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a  b  s  t  r  a  c  t

Acquisition  of  relational  knowledge  is a  core  process  in  cognitive
development.  Relational  knowledge  is  dynamic  and flexible,
entails structure-consistent  mappings  between  representations,
has properties  of  compositionality  and  systematicity,  and  depends
on  binding  in  working  memory.  We  review  three  types  of com-
putational  models  relevant  to relational  knowledge.  The  first
are  formal  models  of  structural  commonalities  among  concepts,
including  some  that  differ  in surface  characteristics.  The  second  is
a  self-modifying  production  system  model  of  the  role  of relational
knowledge  in  strategy  acquisition.  The  third  comprises  symbolic
connectionist  models  that  implement  key  properties  of  relational
cognition.  These  models  are  complemented  by  the  semantic
cognition  model  that shows  how  some  developmentally  impor-
tant  concept  acquisition  mechanisms  can  emerge  from  learning
input–output  functions.  We  conclude  that  no  one  type  of  model
fully suffices  as an  account  of  cognitive  development  but  there  is
potential  for  future  development,  including  hybrid  models  that
could  meet  most  or all of the  criteria.
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The computational models outlined in this article are designed to implement a theory of develop-
ment of higher cognitive processes that are characterised as symbolic or analytic and are distinguished
by requiring “. . . access to a single, capacity-limited central working memory resource, . . .”  (Evans,
2008, p. 270). We  propose that relational knowledge provides a conceptual basis for higher cognition
(Gentner, 2010; Halford, Wilson, & Phillips, 2010), so our models are designed to implement rela-
tional processing. Although our theory is wide ranging, we  use transitive inference as our reference
task because it is basic to all inference (James, 1890) and there exists a large, high-quality database on
it. We  distinguish implicit and explicit transitive inference (Goel, 2007); only the latter entails rela-
tional representations formed in working memory (Halford, Maybery, & Bain, 1986; Maybery, Bain, &
Halford, 1986).

Symbolic processes require a structured operating system to give them meaning (Newell, 1980),
just as the natural numbers 1, 2, . . . 5, . . . 9, . . . are given meaning initially by counting and
later by other operations such as addition and multiplication. The requirement for structure is
consistent with a number of theoretical positions, including gestalt (Wertheimer, 1945), Piagetian
developmental (Piaget, 1950), and psychometric (Spearman, 1923). Relations are the essence of
structure because, mathematically, a structure is a set of elements on which one or more rela-
tions is defined. The theory of relational knowledge has now been applied to analogy (Gentner,
2010; Gick & Holyoak, 1980; Kokinov, Holyoak, & Gentner, 2009), reasoning (see especially men-
tal models theory; Goodwin & Johnson-Laird, 2005; Johnson-Laird, 2005), categorisation (Zielinski,
Goodwin, & Halford, 2010) and cognitive complexity (Halford, Wilson, & Phillips, 1998). Relational
knowledge processes also play a role in language acquisition (Gentner, 2010; Golinkoff & Hirsh-
Pasek, 2008; Naigles, Hoff, & Vear, 2009; Tomasello & Brandt, 2009). For example, the representation
of verbs includes an argument structure with inherently relational slots such as agent, patient,
instrument.

Relational knowledge has partly replaced logic as a basis for human reasoning. Logic was  once
considered as constituting the laws of thought (Boole, 1854). Piaget (1950) proposed development
through progressively more elaborate psycho-logics as the basis of cognitive development. However,
the difficulty of accounting for thought on the basis of logic gave rise to alternatives including infor-
mation processing models (Anderson, 1991; Andrews & Halford, 2011), heuristics (Kahneman, Slovic,
& Tversky, 1982), mental models (Goodwin & Johnson-Laird, 2005; Johnson-Laird, 2005), Bayesian
rationality (Oaksford & Chater, 2007), and analogy (Gentner, 2010; Halford, 1993). Relational knowl-
edge has been proposed as an alternative to logic in accounting for cognitive development (Andrews &
Halford, 2011; Halford & Andrews, 2004). Relational knowledge can support probabilistic inferences
(Halford et al., 2010) and is therefore consistent with Bayesian approaches (Oaksford & Chater, 2007),
but the criterion for relational knowledge is representation of relations with the properties outlined
later.

Cognitive complexity can be accounted for by the number of entities related in a single representa-
tion (Halford, Bain, Maybery, & Andrews, 1998; Halford, Wilson, et al., 1998). The relational complexity
(RC) metric has been applied to cognitive development (Halford, 1993), logical inference (Zielinski
et al., 2010), mathematics education (English & Halford, 1995), human factors (Boag, Neal, Loft, &
Halford, 2006), language (Andrews, Birney, & Halford, 2006), and cognitive neuroscience (Christoff
& Owen, 2006; Kroger et al., 2002). The RC metric has also made it possible to predict previously
unrecognised cognitive capacities, as in the balance scale (Halford, Andrews, Dalton, Boag, & Zielinski,
2002). Halford, Cowan, and Andrews (2007) present a method for analysis of relational complexity
that provides details of assessment criteria.

A correspondence across tasks of equal structural complexity exists, even when they belong to
different domains. Andrews and Halford (2002) assessed transitivity, hierarchical classification, class
inclusion, cardinality and sentence comprehension in children aged 3–8 years. In each case, tasks
of higher relational complexity were more difficult and attained at a later age than closely matched
tasks of lower relational complexity. Relational complexity accounted for 80% of age-related vari-
ance in fluid intelligence. Tasks of equal relational complexity constituted an equivalence class that
transcended task variables and content domains. The structural similarity of transitivity and class
inclusion tasks is portrayed in Fig. 1. Thus, relational complexity defines a deep structural property of
cognitive processes. By contrast, Piagetian tasks have generally been found not to be equivalent across
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Fig. 1. Basic structure of transitivity and class inclusion.

domains, even though Piaget’s specific observations were replicated (Halford & Andrews, 2006). This
deep structural property is one of the phenomena that we  model.

