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A conjunctive feature similarity effect for visual search

Yuji Takeda, Steven Phillips, & Takatsune Kumada
National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan

Traditional models of visual search assume interitem similarity effects arise from within each feature
dimension independently of other dimensions. In the present study, we examine whether distractor–
distractor effects also depend on feature conjunctions (i.e., whether feature conjunctions form a sep-
arate “feature” dimension that influences interitem similarity). Spatial frequency and orientation
feature dimensions were used to generate distractors. In the bound condition, the number of distrac-
tors sharing the same conjunction of features was higher than that in the unbound condition, but the
sharing of features within frequency and orientation dimensions was the same across conditions. The
results showed that the target was found more efficiently in the bound than in the unbound condition,
indicating that distractor–distractor similarity is also influenced by conjunctive representations.

Since the early 1980s, the nature of attention in
visual search has been extensively investigated by
a large number of researchers. It is generally
accepted that search efficiency is affected by
two types of similarity: target–distractor simi-
larity and distractor–distractor similarity.
Wolfe, Cave, and Franzel (1989) demonstrated
that a target could be found more efficiently
when the target shared only one feature with
distractors than when two features were shared
in a triple conjunction search task. This is the
effect of the target–distractor similarity. On
the other hand, the effect of the distractor–
distractor similarity was reported by Duncan
and Humphreys (1989). In their study, observers
were required to look for a T among Ls.
They found that search performance improved

when distractors were displayed with the same
orientation compared to when they were
rotated randomly. In summary, search efficiency
increased with decreasing target–distractor simi-
larity and with increasing distractor–distractor
similarity.

Guided search model (GSM) is a prominent
model of visual search, which can explain both
the effects of target–distractor similarity and
distractor–distractor similarity on search efficiency
(Cave & Wolfe, 1990; Wolfe, 1994; Wolfe et al.,
1989). GSM assumed that the visual input is
decomposed through several feature dimensions,
such as colour, orientation, or motion, and that
target–distractor and distractor–distractor simi-
larity are calculated in each feature dimension
separately. An activation map, which guides

PQJE206220 TECHSET COMPOSITION LTD, SALISBURY, U.K. 10/26/2006

Correspondence should be addressed to Y. Takeda, Cognition and Action Group, Institute for Human Science and Biomedical

Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1–1–1 Higashi,

Tsukuba City, 305–8566 Ibaraki, Japan. E-mail: yuji-takeda@aist.go.jp

# 0000 The Experimental Psychology Society 1
http://www.psypress.com/qjep DOI:10.1080/17470210601063142

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY

0000, 00 (0), 1–5



observer’s attention, is composed of the linear
summation of similarities in all feature dimen-
sions. A key concept relevant to the present
study is that similarities are defined in each
feature dimension. This concept is succeeded in
many recent models of visual search (e.g., Itti &
Koch, 2000; Nothdurft, 2000). Although the find-
ings in neurophysiological studies support the
account that features are handled by separate
modules in early visual processing (Zeki, 2001,
for review), there is no evidence to suggest that
similarities are calculated only by such modules
with regard to visual search. Rather, some studies
have proposed that combinations of two feature
dimensions, such as motion and form (McLeod,
Driver, & Crisp, 1998)Q1 , or binocular disparity
and colour (Nakayama & Silverman, 1986), are
processed preattentively, in a way that affects
search efficiency. These findings suggest the possi-
bility that similarity effects in visual search are not
only influenced by the relationships between
display item features within each feature dimen-
sion, but also by the relationships between
display item feature conjunctions.

In the present study, we examined whether
distractor–distractor similarity in visual search also
depends on conjunctive features in a way that
cannot be decomposed into a linear combination
of feature components, as generally assumed in
models of visual search. Feature dimensions of
spatial frequency and orientation were used to
construct distractor items. Each feature dimension
had three levels, and all feature levels appeared
with equal probability. Two types of distractor
sets were produced by manipulating feature com-
binations. One distractor set consisted of nine
variations (3 spatial frequencies � 3 orientations).
The other distractor set consisted of three
variations (three levels of spatial frequency and
three levels of orientation were used, but their
combination was fixed). In this case, GSM, as
with many other models, predicts no difference
in search efficiency for the two types of
distractor set, because the variation of features
in each dimension is the same. On the other
hand, if distractor–distractor similarity is also
based on the representation of bound features,

distractor–distractor similarity and therefore
search efficiency would be greater in the latter
condition.

