part of the

architecture, there are numerous examples of networks exhibiting generalization - multiple

inference capacities acquired from a single state (weight) change. The issue is whether the

sort of generalization exhibited by these networks corresponds to that of humans, which can

only be addressed by characterization of generalization in humans.

Hadley (1994a) introduced the notion of strong systematicity to characterize general-

ization in language. A network is said to demonstrate strong systematicity if it processes

sentences with constituents (words) in novel syntactic positions and at novel levels of em-

bedding (e.g., Mary loves John and Mary knows Sue loves John, where John only appeared

in the agent position in the training set). When processing includes determining a word's

semantic role (e.g., agent, patient, etc) it is termed strong semantic systematicity (Hadley &

Hayward, 1997).1

By this characterization, networks demonstrating signi�cant degrees of generalization in

1Here, both terms are called strong systematicity, since the results presented apply equally.
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cognitive domains, for example, the feedforward network (Brousse, 1991), and simple re-

current network (Elman, 1990) did not appear to satisfy strong systematicity. A review

of the training procedures in six models suggested that in all likelihood generalization was

achieved from a training set containing all constituents in all allowable positions (Hadley,

1994a). While this observation does not constitute a proof, subsequent simulation and

analysis showed that feedforward and a variety of recurrent networks (including the sim-

ple recurrent network) cannot demonstrate strong systematicity under local input/output

vector representations2 for constituents (Phillips, 1995, 1998). Essentially, the weights re-

sponsible for the construction/extraction of constituents in di�erent positions are trained

independently, necessitating a training set that includes each constituent in each position.

(Closely related to strong systematicity is the universal generalization criterion, requiring

generalization to constituents not appearing anywhere in the training set. Marcus, 1998a,

1998b, devised this criterion also from a characterization of language learning, and showed

it cannot be satis�ed by feedforward and simple recurrent networks under local constituent

representations.3)

Although strong systematicity and universality results (above) show feedforward and re-

current networks do not support the same distribution of behaviours as humans, even in

principle,4 these conclusions assume local input/output constituents representations. As

explained in Phillips (1998), while some constituents may share similarity by virtue of be-

longing to common categories (e.g., John and Mary may share a common internal represen-

tation because they are both known proper nouns), it cannot be just by virtue of surface

similarity (i.e., sensory appearance) that two constituents share similar input/output rep-

resentations. In particular, constituents belonging to multiple categories can have identical

2That is, one component with value 1 and the rest zero (e.g., 1000, 0100, etc).
3Universal generalization requires at least as many correct test cases as strong systematicity, but with

fewer training examples (e.g., John no longer appears in the training set). Therefore, the lack of strong
systematicity results in Phillips (1995, 1998) also apply to universal generalization.

4The problem is architectural and not one of parameter tuning.
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surface features, but their category membership and therefore their purported similarity to

other constituents can only be deduced from context. If constituent similarity is not suf-

�cient to account for systematicity, then explaining systematicity requires demonstrating

\appropriate" generalization using local constituent representations as a control measure.

The connectionist is, therefore, left with two choices in explaining systematicity, either:

(1) develop alternative networks capable of demonstrating strong systematicity (or, univer-

sal generalization) over local input/output constituent representations; or (2) explain why

similar (non-local) constituent representations, su�cient for systematicity, are available to

these networks prior to the learning task. The goal of this paper is to seriously evaluate the

second option.

Constituent similarity assumption

A number of connectionists have made use of the idea that generalization could be facil-

itated by prior learning on related tasks. For example, Chalmers (1990) trained a recursive

auto-associative memory (RAAM) network (Pollack, 1990) to auto-associate active and pas-

sive sentences. The internal (hidden unit) representations of active and passive sentences

generated by the trained RAAM were then used as the inputs and target outputs for a

feedforward network on a passive-to-active sentence transformation task. Similarly, Chris-

man (1991) used internal representations of English and Spanish sentences as the basis for

a Spanish-to-English translation task.

Niklasson and van Gelder (1994) argued that this idea of using previously learned internal

representations provides for an, in principle, explanation of strong systematicity. Rather than

using arbitrary input/output representations a network makes use of internal constituent

representations learned from other tasks. Constituents learned in similar contexts would

result in similar internal representations. If the relevant constituents are su�ciently similar,
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generalization on new tasks can be achieved without requiring training of all constituents

in all positions. In this way, a network demonstrates strong systematicity relative to a

target task. (Niklasson & Boden, 1999, also applied the same idea to claim strong semantic

systematicity on an attribute inheritance task).

To demonstrate their point, a feedforward network was trained to make transformations

of logical formulas (e.g., P ! Q ,� P _ Q). The input/output representations for each

formula were taken from the hidden unit activations of a RAAM trained to encode/decode

each formula. Constituents (e.g., P , Q, !, etc) were presented to the trained RAAM and

the hidden unit activation after the last constituent was presented was taken as the encoding

for that formula. So, for example, a RAAM encodes the logical expression P ! Q as: 1.