The concept of relational knowledge has been elaborated to the point where it arguably provides
the foundation for higher cognition (Halford et al., 2010). We  also have proposed that the associative –
relational distinction corresponds to the implicit–explicit distinction (Karmiloff-Smith, 1992) that has
been of considerable importance in cognitive development (Phillips, Halford, & Wilson, 1995). There-
fore we propose that the nature of relational knowledge, and the processes by which it is acquired,
are at the core of cognitive development. In this article we  review our attempts to model these
processes.

1. Core properties of relational knowledge

We first outline the properties of relational knowledge that we have attempted to model.

1.1. Structure-consistent mapping between representations

This property is a fundamental one (Halford, 1993; Halford & Andrews, 2004). It is the basis of
analogy (Gentner, 2010; Holyoak & Thagard, 1989) and has been identified as the factor that best
distinguishes human cognition from that of other animals (Penn, Holyoak, & Povinelli, 2008). Quinian
bootstrapping, proposed by Carey (2009) as a major transition process, arguably entails structure-
consistent mapping in some form.

Structure-consistent mapping between representations has long been known to be influenced
by the capacity to represent complex relations (Halford & Wilson, 1980). Children aged 4–6 years
were taught structures consisting of movements between the corners of a square array. They were
then required to map  the structure into an isomorphic transfer task, and the amount of information
required was  manipulated. Only the 5–6-year-olds could make mappings based on more complex
information.

A formal model of structured knowledge was  developed based on category theory, a branch of
mathematics that defines structures in terms of transformations rather than objects. We  consider
it in more detail later with respect to subsequent work by Phillips, Wilson, and Halford (2009) but,
as applied to the task used by Halford and Wilson (1980),  it means that the structure is composed
of movements between elements, rather than the elements themselves. It therefore corresponds to
acquisition of an abstract concept from specific examples, a phenomenon investigated in subsequent
studies (Halford, Bain, et al., 1998; Halford & Busby, 2007).
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1.2. Binding between a relation symbol and arguments

A relational representation is a binding between a relation symbol and a set of ordered tuples
of elements, corresponding to the arguments of the relation. Thus the relation larger than can be
represented as a binding between the symbol larger than and ordered pairs representing instances
where one entity is larger than another, such as “whale larger than fish”, “ship larger than canoe.”
These instances of this relation are written as “larger than{. . . (whale, fish), . . .,  (ship, canoe), . . .}.”
The symbol larger than distinguishes the type of link between the entities (e.g., whale and fish are
related by size-difference in this context, but might share other relationships, such as same phylum).
Therefore, relational instances are more than associative links (Halford et al., 2010). The symbol might
not be a conventional element such as a word, and in some cases it might be an internal stimulus that
has become a symbol by binding to relational instances. For example, after noting that certain entities
are larger than others, an infant might adopt a gesture such as raising the hand to indicate what is
different about pairs of elements of varying size. Propositions correspond to relational instances, so
“larger than(whale, fish)” is a proposition and is an instance of the larger than relation.

1.3. Dynamic and flexible representations

This property of relational knowledge is illustrated by explicit transitivity (Goel, 2007; Halford,
1993). For example, premises Tom is taller than Peter and Bob is taller than Tom can be integrated into
the ordered triple Bob taller than Tom taller than Peter from which the inference Bob taller than Peter can
be read off (Andrews & Halford, 2002). This integration can be performed by mapping to an ordering
schema such as top-above-middle-above-bottom, which functions as an analog of tallest-middle-
shortest (Halford, 1993; Halford et al., 2010, Fig. 2A). There is a structural correspondence between
top-above-middle-above-bottom and Bob-taller-than-Tom-taller-than-Peter (e.g., above consistently
corresponds to taller than) and the validity of the mapping is determined by relations between
elements, rather than by semantic cues. Explicit transitive inference is based on dynamic mapping
to a schema, a type of coordinate system, in working memory. The representations may  be fuzzy
(Brainerd & Reyna, 2001) but the relational properties still apply. For example, if the premises provide
no semantic basis for mapping, structural correspondence must be processed in some form.

The mapping of elements Bob, Tom, Peter to positions above, middle, bottom in the ordering schema
is dynamic and flexible. The mappings serve the current task of making an inference; they are not long-
term acquisitions and are not acquired incrementally. By contrast, implicit transitivity (Goel, 2007)
is based on incremental knowledge acquisitions in long-term memory. For example, McGonigle and
Chalmers (1977) trained squirrel monkeys to choose one member of each pair in a series (A+B−, B+C−,
C+D−, D+E−), where [+] indicates a rewarded choice and [−] a nonrewarded choice). Monkeys showed
a 90% preference for B over D, though this pair was untrained. This inference is based on incrementally
acquired knowledge (Couvillon & Bitterman, 1992; Markovits & Dumas, 1992; Wynne, 1995). It is a
very different type of process from explicit transitive inference and it cannot be assumed that the tasks
represent equivalent attainments.

1.4. Compositionality and systematicity

These have been proposed as fundamental properties of cognition (Fodor & Pylyshyn, 1988; but
see also Van Gelder & Niklasson, 1994). Compositionality indicates that the entities in a compound
representation retain their identity and are accessible, e.g., given “larger than(whale, fish)” we can
access elements in this representation by asking, “What is larger than a fish?” (whale), “What is a
whale larger than?” (fish), and “What is the relation between whale and fish?” (larger than).