Method

Participants
A total of 8 graduate or undergraduate students
with normal or corrected-to-normal vision partici-
pated as paid volunteers in this experiment.

Apparatus and stimuli
Stimuli were displayed on a 17-in. colour monitor
(IIYAMA A702, with 1,024 � 768-pixel resol-
ution) controlled by an IBM PC AT-compatible
computer (EPSON Pro2500).

Gabor patches, which subtended 2.08 of visual
angle, were used as search items. The spatial fre-
quency of these items was 1, 2, 3, or 4 cycle/deg,
and the orientation was 08, 458, 908, or 1358. A
total of 10 or 19 items were presented at one of
64 possible locations (an 8 � 8 invisible matrix
subtended 20.68 � 20.68) with 0.58 of jitter (see
Figure 1). All stimuli were presented on a grey
background.

Design
There were three main variables in this exper-
iment. The first variable was target-present
versus target-absent trials. In 50% of trials, a
target was presented in the display. The target
was a Gabor patch, with a frequency of 3 cycles/
deg and an orientation of 1358 (tilted 458 to the
right of vertical). The second variable was search
set size. Set sizes of 10 and 19 were used with
equal probability. The third variable was
distractor–distractor similarity. The distractors
were Gabor patches, with a frequency of 1, 2, or
4 cycles/deg and an orientation of 08, 458, or
908. In the bound condition, a fixed combination
of frequency and orientation features was used
(see Figure 1). In the unbound condition, the
distractor set consisted of all combinations of
frequency and orientation—namely, nine types of
distractor appeared in the display. Conditions
were balanced and randomly ordered within each
block.
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Procedure
The participants observed the stimuli at a viewing
distance of 58 cm in a semidark room. Each trial
began with the presentation of a fixation cross
(“ þ ”, 0.328 � 0.328) at the centre of the
display. After 1,000 ms, the fixation cross was
removed, and the search display was presented.
Participants were required to respond as quickly
and accurately as possible to indicate whether or
not the display contained the target by pressing
one of two keys with their right or left index
finger. All stimuli vanished after the participant’s
response, and there was a 667-ms blank period
between trials. No feedback was given to the
participants.

Each participant performed 1 practice block
and 24 experimental blocks. Each block consisted
of 48 trials: 2 (target-present and target-absent
trials) � 2 (set sizes of 10 and 19) � 2 (bound
and unbound conditions) � 6 repetition.

Results

Incorrect response trials, or trials with reaction
times (RTs) longer than three standard deviations

from the mean of each condition (1.6%), were
excluded from RT analysis. The mean correct
RTs and error rates as a function of set size are
shown in Figure 2. The search slopes (i.e., the
RT/set size gradients) were 18.2 ms/item
(bound) and 27.4 ms/item (unbound) for target-
present trials and 59.5 ms/item (bound) and
76.2 ms/item (unbound) for target-absent trials.
These slopes indicate that participants could not
find a target efficiently in the present search task.

RTs were subjected to a three-way analysis of
variance (ANOVA) with target (present vs.
absent), set size (10 vs. 19), and similarity
(bound vs. unbound) as the main terms. All
main effects were significant, F(1, 7) ¼ 75.7, p
, .0001, for target; F(1, 7) ¼ 157.4, p , .0001,
for set size; F(1, 7) ¼ 124.9, p , .0001, for simi-
larity. In addition, the two-way interactions of
Target � Set Size, F(1, 7) ¼ 36.5, p , .001,
Target � Similarity, F(1, 7) ¼ 53.1, p , .001,
and Set Size � Similarity, F(1, 7) ¼ 52.4, p ,

.001, were significant, but the three-way inter-
action was not significant, F(1, 7) ¼ 0.69, p ¼

.43. The results indicate that search in the bound
condition was easier than that in the unbound

Figure 1. Example search stimuli for bound (left) and unbound (right) conditions. The target was a Gabor patch, with a frequency of 3 cycles/

deg and an orientation of 135 degrees. Distractor Sets 1, 2, or 3 were used in the bound condition, and Distractor Set 4 was used in the

unbound condition.
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condition, and this advantage for the bound
condition increased with set size. Furthermore,
the advantage was larger in the target-absent
trials than in the target-present trials.