[P ][!] 7�! [P !]; and 2. [P !][Q] 7�! [P ! Q], where [:][:] 7�! [:] is a mapping from input

and previous hidden vectors to a new hidden vector. The RAAM encodes expression � P _Q

as: 1. [�][P ] 7�! [� P ]; 2. [� P ][_] 7�! [� P_]; and 3. [� P_][Q] 7�! [� P _ Q]. The

feedforward network maps the encoded representation [P ! Q] to the encoded representation

of its transformation [� P _ Q]. The RAAM then decodes the transformation into its

constituents. The feedforward network was tested on formulas containing a novel constituent

S, for which it produced the correct transformation. Thus, Niklasson and van Gelder claimed

a demonstration of strong systematicity.5

The claim for strong systematicity is, however, contentious. While the simulation re-

sults are not contested, what is problematic is the cognitive plausibility of their training

procedure. Hadley (1994b) raised several problems, including (among others): the use of

syntactic markers to denote the role of all trained and novel constituents; exhaustive training

on all other constituents, including all of their combinations; and the fortuitous encoding

5Since S did not appear anywhere in either transformation or encoding/decoding training sets, it is also
a claim for satisfying Marcus's universal generalization criterion.
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of S, permitting its internal representation to lie between known constituents P and Q.6

The extensive use of such additional information casts doubts on whether their \in princi-

ple" demonstration of strong systematicity could ever accommodate a cognitively plausible

explanation, leading Hadley to conclude that it was a borderline case.

Borderline cases are, by de�nition, indecisive. On one hand, they suggest further re�ne-

ment will establish their correctness. On the other hand, building upon a faulty foundation

makes subsequent work futile. The main purpose of this paper is to determine whether the

principle of prior constituent similarity, established by pre-task learning or otherwise, can

account for the sorts of systematic generalizations found in human cognition. There are

two main results (next two sections, respectively): (1) While constituent similarity might

account for strong (syntactic) systematicity over regularly novel constituents by learning in

previously similar contexts, it is highly unlikely that the necessary similar contexts occur for

radically novel constituents. (2) Furthermore, constituent similarity, at best, can only encode

one binary relation between any two constituents at any one time. It cannot address gener-

alization based on a single relation drawn from multiple possible binary relations, contingent

on a third constituent (i.e., ternary relation). A more recent proposal to include context

similarity is also investigated. The implications of these results are discussed in the context

of connectionist architectures that explicitly represent and process constituent relations.

CONSTITUENT SIMILARITY AND WITHIN

CONSTITUENT CLASS RELATIONS

Similarity is a 
uid concept. The similarity of the same pair of objects or events can vary

between subjects within the same context; and within subjects across di�erent contexts. But,

at least for the purposes of connectionist modeling the concept is clear. Similarity between

6Their result is, at �rst, surprising since weights from the input unit encoding S were never trained, and
so kept their initial random values. But, see also Phillips (1998) for an explanation.
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two constituents refers to some measure of the \di�erence" between the constituents' vector

representations. The dot product is a common measure, but it need not be the only one. In

what follows, I will refer to constituent similarity as any prior spatial relationship between

two constituents. The e�ect that similarity has on learning will depend on the activation

function. A combination of similar constituents and activation function are chosen so as to

maximize the likelihood of demonstrating systematicity. In the event that systematicity is

not demonstrated, it is therefore unlikely to be demonstration by some other combination.

After tracing a series of problems with this example and suggested replies, I argue that it

cannot sustain a cognitively plausible explanation for systematicity.

Chair-colour example: Category-based similarity

In the target chair-colour inference task, subjects learn (know) that if John painted the

chair red, then The colour of the chair is red. Assuming subjects can make this inference, it

is reasonable to expect that they can make all the related inferences involving other colours,

such as green and blue, even though it is unlikely that subjects would have been asked these

speci�c inferences before. Constituents green and blue are called regularly novel constituents

because they are new to the target task, but belong to the same category. A possible common

pretext for learning the colours may simply be naming them (e.g., This colour is red).

The target task has the form: John painted the chair X. What colour is the chair? X.

Assuming a basic capacity to segment input into words, the inference has two parts: (1)

context - What colour is the chair? John painted the chair; and (2) constituent - X. The

network is required to map the context and constituent to the same constituent (Figure

1(a)). In this case, the network makes use of internal representations for the constituents

learned from a pre-task, say, colour-identi�cation (Figure 1(b)).

Suppose there are N colours for which the appropriate internal representations were
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learned. How many training examples on the target task are required to establish gen-

eralization? The number of training patterns depends on the number of weights in the

context/constituent-to-constituent mapping, which in turn depends on the number of units

representing context and constituent vectors. More compact (similar) internal representa-

tions for colour implies fewer units and weights, and therefore greater generalization. As-

suming m context and n constituent units, the total number of weights is (m + n)n. Using

linear activation functions, n2 +mn training patterns are required to con�gure weights to

guarantee generalization to the remaining N � n2 +mn patterns.7 Thus, in principle, pro-

vided the number of internal units representing context and constituent is small, the network

will demonstrate strong systematicity (and universal generalization).

Figure 1 is a characterization of this sort of generalization. In the pre-task, there is no

prior similarity between constituents. Constituents activate di�erent regions in the input

space, and are therefore mapped by di�erent input-to-hidden and hidden-to-output weights.