Systematicity was defined by Fodor and Pylyshyn (1988).  Halford et al. (2010) commented on
systematicity in terms of a relational framework. In essence it means that certain cognitive capacities
are intrinsically connected through their structural properties. Thus a proposition like “larger than( ,

)” has an intrinsic structure comprising a slot for a larger entity and a slot for a smaller entity; both
slots can be filled in a variety of ways. This property means that if we  understand that a whale is
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larger than a fish, we can understand other instances of a relation because the structure, consisting of
a binding between relation symbol-bound slots, is available.

1.5. Higher-order representation

An important property of relations is that they can relate other representations (Gentner, 2010).
For example, “Mary believes that Ken resents that Jim gave Mary a ticket,” entails a series of relational
instances (propositions) embedded in higher-order relations. Higher-order relations play a major role
in cognitive complexity and control theory (Zelazo, Müller, Frye, & Marcovitch, 2003).

1.6. Working memory (WM)

The use of relational knowledge in a dynamic and flexible way, as required in higher cognition,
means that it must be possible to form representations in WM based on both structural correspon-
dence and semantic information (Blanchette & Dunbar, 2000; Halford et al., 2010). Earlier conceptions
of WM (Daneman & Carpenter, 1980) were based on a combination of processing and storage, but a
more recent conception (Oberauer, 2009, chap. 2) is based on dynamic binding to a coordinate system.
Dynamic formation of relational representations also entails mapping to a coordinate system, as illus-
trated earlier with explicit transitive inference. There is therefore a close correspondence between our
theory of relational knowledge and Oberauer’s conception of WM.

The relational complexity metric measures the number of entities that are related in a cognitive
representation (Halford, Bain, et al., 1998; Halford, Wilson, et al., 1998; Halford, Bunch, & McCredden,
2007; Halford, Cowan, et al., 2007), as illustrated by the explicit transitive inference task in which
premises Tom is taller than Peter and Bob is taller than Tom are integrated into a mental model in
which the elements Bob, Tom, Peter are ordered according to the relation specified in the premises.
This is equivalent to the ternary relation, monotonically taller(Bob, Tom, Peter) relating three entities.
By contrast, the premises taller(Bob, Tom) and taller(Tom, Peter) are binary relations.

However complexity can be reduced by segmentation (decomposition into smaller segments that
can be processed serially) and conceptual chunking (recoding into representations of lower relational
complexity), but there is a loss of access to relations between chunked or segmented variables. For
example, speed = distance/time relates three variables and is ternary relational, but we  can chunk speed
into a single variable (e.g., our car’s speed = 60 kph). However, the relation between speed, distance
and time is not accessible in the single-variable representation so that, in order to answer a question
such as: “How is speed affected if we travel the same distance in half the time?” we must return to
the three-variable representation.

Performance is influenced by both WM capacity and knowledge, and the former has most influ-
ence when task structure constrains decomposition (Halford, Bain, et al., 1998; Halford, Wilson, et al.,
1998; Halford, Bunch, et al., 2007), whereas the latter has most influence where tasks can be decom-
posed into simpler subtasks, enabling serial processing strategies that do not exceed processing
capacity (Halford, Bain, et al., 1998; Halford, Wilson, et al., 1998). This fact establishes an impor-
tant boundary condition for cognitive complexity effects, and the method for analysis of relational
complexity (MARC) is founded on these principles (Halford, Bunch, et al., 2007; Halford, Cowan, et al.,
2007).

Some of the classical findings in cognitive development reflect capacity limits due to constraints
on decomposition. Transitive inference has been the subject of considerable controversy (Halford &
Andrews, 2006), but the difficulty that children have with the explicit transitive inference task is
not adequately explained without reference to processing load, as shown earlier. Transitive infer-
ence imposes a load on WM because conceptual chunking and segmentation are constrained as
both premises must be processed to assign an element to a slot. For example, the premise Tom
is taller than Peter shows that Tom should be assigned to the top or middle slot in the order-
ing schema, but the second premise Bob is taller than Tom is required to determine which slot.
The result is that premise integration, or assignment of elements to slots in a schema consistent
with the premises, imposes a load on WM in children (Halford et al., 1986) and adults (Maybery
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et al., 1986). It also activates regions of the prefrontal cortex (Fangmeier, Knauff, Ruff, & Sloutsky,
2006).

Another example is class inclusion, which is resistant to decomposition because it is defined by
relations between a superordinate class, a subclass and (at least) one complementary subclass, and is
inherently ternary relational (Halford, 1993). A source of difficulty in the Dimensional Change Card
Sort task (Zelazo et al., 2003) is that the presentation tends to constrain decomposition of the task
(Halford, Bunch, et al., 2007).

1.7. Processing capacity limits

The boundary conditions for the relational complexity metric were used to estimate the limits to
processing capacity by Halford, Baker, McCredden, and Bain (2005).  The method was  based on inter-
pretation of interactions, because decomposition into component variables is constrained due to the
influence of each variable on the effects of others (as with statistical analyses where main effects can-
not be interpreted if there is a significant interaction). It was  found that adult humans can process
approximately four variables in parallel. Cognitive developmental studies (Andrews & Halford, 2002;
Halford, 1993) have shown that the median ages at which relations of a given complexity are attained
are: unary relations at 1 year, binary relations at 18 months to 2 years, ternary relations at 4–5 years
and quaternary relations at 11 years. However, attainment of relational concepts is experience-based,
and so there is no suggestion that all the concepts of a given level are attained concurrently. Our data
do show that attainments within a domain are influenced by complexity. For example, we  found that
binary relational (i.e., simpler) versions of tasks including transitive inference, class inclusion, hier-
archical classification, cardinality, and sentence comprehension were attained by 3–4 years whereas
more complex, ternary relational versions were attained at a median age of 5 years (Andrews & Halford,
2002).

