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Abstract

Children’s ability to modify their drawing proce-
dures changes in their first decade. Young children
make size/shape changes and end-of-sequence inser-
tions/deletions of drawing elements. Older children
also make middle-of-sequence insertions/deletions
and position/orientation changes in drawing ele-
ments. Why do modifications occur in this order?
We argue that older children’s modifications require
processing ternary relations, which according to a
relational complexity theory, is beyond the working
memory capacity of young children.

Introduction: Redescription
in children’s drawings

Karmiloff-Smith (1986, 1992) hypothesized that,
more than just behavioral mastery, cognitive develop-
ment includes a process of reorganization of learned,
internal representations so as to facilitate more flexi-
ble, creative behavior. In what she calls the represen-
tational redescription hypothesis, two (broad) levels
of development are postulated. At the implicit level,
knowledge in the system is usable in a very narrow
context. At the explicit level, such knowledge is re-
formatted so as to be accessible by other cognitive
processes for use in other domains.

One source of support for representational re-
description was found in a study on children’s draw-
ing procedures. Karmiloff-Smith (1990) studied two
groups of children on their ability to modify their
drawing procedures. The younger (4-6 years) and
older (8-9 years) groups were asked to draw three
types of objects: a man, a house, and an animal.
Both groups were then asked to draw a man, a house
and an animal that does not exist (e.g., a man with
two heads). The second task probes the sorts of
changes children can make to their “normal” drawing
procedures in producing “nonexistent” objects.

Karmiloff-Smith observed four types of changes:
(1) Size/shape change (4-6 years): Younger children
modified their drawings by changing the size or shape
of one of its elements (e.g., a man with a square head).
(2) End-of-sequence deletion/insertion (4-6 years):
Elements were deleted /inserted elements at the end of
a drawing after which no more elements were drawn
(e.g., a house with no windows, where windows are
the last elements of a normal drawing procedure).
(3) Middle-of-sequence deletion/insertion (8-9 years):
Older children inserted elements between other ele-
ments in their drawing procedure (e.g., man with two

heads). (4) Position/orientation change (8-9 years):
Elements were placed in different positions or orien-
tations (e.g., rotated head).

Although a notion of redescription is intuitively ap-
pealing, providing a mechanism has proven difficult.
Progress has been hampered by a lack of details about
the nature of the process. In particular, if redescrip-
tion is to be a theory of cognitive development it must
explain why the observed changes to drawing proce-
dures occur in the order they do (Boden, 1994). For
example, why do children have the capacity to make
end-of-sequence insertions and deletions before they
have the capacity to make middle-of-sequence inser-
tions and deletions?

Karmiloff-Smith (1990) explains the difference in
terms of serial constraints and interrupts. The exe-
cution of young children’s procedures is constrained
to operate in a fixed, serial order. Middle-of-sequence
insertions/deletions require interrupting that proce-
dure to insert a new subprocedure. But this explana-
tion almost begs the question by appealing to terms
so closely related to descriptions of the data.

Cognitive development is replete with observations
of task orderings. We have explained a number of
these observations in terms of relational complexity:
the maximum number of interacting dimensions of
information that must be processed in a single deci-
sion (Halford, 1993; Halford, Wilson, & Phillips, in
press). Briefly, the capacity to process higher arity
relations increases with age: unary relations (at me-
dian age one year); binary (two years); ternary (five
years); and quaternary (11 years). Therefore, tasks
requiring higher arity relations appear later.

Relations are ubiquitous in psychological models,
and have a formal definition in computer science (see
Appendix A). In this paper, we argue that relational
complexity also explains the order of drawing modifi-
cations: middle-of-sequence deletions/insertions and
position/orientation changes performed by older chil-
dren require ternary relational information, which ex-
ceeds the binary relational information limit of young
children’s working memory capacity (Halford, 1993;
Halford et al., in press).

Relations, associations and
explicit /implicit dimensions
of variation

Informally, a relation is an abstraction of the world
that identifies “connections” between its entities and
the roles the entities play within these connections.