Thus, there is no generalization during the pre-task: learning that red stands for the colour

red, does not say anything about the colour blue. However, pre-task training results in

similar internal representations for the various colours: the same group of hidden units

become active in the presence of a colour. Therefore, when this representation is used as the

input/output for the target task, the same group of weights are being trained for all colours

- training on some colours in the target task implies generalization to the other colours.

Insert Figure 1 about here

7In a linear system, parameters (in this case, weights) are uniquely determinable when there is at least
one independent equation (generated by a training pattern) for each unknown parameter.
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Problem 1: Cross-category generalization

The capacity to generalize depends on their being an appropriate pre-task that learns

similar representations. In the case of colours, one can envisage that learning the names of

colours (e.g., This colour is blue; etc) forms the basis for similarity. But, the presumption of

common prior context does not so easily �t with radically novel constituents (i.e., constituents

taken from other categories). It is less likely that one would have also learnt, say, mango as

an instance of colour. Therefore, it is less likely for there to be any similarity between the

internal representations for mango and the standard colours.

If there is no previously established similarity then there is no chance of generalization

to such examples. Suppose the internal representation of mango does not lie on any of

the dimensions for colour. That is, the internal representations for colours are activations

over other units (Figure 2(b)). Now, while it is reasonable to expect the weights linking

the corresponding input/output units for this constituent may have been trained on a prior

categorization task (say, This fruit is a mango), there would be no such training for the new

target task context (i.e., John painted the chair ...). Since the weights are untrained, no

generalization is expected (Figure 2(a)).

Insert Figure 2 about here

Reply 1: Super-category similarity

The reply to this problem is to note that while the speci�c prior contexts of these con-

stituents di�er: one identifying a colour category and the other fruit, they both share the

common abstract context of object identi�cation. Even though two constituents may di�er in

their base category, they ultimately share a common super-category. Thus, the same in prin-
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ciple argument for strong systematicity based on categories also applies to super-categories.

Problem 2: Non-category generalization

Ultimately, the appeal to prior training supposes every possible constituent in place of X

has appeared in some, albeit remotely related, pre-task. Yet, it is still possible to generalize

over constituents for which subjects have no prior experience: nonsense and foreign words

are two examples. Indeed, it is this capacity that motivated Marcus's universality criterion

and subsequent rejection of feedforward and recurrent networks.

For example, a perfectly meaningful yet unexperienced constituent occurs in the example

John painted the chair aka. English-only speaking subjects would have no di�culty inferring

the chair's colour, despite not knowing that aka is also known as red, in Japanese. There

is no case of prior experience with this constituent, and therefore no grounds for category

based similarity. As with the mango example, constituents represented on di�erent units

require additional training.

Reply 2: Constituent's constituent similarity

Perhaps the constituent similarity solution could be saved by noting that even nonsense

and foreign words consist of recognizable components (e.g., common graphemes). In the pre-

vious two problems, the constituent was considered atomic, consisting of no other structure

for the purposes of the target task (i.e., it is not by virtue of the word green being composed

of the letters g, r, e and n that makes it stand in for the concept green). But, in the case of

foreign words, one is still able operate on them without their semantic content, by syntactic

decomposition. While one may not know the word aka, it is still composed upon known

graphemes. By this reading, it is the constituent's constituents that share similarity, and so

become the basis of generalization.
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Problem 3: One-shot generalization

If one regards this type of constituent as itself compositional, then the same question

of generalization that was applied at the level of word combinations (i.e., sentences) can

also be applied at the level of grapheme combinations (i.e., words). In other words, how

many grapheme combinations are necessary to achieve generalization to nonsense and foreign

words? If nonsense and foreign words are represented over a di�erent vector space from

regular words (because they are treated syntactically, not semantically), then at least one

word per dimension is required, for the same reasons as for regular words in the chair-colour

task. The picture that this revision paints is one where subjects generalize to nonsense and

foreign words only after training on other nonsense and foreign words in the same position.

There is no chance of one-shot generalization over meaningless words.

Reply 3.1: Empirical issue

A �nal recourse one might o�er then, as Niklasson and van Gelder do in their defence

against Hadley's (1994b) criticisms, is to maintain that, in principle, constituent similarity

can account for systematicity and more precise degrees of generalization are empirical issues.

That is to say, the problem lies not with the principle per se, but aligning the principle to

the relevant to be acquired data through a suitable implementation. But, as will be shown

in the next section, there are generalizations for which this explanation cannot account for

even in principle. However, before examining these cases, there is one other more recent

alternative to be considered.

Reply 3.2: Contextual similarity

Boden and Niklasson (in press) have extended constituent similarity to be in
uenced

by contextual similarity. Contextual similarity makes use of information in the current
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context as a means of updating the representation for the novel constituent, rather than

just relying on its representation learned from past contexts. Thus, the radical constituent

aka is understood as a colour because of its surrounding context John painted the chair

aka, not because of any established similarity to other colours. The architecture for this

proposal uses the same combination of encoder and transformation networks, but error from

the transformation network is also used to update weights in the encoder network.