2. Computational models

In this section we examine how the properties outlined above have been captured in our compu-
tational models. Two other models are examined for comparison.

2.1. Formal models of structural commonalities

Our efforts to model cognitive development have been designed to capture the processing of rela-
tional knowledge, rather than to exploit any one type of architecture. Our approach is to match
symbolic models to the empirically substantiated conceptual account of higher cognition that we
have outlined. The criterion is that the models implement the established properties of relational
knowledge.

We began with mathematical category theory models at a high level of abstraction (Halford &
Wilson, 1980) but then turned to modelling specific processes, first with a self-modifying production
system model of transitive inference acquisition (Halford et al., 1995), and then with symbolic con-
nectionist models of relational knowledge (Halford et al., 1994, chap. 7; Halford, Bain, et al., 1998;
Halford, Wilson, et al., 1998).

The category theory account of structure-based mappings between cognitive representations initi-
ated by Halford and Wilson (1980) has undergone considerable subsequent development recently. This
work was motivated in part by the observation (Andrews & Halford, 2002; Halford, 1993) that there
is a correspondence between tasks such as transitivity and class inclusion, despite major differences
in task characteristics.

However, it is now possible to define a more penetrating mathematical basis for this structural com-
monality (Phillips et al., 2009). As mentioned earlier, category theory defines mathematical structures
by transformations, rather than objects, which makes it very appropriate for modelling structure-
based mappings between cognitive representations. Category theory therefore defines structures at a
very abstract level, but one which has been found to provide important insights in computer science
(MacLane, 1998) and now in psychology. This approach essentially means that cognitive processes are
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categorised by structural properties rather than elements. The core of our theory is the way structure
is defined, which differs in many respects from that of Piaget (Halford, 1993).

Briefly, a (mathematical) category consists of a collection of objects (A, B, . . .)  and a collection of
morphisms, or maps (f, g, . . .)  between objects (e.g., f: A → B is a map  from A to B) such that every
object is associated with an identity morphism (e.g., 1A: A → A is a map  from object A to itself), and
every composition of two morphisms (where defined) equals a third morphism (e.g., the composition
of f: A → B and g: B → C, denoted gоf, equals a morphism h: A → C). Composition must also satisfy
rules known as unity and associativity. It has been shown (Phillips et al., 2009) that the structure
of transitive inference and class inclusion are formally connected by the dual structures known as
product and coproduct in category theory (MacLane, 1998).

Transitivity and class inclusion are attained at a median age of 5 years (Andrews & Halford, 2002),
and the derivation shows that the empirically observed correspondence has a formal mathematical
basis. The simpler versions of the tasks that are successfully performed by younger children do not
have this formal correspondence. Phillips et al. (2009) have demonstrated the same point for empiri-
cally observed correspondences involving matrix completion (Halford, 1993), cardinality (Andrews &
Halford, 2002), the dimensional change card sorting task (Halford, Bunch, et al., 2007; Halford, Cowan,
et al., 2007), weight–distance integration in the balance scale (Halford et al., 2002), and theory of mind
(Andrews, Halford, Bunch, Bowden, & Jones, 2003). The mathematical derivations and the empirical
observations collectively mean that we have found a way to categorise concepts by their deep structure
that underlies the surface properties of tasks. Thus the correspondence between tasks as different as
transitive inference and class inclusion is no accident and does not result from superficial properties.

2.2. Self-modifying production system model

Acquisition of explicit transitive inference has been modelled by a self-modifying production sys-
tem model, the Transitive Inference Mapping Model (TRIMM; Halford et al., 1995) which incorporates
mapping into an ordering schema in WM.  TRIMM is based on production rules. Each rule comprises a
condition–action pair, and each rule represents a single step in problem solving. A production “fires”,
that is, is activated, when the relevant condition is satisfied, and the action then ensues. If no produc-
tion has a condition that is satisfied, the model goes into the mode of developing new productions.
This process is guided by using an ordered set of three elements that serves as a template. The ordered
set can be anything in the experience of the child (e.g., three siblings varying in height, the story of the
three bears, etc.), the only requirement being recognition of the structural correspondence between
template and the ordering produced by a set of productions. For convenience, we  assume the template
is the ordering schema top, middle, bottom mentioned earlier.

To illustrate operation of the model, given the premise Tom is taller than Peter, a production fires
that creates the order Tom, Peter. When the premise Bob is taller than Tom is presented, Bob might be
appended to the ordered pair, creating the order Tom, Peter, Bob. The error can be detected because
Tom above Peter below Bob is not in correspondence with the template. Detection of this discrepancy
requires sufficient WM capacity to represent the ordered set, that is, a ternary relation. Occurrence
of an error also causes this production to receive a decrement in strength and leads to a search for a
new production, which appends Bob to the front of the ordered pair, producing Bob, Tom, Peter. This
production yields an ordering that is in structural correspondence with the template; it will generate
a correct ordering and therefore receives an increment in strength. Where WM in insufficient, the
error will not be detected and there will be a failure to develop productions that consistently produce
ordered sets. The model therefore accounts for findings (Halford, 1984) that children under 5 years
are likely to correctly order pairs of elements but fail to integrate the pairs into ordered sets of three or
more elements. The TRIMM model demonstrates a mechanism by which representations of relations
can yield reasoning strategies.