Error rates were also subjected to a three-way
ANOVA with the same factors as those in the
RT analysis. Only the main effect of target was
significant, F(1, 7) ¼ 235.9, p , .0001. This indi-
cates that error rates were larger in the target-
present trials than in the target-absent trials.

Discussion

The results show that interitem similarity is also
influenced by second-order (i.e., conjunctive) fea-
tures. The target was found more efficiently in the
bound than in the unbound condition. Yet, the
number of distractors sharing features with other
distractors along each dimension was the same

for each condition. That is, each distractor item
shared its frequency (or orientation) feature with
2 other distractors when 9 distractors were pre-
sented and with 5 other distractors when 18 dis-
tractors were presented. Therefore, the advantage
for the bound condition is not explained on the
basis of a linear combination of dimension-specific
feature similarities—similarity over first-order
feature maps, as generally assumed in visual
search models.

Our result has implications for theories/
models of visual search that rely on perceptual
grouping to explain distractor–distractor simi-
larity effects in visual search. Like attention
engagement theory (Duncan & Humphreys,
1989), we acknowledge that distractor–distractor
similarity causes attention to these items to be
suppressed. Computationally, distractors sharing
the same features may be grouped and rejected
at once (Grossberg, Mingolla, & Ross, 1994).
However, in contrast to these and related expla-
nations (Bundasen, 1998 Q2; Logan, 1996; Wolfe
et al. 1989), we suggest that conjunctions of fea-
tures form an additional dimension that contrib-
utes to interitem similarity. Previous work has
focused on the effects of first-order similarity
by manipulating the sharing of distractor features
along individual dimensions (e.g., orientation)
without independently manipulating the sharing
of feature conjunctions (e.g., colour–orientation).
First-order similarity cannot account for the con-
junctive feature effect observed here, because it
was held constant across experiment and baseline
conditions. Models that traditionally rely on
first-order feature maps only (e.g., GSM) or
those that do not consider second-order group-
ing (e.g., Duncan & Humphreys, 1989;
Grossberg et al., 1994) would need to be
extended, possibly by treating conjunctive fea-
tures as an additional dimension, to address
this sort of data.

A model based on concurrent feature and con-
junctive feature maps is in stark contrast to stage
models, where features and conjunctions have dis-
tinct computational roles, such as those derived
from feature integration theory (Treisman &
Gelade, 1980). Yet, recent studies in visual

Figure 2. Mean reaction time (ms) as a function of set size for

target-present (filled) and target-absent (open) trials in the bound

(triangle) and unbound (circle) conditions. The histogram shows

error rates for target-present bound (black), target-absent bound

(dark grey), target-absent bound (light grey), and target-absent

unbound (white) trials. Error bars in both graphs indicate 1

standard error.
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categorization lend some support to the existence
of early (i.e., preattentive) feature binding pro-
cesses (e.g., Li, VanRullen, Koch, & Perona,
2002; Rousselet, Fabre-Thorpe, & Thorpe,
2002). In these studies, observers determined
whether a natural scene contained an instance of
a target category (e.g., animal). Rapid categoriz-
ation may just be afforded by well-trained
neurons that fire only when a stimulus lies
within a specific region of feature space (cf. feed-
forward connectionist networks; McClelland,
Rumelhart, & Group, 1986). However, such pro-
cesses may not be involved here, because they
would be insensitive to the relationships between
distractor stimuli, which lie outside the region
that defines the target. Conjunctive feature
similarity adds another twist to an account of
visual search efficiency, although further work is
needed to ascertain exactly what role conjunctive
features play with respect to this effect.
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