Boden and Niklasson trained an encoder to learn internal representations for constituents

Ernie and Bo as instances of bird and �sh, respectively. A transformation network encoded

facts Ernie can 
y and Bo cannot 
y by weights that mapped representations of Ernie and

Bo (from the encoder network) to true and false, respectively. The two networks were given

new fact Jack can 
y, containing novel constituent Jack. Initially, weights that mapped

the external representation of Jack (a unique local vector) to its internal representation

in the encoder network were random, resulting in erroneous output when mapped by the

transformation network where the target output was true. When this error was reduced by

backpropagation from the transformation network to the encoder network the representation

for Jack became similar to Ernie (see Boden & Niklasson, in press, Figure 11).

Although they did not test the method on novel inferences, one can see how the method

might be applied here. An encoder network learns internal representations for the standard

colours. An assertion network (i.e., another RAAM) learns statements such as John painted

the chair red and The colour of the chair is red using the representations for colours gen-

erated by the encoder network. A transformation network learns inferences between these

internally represented assertions so that John painted the chair X maps to The colour of the

chair is X. For radical constituent aka, the assertion that John painted the chair aka is the

current context provided by the assertion network. The error generated in encoding and de-

coding this assertion is used to update the encoder/decoder weights responsible for mapping
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between the external and internal representations of aka. In doing so, it is supposed that

the representation for aka becomes similar to the known colours, in much the same way as

for the Boden and Niklasson example. Once error has been reduced, and consequently, simi-

larity established, the new internal representation for aka can be used by the transformation

network to infer the colour of the chair.

Whether or not this proposal can be extended to such inferences is not the concern

here. Rather, of interest is the underlying principle. While generalization depended on

the radical constituent being similar to normal constituents, similarity was achieved by

current contextual information. It had nothing to do with the constituent's prior internal

representation, which was in fact just random, or arbitrary.8 It suggests that constituent

similarity is not the crucial property that permits generalization, in this case. A point to

which I will return later.

Summary

Why can I make inferences about constituents in novel contexts? The constituent sim-

ilarity proposal says such constituents inherit similar representations to other constituents

through learning in other common contexts. Dog is a noun learned from prior experience and

so attains all the appropriate inferences a�orded to nouns via its representational similarity

to those nouns.

While this proposal seems intuitively plausible for regularly novel words, it becomes in-

creasingly implausible for more radically novel words because the necessary common contexts

for learning the required similarities are less likely to co-occur. The picture that emerges

from the analysis of this proposal is that it relies upon relationships within a class (set) of

constituents, while ignoring critical relationships between constituent classes.

8In general, it did not depend on its external representation either. When the non-zero dimension was
randomly set between 0 and 1, the encoder still learned a similar representation to Ernie in 87% of 30 trials.
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CONSTITUENT SIMILARITY AND BETWEEN

CONSTITUENT CLASS RELATIONS

The chair-colour task is an instance of a general class of identity functions I(X) = X. The

constituent similarity based solution attains generalization because the spatial relationship

between any two constituents xi and xj in the domain is the same spatial relationship for the

same two constituents in the co-domain. Thus, the basis for this solution is a common within

constituent domain/co-domain (i.e., X) relationship. But, logically, the identity function is

a relationship between a domain and a co-domain set of constituents. It just so happens that

these two relationships coincide for this task. In tasks where these two relationships do not

coincide, as exempli�ed in this section, constituent similarity cannot be relied upon as the

basis for generalization.

Transverse patterning is an example of a stimulus-response task that depends on between

constituent relations. A task instance, or problem set consists of three unique patterns (e.g.,

strings, shapes, etc) A, B and C, such that A predicts B; B predicts C; and C predicts A.

Once the transverse patterning task structure has been learned from the �rst few problem

sets, subjects only require one of the three stimulus-response pairs to predict the remaining

two, for any new transverse patterning problem set.

There has been some recent debate as to whether subjects are in fact systematic over such

logically structured tasks. van Gelder and Niklasson (1994) referred to data showing that

even scientists do not always correctly use logical inference rules, such as modus tollens [i.e.,

(P implies Q) and (not Q), therefore (not P )]. Therefore, models of cognitive architecture

are not required to be as systematic as these symbolic/logic rules imply. However, this

apparent lack of systematicity may merely re
ect interference from other sources. Under

controlled conditions, subjects consistently make inferences implied by the underlying logical

rules (Halford, Bain, Maybery, & Andrews, 1998). Indeed, such tasks are ideal tests for
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systematicity in connectionist networks (Phillips & Halford, 1997; Phillips, 1999). (See, also,