2.3. Symbolic connectionist models

Neural net models, usually known as symbolic connectionist models, implement the criterial prop-
erties of relational knowledge that we have defined (Doumas, Hummel, & Sandhofer, 2008; Halford,
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Bain, et al., 1998; Halford, Wilson, et al., 1998). The models are designed to simulate structure-
consistent mappings between two  relational representations, and the mapping process is dynamic,
attentional, and imposes a processing load in WM.  These models implement dynamic bindings
between relation symbols and the sets of ordered n-tuples that constitute the extension of a rela-
tional representation. The components retain their identity in the binding and are accessible to other
cognitive processes.

2.4. Structured Tensor Analogical Reasoning (STAR) model

The STAR model is designed to represent relations of varying complexities from unary to quinary,
the latter being the empirically determined limit to complexity of relations that can be incorporated in
a single representation. Mathematically relations have a wide range of interpretations. For example,
a proposition such as “likes(John, Pizza)” is a relational instance and is also a binary relation. The
representation of this relational instance in STAR is shown in Fig. 2.

In STAR (Halford et al., 1994, chap. 7; Halford, Bain, et al., 1998; Halford, Wilson, et al., 1998; Wilson,
Halford, Gray, & Phillips, 2001), relational representations are formed by binding the relation symbol
and arguments into an array, as shown in Fig. 2. For example, the relation “loves(John, Pizza)” is rep-
resented by activations on three sets of input units, representing loves, John, Pizza, as shown in Fig. 2A
(but with the relation symbol omitted, see caption). The sets of input units are treated mathematically
as vectors, and the binding is performed by computing the outer (or tensor) product of the component
vectors, forming matrices as shown in Fig. 2. The activations of the binding units are formed dynam-
ically in WM,  as the direct result of activations in the input units. Thus the relational representation
can be formed in a single trial, and it lasts as long as the activations persist. The symbol (e.g., likes) and
roles (e.g., lover, loved-object/person) are assigned to specific ranks of the representation, so forma-
tion of the model entails dynamic mapping to a coordinate system, consistent with the WM model of
Oberauer (2009).  The principle of commutativity from category theory is applied to make consistent
assignments (Halford & Wilson, 1980).

2.4.1. Compositionality
The model implements compositionality (accessibility) as defined earlier, using the retrieval pro-

cess. Retrieval is achieved by using one or more vectors as input, and the output is the remaining
vectors. This is done using the dot product operator, which is roughly equivalent to a non-standardised
correlation. In a representation with n components, any n-1 components can be used as inputs yielding
the remaining component. Thus given “loves(John, Pizza),” if the input is loves(John. . .)  the output is
Pizza, or given . . ..  (John, Pizza) the output is loves, and so on. Thus, the relation symbol and its argu-
ments all remain accessible. For a more comprehensive treatment see Halford et al. (1994),  Halford,
Bain, et al. (1998),  Halford, Wilson, et al. (1998),  or Wilson et al. (2001).

2.4.2. Systematicity
Assignment of the relation symbol and roles to specific ranks in the representation, and their

binding by computing the outer product of component vectors, means that structure is inherent in
the representation and therefore implements systematicity. It also gives a natural correspondence to
relational representations in predicate calculus expressions such as “loves(John, Sally)” and in natural
language (“John loves Sally”) where lover and loved occupy specific positions in the sentence.

2.4.3. Superposition
The representations of relational instances can be superimposed. The relational instances

“loves(John, Sally)” and “loves(Ken, Tina)” are represented by arrays with different sets of input units,
giving a different pattern of activation in the binding units, as shown in Figs. 3A and B. The representa-
tions can be superimposed, forming a composite representation, as shown in Fig. 3C. Notice that this is
distinguishable from the superimposed representations of “loves(John, Tina)” and “loves(Ken, Sally)” in
Fig. 3D. The components, symbol and arguments retain their identity in the composite representation,
and the role assignments are maintained.
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Fig. 2. The STAR model representation of binary and ternary relations. Part (A) represents the binary relation John likes pizza
and  part (B) represents the ternary relation John is between a rock and a hard place. The relation symbols (likes and between) are
omitted to reduce the complexity of the figure, but each would constitute an extra rank, or extra dimension, so (A) would be
Rank  3 and (B) would be Rank 4 (which cannot be shown on paper).

Superposition enables recognition of commonalities because common features have more influ-
ence on the output. It can also provide a representation of relational slots, because a slot corresponds
to all the elements in a specific position in the representation. Given a structural alignment mecha-
nism, relational representations can be formed initially without explicit representation of slots. The
superposition of elements on the slots of the tensor representation represents variables. Given a rep-
resentation of “larger than{. (whale, fish), . . .,  (ship, canoe), . . .”  each slot can be filled in a (potentially
infinite) variety of ways, effectively taking a step toward representation of a variable.

2.5. Effects STAR accounts for

We  now consider how STAR implements the properties of relational knowledge outlined earlier.

2.5.1. Processing complexity
Relational complexity corresponds to the number of roles in a representation. Thus loves(John, Sally)

has two roles and is a binary relation, whereas arithmetic addition has three roles, addend 1, addend 2,
sum and is a ternary relation. The number of roles affects the STAR model as follows: If each component
vector has k units, the number of binding units for an n-ary relation is kn+1. The representation of
a n-ary relation has a rank of n + 1 because one rank is occupied by the relation symbol. Thus the
representation of the binary relation loves(John, Sally) is rank 3 because it comprises three vectors
representing loves, John, and Sally. Therefore the processing demands increase exponentially with the
complexity of relations as defined by the relational complexity metric.
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Fig. 3. (a), (b), Representation of single proposition. (c), (d), Superimposed representations of propositions.
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Fig. 4. Integration of transitive binary relations into a ternary relations.