So, for example, a relational model of concepts John
loves Mary and Sue loves Tom identifies entity John
as connected to Mary, and Sue as connected to Tom;
and John and Sue as playing a common (agent) role,
and Mary and Tom as playing a common, but distinct
(patient) role. A system implementing a relational
model must respect entity-entity and entity-role con-
nections in some manner.

Relations are conventionally depicted as tables.
Connected entities are placed in common rows, and
columns identify their roles. Thus, it is natural to
talk of relations as structured representations with
one or more dimensions (columns) of variation. Since
relations may identify connections between entities
of the same type (e.g., taller-than), each dimension
must be uniquely identifiable. Since relations permit
retrieval of entities via their roles, each dimension
must be explicitly identified by the representing sys-
tem (i.e., accessible to processes within the system).
Thus, we say that relations involve representing and
processing one or more ezxplicit dimensions of varia-
tion.

Associations, by contrast, are less structured. An
associative model consists of cue-target pairs that
permit retrieval of the target given the cue. For ex-
ample, a square is the cue to press a button. The
only requirement for a system implementing an as-
sociative model is that distinct entities are uniquely
identifiable. There is, in fact, no requirement that
the entity’s role (position) within the pair be identi-
fiable, since retrieval is unidirectional: a cue can be
used to retrieve a target, but a target cannot be used
to retrieve a cue, unless the reverse association has
already been stored (learned). Associations may also
be configural, where the combination of entities is the
cue to another entity (e.g., red square is the cue to
press a button, but blue square is the cue to pull a
lever). (Associations may also be chained to generate
a sequence of actions by having the target of one pair
be the cue to another pair.)

Although configural associations, like relations
identify connections between multiple entities, there
are two important differences! that bear on our anal-
ysis of representational redescription. Firstly, con-
figural associations are still unidirectional: cues con-
jointly permit access to the target, but the target
does not permit access to any of the cues. Although
face recognition involves relationships between facial
features, the process of recognition is essentially a
configural association from features to name. It is, in
general, not possible to give a name and recall a par-
ticular feature. Of course, reverse associations can be
represented with configural associations, but imple-
menting omnidirectionality with associative systems
requires additional training. With relational systems
no additional training is required. Omnidirectionality
is a kind of generalization that comes with relational,
but not associative systems.

1See, also, Phillips, Halford, and Wilson (1995) for be-
havioural implications.

Secondly, although cues may vary along several di-
mensions in configural associations, the dimensions
themselves are not relevant to the process of retrieval.
In our shape-colour example (above), it is not by the
fact that blue lies on the colour dimension that elic-
its the “pull lever” response, but by the fact that it
s blue. Although a stimulus may be decomposable
along many feature dimensions, the values of these di-
mensions do not play a role in the process (i.e., they
are epiphenomenal). Rather, it is the values of the
cues themselves that are critical?>. Thus, we say that
(configural) associations involve processing over one
or more implicit dimensions of variation.

In short, we make a distinction between explicit
and implicit dimensions of variation that is crucial
to our arguments on cognitive load and redescrip-
tion. Relational processes operate over explicit di-
mensions, whereas for associative processes the di-
mensions are implicit. This distinction is not arbi-
trary, but has behavioural implications. Relational
systems permit omnidirectional access to represen-
tational components without additional training. In
this sense, omnidirectionality is a type of generaliza-
tion.

Relational complexity,
cognitive load and transitive
inference

Relational complexity is the number of explicit di-
mensions of variable information in a task that must
be processed in order to make a decision. Intuitively,
a decision based on one variable requires less “men-
tal effort” than one based on two variables, which
requires less effort than one based on three variables.
Consider, for example, the mental effort required to
purchase land. If price is the only relevant variable
then the decision is simple. The decision becomes
increasingly more difficult when one must integrate
land prices with other factors such as area and acces-
sibility.