Bringsjorg, Noel, & Bringsjord, 1998, who showed that such logical errors are overcome with

education, and therefore do not imply cognitive limitations.) The assumption that subjects

can make the stated inferences for transverse patterning is reasonable when one considers

that it is a simpler task (three constituents and one binary relationship) than the task used

in Halford et al. (1998), which consisted of four constituents and two binary relationships,

where subjects demonstrated perfect generalization by the fourth task instance.9

The constituent similarity proposal says that subjects systematically make correct in-

ferences because prior learning on shapes has established suitable similarity between their

internal (vector) representations. But for transverse patterning this explanation cannot

be the case. Suppose constituents are taken from a general set of shapes, and the �rst

stimulus-response pair for a new transverse patterning task is triangle-square. So that trans-

verse patterning is directly comparable with the chair-colour task of the previous section,

it is rewritten as Associate triangle ! square (i.e., there is a context part followed by a

constituent, predicting another constituent). The function mapping shapes to shapes is up-

dated in accordance with this stimulus-response pair. Now, suppose the second stimulus is

a square. According to the constituent similarity proposal, a network might infer the equiv-

alent of, for example, a square is like a triangle (squares have one-more-side than triangles)

just as a pentagon is like a square (pentagons have one-more-side than squares). Therefore,

the predicted response is pentagon. But, clearly, the response depends on the yet unpre-

sented third shape. If, instead, a circle was the third constituent, then square should predict

circle. It is at this point the constituent similarity proposal clearly fails. A priori, for any

measurement function, by de�nition, there is only one spatial relationship between any two

constituents in any one state. There are not su�cient spatial relationships within the one

9Astur and Sutherland (1998) reported human subjects solved single transfer pattern problem sets. How-
ever, they did not examine generalization across problem sets.

17



state to accommodate the other possible responses that are contingent on the third stimulus.

Alternatively, multiple units could make available di�erent measurement functions simulta-

neously. But, that only introduces the new problem of deciding which measurement function

should be relied upon. Of course, subjects can use the fact that circle is the only remaining

constituent, and therefore the correct response. However, this knowledge cannot come from

observing the �rst stimulus-response pair and any prior spatial relationship between the �rst

and second stimuli. To accommodate the second response, either: the stimulus-to-response

function must be constructed (updated) so as to map square to circle, and not pentagon,

in the case where the necessary input similarity between triangle and square was not al-

ready in place. Or, the appropriate stimulus-to-response function must be selected using

the information that square maps to circle, in the case where all possible measure functions

were already in place. Either way, construction and selection require at least two training

examples to learn the task, whereas only one example is required by subjects. Just as in

the hypothetical association-based architecture (see Introduction), capacity is distributed

across more than one representational state, whereas it is localized to one state in humans.

The problem can be summed up by saying that transverse patterning consists of ternary

relational information (Halford, 1993), whereas constituent similarity spatially encodes at

best only binary relational information. Therefore, constituent similarity is ruled out as the

principle underlying systematicity.

The implications of this analysis apply to connectionist models derived from the standard

function approximation framework: That is, models whose state (usually determined by

learning) encodes knowledge as a function from an input space to an output space, and whose

generalizations on subsequent (test) inputs in that state are based on their similarity to prior

(training) inputs relative to the encoded function (i.e., by extrapolation, or interpolation of

the encoded function to test inputs). As such, the implications apply to feedforward and
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recurrent networks trained and tested this way. The implications apply generally, since no

assumptions were made regarding the input/output representations, connectivity, number

of hidden units or layers, or the activation/error functions. Thus, it covers the majority of

connectionist models used to date.

However, it was assumed that weights remained �xed during testing. Therefore, this

analysis does not necessarily apply to those networks whose states are permitted to change

on test input. But, as we shall see, these networks do not achieve systematicity via the

constituent similarity principle. They rely on what might be called relation approximation.

CONTEXT (RELATIONAL) SIMILARITY AND BETWEEN

CONSTITUENT CLASS RELATIONS

Boden and Niklasson's context similarity proposal di�ers from constituent similarity in

that the current context is permitted to update the internal representation of a novel con-

stituent before that constituent is used in a novel inference. This permits the novel con-

stituent to be aligned to a known constituent before making an inference. The purpose of

this section is to investigate how context similarity could also be applied to the transverse

patterning task to see what implications this might have for constituent similarity. However,

this will not be a defence of context similarity. Consequently, I will present a solution to

transverse patterning, but I will not argue whether this solution is reliably learnable, or even

cognitively plausible.

For transverse patterning, two networks are assumed: an auto-associative three-layered

feedforward encoder/decoder network for mapping task elements A, B and C to internal

representations, and recovering them; and a two-layered feedforward transformation net-

work for representing the transverse patterning inferences (i.e., A predicts B, etc). The

encoder/decoder network has two hidden units,10 therefore the transformation network has

10Assuming sigmoid activation functions, two units are necessary and su�cient.
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two input and two output units (Figure 3(a)).11

Assuming unique local input/output vectors for A, B and C, the input-to-hidden weights

must encode these elements as hidden unit activation vectors Ah, Bh and Ch (respectively)

so that two constraints are satis�ed: (1) They must be decodable by the hidden-to-output

weights; and (2) they must be transformable by the two-layered network so that encoded

input Ah maps to encoded output Bh, Bh maps to Ch, and Ch maps to Ah. Geometrically,

the transformation is satis�ed by a rotation of the input space onto the output space by

120�. This rotation is realized by the weight matrix (�1

2
�
p
3

2

p
3

2

1

2
), assuming for simplicity

no biases and the identity activation function at the output units.12 Suppose the transfor-

mation network has learned these, or similar weights from previous task instances. If the

encoder/decoder learns an internal representation as depicted in Figure 3(b), generalization

to the remaining two inferences is possible. With the transformation weights in place, the

single training transformation A! B generates two training points for the encoder/decoder,

indicated by solid squares labeled A (left activation space) and B(A) (right space). In addi-

tion, two more training points B and C (left space) are generated, because mapping A! B

is learned in the context of there being only three elements in each task instance. Hyper-

planes are arranged to partition the space according to these four training points. In this

case, when given the two test inferences, B and C are correctly mapped (by rotation) to the

regions encoding C and A (dashed arrows), respectively.