Notice that the number of slots has more effect than the size of the components, which corresponds
to the amount of information encoded in each vector. In his classic paper, Miller (1956) mentions
the paradox that the limiting factor in processing capacity is number of entities, rather than their
information value, which in our formulation corresponds in an approximate sense to size as more
information tends to require more units for its representation. As the rank of a representation increases,
the number of binding units can become unsustainably large, leading to a gradual increase in errors
with increasing complexity. The capacity limit is reached when performance declines to chance level,
as occurred with quinary relations in the study by Halford et al. (2005).  Importantly, concepts of equal
relational complexity have equal rank in the tensor representation, so STAR provides a natural account
of the structural equivalence of concepts.

Capacity to process relations of increasing complexity with age is predicted to depend on represen-
tations of higher rank (with more interconnected vectors), such as a transition from binary relational
to ternary relational representations portrayed in Fig. 4. This transition would depend on appropriate
interconnection between the ranks; for example, each element in one vector must be connected to a
set of binding units that is connected to all the other vectors. Details of interconnection are shown by
Halford et al. (1994).

2.5.2. Integration of relations
The way STAR models integration of premises in transitive inference is shown in Fig. 4.

Premises, aRb and bRc correspond to binary relations and are represented as rank 3 tensor prod-
ucts, as shown in Fig. 4(ii). These can be integrated into the ternary relation transitively ordered
(a, b, c) as shown in Fig. 4(i). The conclusion aRc is another binary relation that can be
retrieved from the integrated representation. The integrated representation in Fig. 4(i) can be
superimposed on the ordering schema monotonically higher(top, middle, bottom), as shown in
Fig. 4(iii).

2.5.3. Analogy
A simple analogy as processed by STAR is shown in Fig. 5, based on superimposed represen-

tations. The predicates mother of, protects, feeds, larger than are each linked to entities woman:
baby and mare: foal. This yields representations of mother of((woman, baby), (mare-foal)), pro-
tects((woman, baby), (mare-foal)), feeds((woman, baby), (mare-foal)), larger than((woman, baby),
(mare-foal)). Analogy is performed by retrieval from the representation, as shown in Fig. 6. If woman
and baby are entered into the structure, the output is a bundle of all the relation symbols that
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Fig. 5. The vectors, such as [0.5 0.5 −0.5 −0.5] representing concepts must be of length 1 and orthogonal to each other. The
tensor is shown here storing a single relational instance, such as larger than(woman, baby). In general, it would be storing
several  such, simultaneously, and its value would then be the sum of the tensors for the individual relational instances.

have these words as arguments – mother of, protects, feeds, and larger than. In the next step, the
inputs are mare and the bundle of relation symbols, and the output is foal. Thus the simple analogy
woman:baby::mare:foal is implemented as a set of operations on a relational knowledge base repre-
sented by the tensor product shown in Figs. 5 and 6. This example involves an analogy based on a
binary relation, and it can be extended to more complex relations by using representations of higher
rank. The model is capable of simulating a wide range of analogy problems (Halford et al., 1994,
chap. 7, Section 5.2).

Fig. 6. Processing analogy woman:baby::mare:foal.
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2.5.4. Role-respecting similarity
This is represented in STAR by computing the dot product (roughly equivalent to a nonstandardised

correlation) between vectors representing the relation. Thus woman feeds squirrel would be repre-
sented by the outer product of three vectors representing feeds, woman, squirrel. Similarly man feeds
dog would be represented by outer product of the three vectors. The similarity of these representations
is computed by the dot product of the set of three vectors (i.e., feeds, woman, squirrel with feeds, man,
dog). The size of dot product would reflect the similarity of components in corresponding position,
that is woman to man, feeds to feeds, and squirrel to dog. However squirrel feeds woman would produce
a much lower dot product because of the dissimilarity of elements in corresponding positions, i.e.,
woman to squirrel.  Thus the model captures the fact that woman feeds squirrel is not similar to squirrel
feeds woman, despite identical elements.

2.5.5. Truth value
The truth of a proposition can be determined by computing the dot product of vectors represent-

ing the proposition with vectors representing semantic memory (Halford, Bain, et al., 1998; Halford,
Wilson, et al., 1998, Section 4.2.2).

2.5.6. Dynamic modification of representations
One property of higher cognition, captured by relational knowledge, is that representations can be

modified dynamically, as in hypothesis testing. Suppose that young children tend to estimate area of
a figure as a combination of length added to breadth (A = L + B). We  can change this to A = L × B without
incremental learning (i.e., we do not have to learn multiplication of dimensions) by dynamically mod-
ifying our representation. This is captured in STAR because we  can superimpose 3 + 5 = 8 on 3 × 5 = 15.
When we change the relation symbol, we select a different set of relational instances: The switch from
+ to × changes ordered 3-tuple 3, 5, 8 to 3, 5, 15, etc. Thus STAR permits representations to be changed
dynamically in the course of problem solving.

2.5.7. Conceptual chunking
Conceptual chunking is simulated by “collapsing” two or more vectors into a single vector by con-

catenating, convolving or superimposing vectors (Halford, Bain, et al., 1998; Halford, Wilson, et al.,
1998, Section 4.2.4). The chunk can then be an entity in another relational representation, and hier-
archical representations can be formed in this way. However, the relations between components of a
chunk cannot be accessed. To access components it is necessary to recover the chunked vectors and
compute a tensor product representation of their binding.