We say that there is a limit to the number of ex-
plicit variables that can be considered at any one
time. If that limit is exceeded then performance is
degraded to the point of increased errors, or failures
to complete the task. A task is a series of necessary
decisions (i.e., each decision is a precondition to the
next decision). Thus, the complexity of the task is
the decision with the highest complexity. In some
cases, the complexity of a task can be reduced by
using an alternative strategy that relies on making
lower complexity decisions. Chunking is one possibil-
ity (Halford et al., in press). In the “land purchase”
example, price and area variables can be reduced to
a single price/area variable on which to make the de-
cision. However, chunking may result in loss of infor-
mation necessary for making a decision (e.g., knowing

2Equally, it is not by virtue that a shark has colour grey
and length 2 m that elicits fear, but by the fact that it is a
shark.



land costs $10,000/m? does not tell us the total cost
or size).

With regard to cognitive development, the ob-
served clustering of cognitive abilities centers on com-
mon relational complexity in each task. Studies have
shown that many tasks are not performed until some
median age. We say that tasks in common age groups
share the same relational complexity. So, other tasks
with the same complexity should impose the same
difficulty for the same group of children.

One benchmark task is transitive inference: For ex-
ample, if John is taller than Mary, and Mary is taller
than Mark, then John is also taller than Mark (i.e.,
aRb AbRc — aRc). Transitive inference is known to
cause great difficulty for children below the median
age of five years (see Halford, 1993, for a review). The
difficulty of transitive inference has been attributed
to the premise integration step, when two instances
of a binary relation aRb and bRc are combined into
an ordered triple aRbRc from which the first and
third elements are recovered to make the inference
aRec (Halford, 1993; Andrews, 1997; Halford et al.,
in press). From this and many other tasks, children
below the median age of five are said to be limited
to processing at most binary relations. Therefore,
tasks requiring lower complexity (binary) relations
are attained before tasks requiring ternary relations
(e.g., transitive inference). It is worth recounting two
points pertaining to transitive inference as they will
be relevant to our arguments regarding the difficulty
of various drawing modifications.

Premise integration: ternary

Typically, in transitive inference tasks, subjects are
given a number of premise pairs from which they
must determine whether a test pair preserves the or-
dering specified in the premises. In an experimental
situation, order information may be encoded as rel-
ative height or length of premise materials. For ex-
ample, subjects are given several two-block premise
towers, and asked to determine whether a two-block
test tower preserves the height ordering specified in
the premise towers. Individual blocks, identifiable by
colour, correspond to premise elements (A, B, C, etc),
and the position of each block within a tower corre-
sponds to its position in the premise (e.g., red-above-
green and green-above-blue towers encode premises
(A,B) and (B,C), respectively).

In general, computing a transitive inference re-
quires integrating two binary relational instances
(premises) into an ordered triple. Since the assign-
ment of block colour to structural elements (e.g., A,
B, etc) is arbitrary, subjects cannot rely on a single
premise to determine the correct ordering of the test
pair. The premise pair (red, blue) does not guaran-
teed the correct order of a test pair as (red, green),
since the occurrence of premises (green, brown) and
(brown, red) would imply the order (green, red). Sub-
jects must form an ordered triple to determine the
correct ordering of the test pair. And, since every

colour (except “end” colours - see below) can be as-
signed to each of the three positions in the triple,
we say the complexity of this task is ternary (3 di-
mensions of variation). (Joining the two premises is
not considered forming an ordered 4-tuple because
the two middle positions are always the same, and
therefore convey no additional information.)

Labeling (end-point) strategy:
binary

A special case of this task can be solved by only
considering a single premise pair. In any finite or-
dering, the two elements at each end of the order
will appear in only one of the premise pairs. End
points can be identified by counting, which requires
no more than a binary relation (i.e., Next(X,X+1)).
(Although counting can be thought of in terms of
addition, which has three dimensions of variation
[i.e., X+Y=Z], one of these dimensions is constant
[i.e., X+1=Y] so only has two dimensions of vari-
ation.) Suppose premise pairs (red, blue), (green,
yellow), (yellow, white), and (blue, green); and test
pair (white, green). White occurs only once in the
premise list, and is identified as an end element. All
that remains is to check whether the test pair appears
as one of the premises. Since this operation requires
retrieving only one premise at a time, the complexity
of this special case is binary.