However, even with the minimum number of hidden units, there is still considerable rep-

resentational freedom so that even with suitable transformation weights there is an arrange-

ment of hyperplanes that satis�es the encoding constraint and the single training inference

constraint, but does not correctly infer one of the test cases (see Figure 3(c)).

11There is only one encoder/decoder, but two are shown to re
ect the state before and after transformation.
12Sigmoids could also be used with the e�ect of rotating and shrinking the output space.
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Insert Figure 3 about here

The point, though, is not whether context similarity can be made to solve this task, but

what it says about the constituent similarity proposal. The constituent representations are

almost arbitrary,13 and generalization does not depend on whatever prior internal represen-

tation they may have had. Therefore, the extension to include context similarity may work,

but not because of any contribution from constituent similarity.

The similarity at work here is between the transformation weight matrices for the di�erent

task instances. These weights must be the same or similar so that knowledge acquired in

earlier task instances can be applied to facilitate generalization. These weights encode the

relational structure of the task, independent of speci�c task elements. As such, this sort of

architecture is derived from what could be called relation approximation. The properties of

relational knowledge have been de�ned in Halford, Wilson, and Phillips (1998, sect. 2.2),

and some of their implications for connectionist models have been analyzed in Phillips and

Halford (1997) and Phillips (1999).14 The problem with �rst-order connectionism is not that

it relies on similarity, but that it relies on constituent similarity.

DISCUSSION

Within the same task paradigm (context/constituent-to-constituent inference), the con-

stituent similarity proposal has gone from apparently plausible for systematic generalization

across natural contexts to hopelessly inadequate for cross-category or category irrelevant

generalizations. Two important problems arose with the constituent similarity proposal.

First, it presupposes an unlikely amount of prior training to establish appropriate similarity

13Up to the point that they must be su�ciently distinct so as not to be transformed to the same region.
14For example, while this technique of weight sharing between subnetworks permits some degree of transfer

between isomorphic task instances consisting of unique elements (see, e.g., Hinton, 1990), other mechanisms,
such as enforcing one-to-one correspondence (alignment) between task and structure elements are needed to
achieve degrees of transfer closer to subjects.
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between constituents to guarantee generalization. Second, even when all possible spatial

relationships between constituents are in place prior to the task, a single training example

does not provide su�cient information to identify the right spatial relationship to achieve

generalization. Constituent similarity alone fails to support the requisite degree of system-

aticity. Systematicity may be achieved by augmenting it with context similarity. But this

achievement is at the expense of abdicating responsibility for generalization. In this regard,

constituent similarity succeeds by not relying on constituent similarity.

The critical di�erence between failure and success lies in the relationships between con-

stituents. In tasks that make use of the same within category constituent relationship in

pre-tasks and target tasks, as in the chair-colour example for regularly novel constituents,

constituent similarity (i.e., prior spatial relationships between constituents) may su�ce to

explain systematic generalization. But, in tasks involving multiple possible constituent rela-

tionships, as in the case of transverse patterning, constituent similarity does not su�ce, since

at best it can only code for binary relationships whereas ternary relationships are required.

Implicit and explicit relations

The problem of using spatial relationships to encode logical relationships makes contact

with Kirsh's (1990) distinction between implicit and explicit information: Information is

explicitly represented when the time required to access that information is constant in the

size of the input, otherwise it is implicit. By this de�nition, the oddness or evenness of

a number is explicitly represented since it only requires checking the number's last digit

regardless of the size of the number (i.e., time is a constant function of the number of digits).

But, primeness is implicitly represented since the number of possible factors, and therefore

the number of steps, increases with the size of the number. Analogously, spatial relationships

between constituents encode logical relationships implicitly because more training examples
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are required to access those relationships. (Strictly, constant complexity means the resource

[e.g., time, training examples] does not change, to within a constant factor, with the size

of the function [problem]. But here I simply mean that operating on explicit information

requires less resources than implicit information, since the size of the task does not change.)

Coding, or labeling is a common approach to making information explicit. Primeness,

for example, can be made explicit by simply appending the letter `p' to prime numbers only.

Thus, regardless of the size of the number, one only need check the last character. Similarly,

relationships between constituents are made explicit by a�xing a name for that relationship.

One only need check the name of the relation regardless of the number constituents that may

partake in that relation. This technique is the basis for explicit representation of relations

in a di�erent class of connectionist architectures.