2.5.8. Hierarchical structures
Fig. 7 shows how STAR represents hierarchical structures, such as the proposition Mary believes,

(that) Ken resents,  (that) Jim gave Mary (a) ticket. The number of components is too large to be pro-
cessed in a single cognitive step (Halford et al., 2005), so it must be segmented into components that
do not exceed capacity of WM.  This can be done using the type of hierarchical representation shown
in Fig. 7 (Gray, 2003), where the levels are processed one at a time. The highest level comprises the
proposition believes(Mary, chunk1), where chunk1 comprises a chunked representation of the propo-
sition resents(Ken, chunk2), and chunk 2 is a chunked representation of gave(Jim, Mary, ticket). At the
next level, chunk 1 is unpacked, yielding resents(Ken,  chunk2). Further unpacking of chunk2 yields
gave(Jim, Mary, ticket).

The representations at each level include a representation of a chunk, which is linked to the next
lower level. Thus the representation of the top level is a three-dimensional array formed by input
vectors believes, Mary, chunk1.  At the next lower level, the representation is a three-dimensional array
formed by input vectors resents,  Ken, chunk2, which is an expansion of chunk1.  If chunk1 is used as
input, the representation of resents, chunk2 is retrieved. At the next lower level, the representation is
a four-dimensional array formed by input vectors, gave, Jim,  Mary, ticket. If chunk2 is used as input, the
representation of gave, Jim,  Mary, ticket is retrieved. Alternatively if, for instance, resents(Ken, chunk2)
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Fig. 7. STAR hierarchical representation of the compound proposition Mary believes (that) Ken resents (that) Jim gave Mary
ticket.  To represent these propositions within a tensor product network of bounded rank, the STAR2+ model chunks nested
propositions, and expands them using a recursive matching algorithm.

is the input, chunk1 is retrieved, and so on. Thus STAR can move naturally up and down a hierarchically
structured representation using the standard retrieval processes that are inherent in the model.

2.6. The Relcon (Relational Concept) model

The Relcon (Relational Concept) model (Gray, Wilson, Halford, & McCredden, 2006) shows how
relational categories that exhibit prototypicality and context sensitivity (Rosch & Mervis, 1975)
can be formed with the STAR architecture. The algorithm works on a knowledge base represented
as a set of propositions (relational instances). For example, furniture knowledge might consist of
propositions including made of(chair, wood), stands on(chair, floor), found in(chair, living-room), . . .,
made of(desk,wood), stands on(desk,floor), . . .,  found in(vase,  living-room), . . .,  (made of(vase, pottery),
. . .,  etc. If the first input is chair, the output is the set of attributes relating to chair, i.e., made of( ,
wood), stands on(  , floor), found in(  , living-room). This corresponds to stored knowledge about chairs.
If these attributes are now used as input, the output is all the elements bound to them, chair (retrieved
3 times), desk (retrieved twice) and vase (retrieved once). The algorithm iterates to a stable set of
elements that share some (but not all) attributes and represents a category based on family resem-
blance. The typicality of a member of the category can be determined by computing the dot product
of the vector representing the member with the vector representing the category, comprising all the
instances superimposed. Typicality is represented in the model because chair is more typical of furni-
ture that vase and it shares more attributes with other instances of the category and least attributes
with non-instances of the category. The model therefore simulates the correlation between proto-
typicality and the degree to which a concept member has common properties with other concept
members. The model also captures context sensitivity, that is typicality of concept instances varies
with context (e.g., chicken is most typical of the bird category in the context of a farmyard, whereas
robin might be more typical in the forest).

Structured knowledge can, in principle be acquired by cumulative storage of instances of a relation.
This can be illustrated using the balance scale model. The balance state depends on moments on the
two sides, where moments are products of weights and distances on that side. For simplicity, we
consider the left side only, the same argument applying to the right side. The weights, distances, and
moments on each side of the balance can be represented by vectors, e.g., on the left side, we have
VweightL, VdistanceL, VmomentL. Each instance of this relation can be represented by the outer products of
three vectors, which can be superimposed to represent cumulative knowledge.
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Fig. 8. Outline of the architecture of the DORA model.
Adapted from Fig. 2b in Doumas et al. (2008).

2.7. The Discovery Of Relations by Analogy (DORA) model

The DORA model (Doumas et al., 2008) can be used to illustrate how relational knowledge can
be represented with a different type of architecture. Relations are represented in DORA by four lay-
ers of units, as shown in Fig. 8. At the top are P (Proposition) units that are linked to PO (Predicate
and Object) units via RB (Role-Binding units). The PO units are connected to semantic units that rep-
resent features of objects (e.g. male, adult, . . .,  has-emotion). RB units bind objects to roles in the
proposition, so John is bound to the lover role in the proposition loves (John, Sally), and so on. This
effectively binds the predicate (relation symbol) to the arguments, as required for relational rep-
resentations. In DORA, the role (in this case lover) is explicitly represented, but this is not true in
all models.

Role-filler bindings in DORA are dynamic, and are coded by firing in close temporal proximity.
For example, to represent loves(John, Sally), the units representing the lover role fire in close tem-
poral proximity with units representing John, while units representing loved fire in close temporal
proximity with Sally. Units representing the lover role fire out of synchrony with units repre-
senting the loved role, and their fillers John and Sally also fire out of synchrony. Retrieval from
long-term memory occurs due to activation that originates with the P unit, passes through RB
and PO units to semantic units, which excite units in long term memory. Mapping occurs by
concurrent activation of units in two analogs, aided by mapping hypotheses linking correspond-
ing units (mapping P to P, RB to RB, etc.). These processes take account of semantic similarity
effects.

The DORA model simulates many phenomena associated with acquisition of relational knowl-
edge, most of which have developmental relevance. These include initially holistic representations
of relations, learning from examples without explicit feedback, the role of structural alignment in
learning relations, the relational shift or progression from featural to relational representations, pro-
gressive abstraction of representations, the influence of increasing semantic knowledge, and the role
of comparison in acquisition of relational knowledge.
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2.8. Comments on symbolic connectionist models

We regard Doumas et al. (2008) as justified in their claim that “DORA serves as an existence proof
that relational representations can be learned from examples, thereby addressing one of the fun-
damental problems facing symbolic models of cognition.” (p. 30). A similar point is demonstrated
empirically by Halford and Busby (2007).  DORA models analogy and relational schema induction; it
provides a plausible, if limited, mechanism for cognitive development, and there is some supporting
neurological evidence for synchronous activation. DORA accounts for capacity limitations based on
the limits to the number of distinct phases of oscillation.

Role-filler bindings alone, however, are not sufficient to define propositions or relational instances.
If we represent loves(John, Sally) and loves(Ken, Tina) solely by binding John and Ken to the lover role
and Sally and Tina to the beloved role, the result would be identical to loves(John, Tina) and loves(Ken,
Sally). The role assignments do not represent the n-tuples that comprise the relational instances.
By contrast, these representations are distinguished in STAR, as shown in Fig. 3C and D. In DORA this
problem is obviated because propositions are represented by four hierarchical levels of units as shown
in Fig. 3, and the binding of the P unit at the top of the hierarchy to the RB, PO and semantic units
serves to identify specific propositions. This problem is serious however for relations that entail many
instances, as Halford et al. (1998, Sections 4.1.1.1 and 4.1.3) point out. For example, in the ternary
relation arithmetical addition, every number is bound to every role (e.g., the number “3” is bound to
the first addend role in 3 + 2 = 5, to the second addend role in 4 + 3 = 7, and to the sum role in 1 + 2 = 3).
The effect is that role-filler bindings alone do not identify relational instances.

STAR also implements many properties of relational knowledge (Halford, Bain, et al., 1998; Halford,
Wilson, et al., 1998). It has accessibility because any component can be retrieved from the relational
representation, it can determine the truth value of a proposition, it implements systematicity, dynamic
modification, analogical reasoning, structural correspondence, and representation of variables. It can
account for processing load increases as a function of cognitive complexity and for capacity limitations,
and it implements higher-order relations. The properties are relevant to a wide range of phenomena.
For example, accessibility and hierarchical representation are both relevant to Cognitive Complexity
and Control theory (Zelazo et al., 2003) and relational knowledge plays a major role in development
of reasoning (Gentner, 2010; Halford & Andrews, 2006).

Symbolic connectionist models effectively implement mapping between relational representa-
tions, which we propose to be the main driver of the transition to symbolic processes, and the
consequent ability to generate inferences.

2.9. Semantic cognition model

One of the most advanced models of emergence of cognitive structure is the Semantic Cognition
model of Rogers and McClelland (2004),  which shows how representations in a feedforward net can
reflect similarities within and between categories (e.g., Robin and Salmon are more similar than Robin
and Daisy). Similarities can be represented even if not directly perceptible, because the activations in
the Representation layer are influenced by the attributes required in the output layer. Representations
come to reflect item similarities, e.g., the representations activated by “robin” and “canary” are similar
because both are used to compute outputs such as “bird.”

The model provides an existence proof for mechanisms that can categorise entities on the basis
of input–output links. The activation patterns in representation and hidden units reflect similarities
in the input–output functions computed. This feature can be applied to children’s categorisations
based on events in which entities participate. For example, animals and vehicles can be categorised
by events in which they take part, somewhat independently of perceptible similarity (Mandler, 2000).
This is potentially an important mechanism in the development of children’s categories. However,
by contrast with some symbolic connectionist models, such as DORA (Doumas et al., 2008), or STAR
(Halford, Bain, et al., 1998; Halford, Wilson, et al., 1998), the Semantic Cognition model does not fully
represent the properties of relational knowledge outlined earlier (Halford et al., 2010).

Multi-layered models form representations incrementally by incremental adjustment of con-
nection weights or, as in the Semantic Cognition model, by adjustment of representations
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(backpropagatation to representation). They do not implement dynamic mapping in WM,  which we
argue to be essential to formation of relational knowledge. The Semantic Cognition model imple-
ments limited accessibility (Rogers & McClelland, 2004; Section R2), but it is not accessibility as we
have defined it. Nevertheless, these models are important, even achieving major breakthroughs in
many contexts, including plausible mechanisms for laying the foundations of relational knowledge.
For example, the representation of loves could originate as a relational feature in a feedforward net,
but it is the binding of the feature to the arguments (John and Sally) that enables it to function as a
relation symbol. We  have made more comparisons of the semantic cognition and symbolic models
elsewhere (Halford et al., 2010). We  believe there is scope for more hybrid models, perhaps along the
lines of the CLARION model (Sun et al., 2005) but designed specifically to address the developmental
questions raised by the articles in this issue.

3. Conclusion

Relational processes play a highly significant part in higher cognition, and to the extent that cog-
nitive development depends on attaining higher levels of cognitive function, it must entail relational
processes. Our conception of relational processes includes the major properties of higher cognition.
A relational representation is a binding between a relation symbol and arguments such that the
truth of the relation is maintained, and it must be possible to form maps between representations
based on structural correspondence, together with other influences such as semantic similarity. Other
properties include compositionality, meaning that elements retain their identity in compound rep-
resentations and can be accessed, and systematicity, meaning that representations are intrinsically
connected due to common structure. Relational representations are subject to processing load effects,
loads depending on the number of entities that are related, with an upper limit of about four related
variables for adult humans. The STAR and DORA models that have been described here represent
these properties in different ways, and the Semantic Cognition model provides important acquisition
mechanisms.
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