Connectionist alternatives: Explicit representation of relations

Tasks requiring operation over multiple possible binary relations, or equivalently ternary

relations, are not isolated exceptions. In fact, according to one theory, they constitute a

critical stage in cognitive development (Halford, 1993; Halford et al., 1998). Children before

the age of �ve, said to be limited to binary relations, have great di�culty on tasks requiring

ternary relations, such as transitive inference. Thus, they form an important and signi�cant

part of the cognitive repetoir, and connectionist architectures must be capable of modeling

them if they are to claim a complete foundation for cognition.

Halford, Wilson, Guo, Gayler, Wiles, and Stewart (1994) showed how relationships be-

tween constituents are made explicit (i.e., readily accessible) using tensor networks developed

by Smolensky (1990). In a tensor network, primeness is made explicit by binding (taking the

outer product of) vectors representing numbers and a vector representing the unary relation

is-prime. Prime numbers belong to the set: Prime(N) = f2, 3, 5, ...g. They are represented
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by the rank two tensor (matrix): TP = ~P 
 ~2 + ~P 
 ~3 + : : :, where 
 is the outer product

operator. Primeness is explicit in that it is determined by a one step inner product (�)

operation: TP � ~7 = ~P , under the condition of orthonormality between constituents 2, 3,

etc. Similar procedures apply to higher arity relations (e.g., binary, ternary), and have been

used as the basis for analogical reasoning. For example, simple analogies of the form A is

to B as C is to ? rely on explicitly identifying and applying a common relationship,15 as in

Mare is to foal as cat is to ? (kitten). Assuming a rank three tensor that explicitly links

the relationship Mother-of ( ~M) to the relevant constituents: T = ~M 
 ~m
 ~f + ~M 
 ~c
 ~k,

the missing value is retrieved in a two step process: 1. T � ~m� ~f = ~M ; 2. ~M � ~c� T = ~k

(Halford et al., 1994).

The explicit representation of constituent relations also appears in other cognitive mod-

els of, for example, analogy (Hummel & Holyoak, 1997) and reasoning (Shastri & Ajjana-

gadde, 1993). In particular, Hadley and Hayward (1997) proposed an alternative Hebbian-

based learning model that demonstrated strong semantic systematicity. Constituent relations

are not represented by spatial relationships between constituents in these models. In fact,

they generally work with mutually orthogonal constituents. Instead, relations are explicitly

represented by distinct units, together with mechanisms for binding/accessing constituents

to/from their relations.

Reconciliation and the future of connectionism

Explicitly representing relations is not the �nal word on the issue of representation.

Just providing for the same sort of property as symbol systems (i.e., arbitrary binding)

suggests inheriting the same sorts of problems. If classicism accounts for capacity, then

it has less to say about performance, as all instances of a common structure are regarded

equal. Yet, the generalizations that are made under speci�c conditions can be a�ected by

15Also referred to as relational similarity (Goldstone, Medin, & Genter, 1991).
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such structure-independent factors as frequency e�ects, which connectionism is better placed

to explain. So, while sensitivity to context in connectionist models undergeneralizes on the

issue of capacity, sensitivity to structure in classical models overgeneralizes on the issue of

performance. Networks that provide for arbitrary binding, in a sense, remove the blinkers

only to be blinded by the light.

However, the apparent paradox only arises when one considers the two principles (con-

nectionist similarity and classicist structure sensitivity) as being in con
ict, rather than

cooperation. The possibility of a mixed connectionist-classicist theory has been suggested

by Harnad (1990), and also acknowledged by Fodor (1997). And, a number of connection-

ists have experimented with integrating neural and symbolic models. See, for example, the

collection by Sun and Alexandre (1997), though, none of these models speci�cally addresses

the problem of systematicity. While it is beyond the scope of this paper to address the impli-

cations of mixed theories (and models), which raise new issues (e.g., under what conditions

are either applied?), it is still useful to suggest what such a model might look like for the

connectionist.

As argued, connectionist representations must have both context-sensitive and context-

independent components.16 The context-sensitive component, as exempli�ed by feedforward

and recurrent networks, identi�es the relevant context-dependent structure, or relation pred-

icate. The context-independent component, as exempli�ed by tensor and related networks

is used to make arbitrary bindings between the identi�ed context and novel constituents.

The apparent paradox is resolved for radically novel constituents/relations by relying on

normal17 constituents and their relationships to carry the relevant contextual information.

Novel constituents are bound to structural elements regardless. So long as there is su�-

cient contextual information carried by the other constituents, a network can demonstrate

16Boden and Niklasson (in press) have also argued for these two components.
17Constituents and their relationships appearing in their usual contexts (e.g., mango as a fruit).
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strong systematicity/universal generalization to unseen constituents. One example is the in-

tegration of tensor and recurrent networks (Phillips, 1994),18 another is a type of structured

hebbian network (Hadley & Hayward, 1997).

Representation combines context-sensitive and context-independent components. The

relationship between these two components is illustrated for the normal and radical colours

(Figure 4). Normal colour constituents (e.g., red, blue) are learned as colours. Thus, their

presence triggers the colour predicate. This predicate remains active as the context for

subsequent context-independent processing. The radical constituent mango does not itself

trigger the predicate, since it was never learned as an instance of a colour, in contrast to

the constituent similarity proposal. However, colour remains active by the prior appearance

of normal colours to provide a link to mango via the binding units. It is at this point the

network breaks away from reliance on constituent spatial similarity. Any vector value for

mango is su�cient for binding, and unbinding. By the property of outer and inner products:

~C 
 ~m (binding); and ~C � ~C 
 ~m = ~m (unbinding), any novel constituent is linkable to

colour, provided the colour predicate vector (~C) is orthonormal to other possible predicates.

Importantly, though, mango or other novel constituent is only bound (interpreted) as a colour

in the present context, instantiated by previous normal colour constituents. In principle,

prior context restricts arbitrary binding of novel constituents.

Insert Figure 4 about here

Of course, then one must explain why normal constituents trigger the right predicate/structure

and not others, since constituents normally participate in many possible structures, in any

general sense.19 But the problem of choosing one structure from many must be less severe

18Though this network does not address embedding.
19Models of analogy only address this problem in highly circumscribed domains.
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than the problem of having no structure to choose from at all.

Put simply, connectionist networks require additional units that explicitly encode re-

lational knowledge. This claim converges with Clark and Thornton's (1997) arguments

that solving type-2 (i.e., relational) problems requires some form of input representational

redescription (Karmilo�-Smith, 1992). They tentatively suggested incremental learning (El-

man, 1993): the idea of incrementally increasing the number of training patterns, or retain-

able weights. But, the approach I have been critiquing here shares common roots with this

idea. Consequently, redescription cannot just be recoding constituent similarities for the

reasons already put forth. Additional sources for recoding are needed.

CONCLUSION

The main purpose of this paper was to evaluate the constituent similarity proposal. The

main conclusion is that while constituent similarity may support some types of generalization,

it cannot account for systematicity in its entirety, irrespective of the type of constituent

representation used (e.g., local, distributed). Firstly, humans generalize to radically novel

constituents that are highly unlikely to have the necessary similarity to known constituents.

Secondly, constituent similarity at best encodes binary spatial relationships, which do not

su�ce for tasks involving ternary relationships, as exempli�ed in the transverse patterning

task. This work extends the results of Phillips (1995, 1998) and Marcus (1998a, 1998b)

from the case of local constituent input/output vectors to include the case of distributed

constituent input/output vectors.

For some (classicists), these conclusions may seem like stating the obvious. But that is

because the classicist framework presupposes independence between constituent represen-

tation and syntactic relations. Connectionism, generally, does not make this assumption.

Without a clear correspondence between the two frameworks, implications from one do not
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immediately carry over to the other. Therefore, to make the limitation of constituent simi-

larity obvious the same connectionist paradigm was used in taking the proposal to its logical

extension where it clearly failed.20 While these points may appear obvious (in hindsight),

they are not trivial: Any network that relies on constituent (�rst order) similarity will ulti-

mately fail on logically structured tasks, or what one might term relational (second-order)

similarity, where the similarity is not between constituents, but between the relations over

them (or, what Shepard & Chipman, 1970, called second-order isomorphism).

But, making use of relational similarity requires, by de�nition, the explicit representation

of those relations. At this point, standard function approximation style connectionism21 gives

way to a more symbol/relation-approximation style connectionism that explicitly represents

constituent relations permitting the arbitrary binding of variables to values. However, to only

implement a symbol system is to likely inherit the same sorts of problems. I have suggested

that the most promising way forward for connectionism is by integration of context-sensitive

(e.g., feedforward) networks and context-insensitive (e.g., tensor) networks. The critical

question then becomes how.

It is perhaps ironic that advocates of explicit representations in cognitive development

(Karmilo�-Smith, 1992) should consider the sorts of connectionist models that rely on, as

shown here, implicit representations (Elman, Bates, Johnson, Karmilo�-Smith, Parisi, &

Plunkett, 1996). But, just as Karmilo�-Smith has argued for explicit representation in

cognitive development, I have been arguing for explicit representations in the development

of connectionist cognitive models. Just like the �ve-year-olds, connectionist models are in

for a new stage of development.

20By contrast, for English past tense acquisition, where the same basic principle is clouded by a more
complex domain, the issue is still being debated (see Marslen-Wilson & Tyler, 1998, for a recent review).

21See also Hadley (1999) for very general arguments against universal function approximators (e.g., feed-
forward networks) as models of higher cognition.
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Figure Captions

Figure 1. A network for learning the chair-colour task (a), using internal representations for

colour constituents learned from task (b).

Figure 2. A network for learning the chair-colour task (a), using internal representations for

fruit constituents learned from task (b). Dashed connections indicate untrained weights.

Figure 3 Encoder/decoder and transformation networks for transverse patterning (a). Hid-

den unit activations (squares) and output unit hyperplanes (thick lines) for the encoder/decoder

network resulting in no generalization errors (b); and one generalization error (c). Solid

squares and arrows indicate training points and transformations; empty squares and dashed

arrows indicate test points and transformations, respectively. Star indicates test inference

error.

Figure 4. Scheme for integrating context-sensitive and context-independent network com-

ponents. Shared circles indicate currently active units. Thin lines indicate connections;

medium and thick lines indicate previous and current activation 
ow, respectively.
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