Complexity of children’s
drawing modifications

The purpose of this section is to show how some
drawing modifications are analogous to particular
forms of transitive inference, therefore imposing the
same degree of difficulty in terms of relational com-
plexity. For completeness, relational complexity is
also identified for simpler drawings. Analysis is pre-
sented in order of lowest to highest complexity. The
main point is that changes fall into two groups: those
that require processing ternary relations, being diffi-
cult for young children; and those requiring binary
relations or less (i.e., unary or nullary), attainable by
young children.

Young children’s drawing procedures are charac-
terized as implicit; proceeding in one fixed in direc-
tion; and its components are otherwise inaccessible
to other cognitive processes (Karmiloff-Smith, 1990).
These characterizations are captured by a system of
chained associations. An associative system repre-
sents the world by pairs of system states A — B, such
that given (cue) state A, the system generates (re-
sponse) state B. States A and B may include sensory
states elicited by external input; motor commands
resulting in drawing fragments; or internal system
states. Finite-state automata (discrete states) and
simple recurrent networks (continuous states) (El-
man, 1990) are formal examples of such systems.

When the appropriate state pairs are represented,
associative systems capture the implicit level of repre-



sentation. For example, a person-drawing procedure
may be represented as: Man0 — head — body —
arms — legs — end, where each element (e.g., head)
performs two functions: it generates the appropri-
ate motor command, and is a cue for the next mo-
tor command. This association-based representation
is implicit: no drawing element is directly and in-
dependently accessible; and has a fixed order: each
element can only be executed by executing its prede-
cessor. (Although a child’s drawing procedure would
involve many more primitive motor commands, this
simplified model suffices to illustrate the characteris-
tic features of an implicit, sequential representation.)
With respect to the issue of relational complexity
each element is a constant; there are no dimensions
of variation. Since there are no dimensions of vari-
ation, we say the complexity of the normal drawing
task by executing this procedure is nullary (0-arity),
and therefore within the capacity of young children.
What makes this system associative and not binary
relational is the flexibility of access. Binary relations
permit predecessor states to be accessed by their suc-
cessors (see Phillips, Halford, & Wilson, 1995, for a
comparison of associative and relational systems).

Size/shape change based
alterations: Unary

Size and shape changes to drawing elements re-
quire some way of accessing alternative drawing sub-
procedures for components (e.g., large head) with-
out having to execute a particular preceding subpro-
cedure. A natural way of (re)representing a draw-
ing procedure is to group subprocedures belonging
to common drawing components: Manl — Head —
Body — Arms — Legs — end, where, for exam-
ple, the element Head = {(head), (head’), (head”)}
is a set of possible head-drawing subprocedures. Al-
though there is the same fixed order of execution?,
an alternate subprocedure can be selected from the
relation it belongs to. Since each set has only one
dimension of variation (whose values are specific sub-
procedures), the complexity of this modification is
unary.

End-of-sequence deletions and
insertions: Binary

Children’s drawing procedures have a structure
analogous to transitive inference tasks: elements in
both tasks have an ordering*. Both tasks can be rep-
resented by a binary relation between previous and
next elements. As such, the modifications of dele-
tion and insertion are analogous to certain types of
transitive inferences.

Suppose the ordered sequence (A,B,C,D,E), rep-
resented by the binary relation R(Pred,Succ) =

3This form of representation does not permit deletion or
insertion of elements.

4Elements of a drawing procedure are ordered in time, while
transitive inference tasks usually have a spatial ordering (e.g.,
height or length).

{(A,B), (B,C), (C,D), (D,E)}. Deleting element C
to form a new subsequence (B,D) is equivalent to
constructing the ordered pair (B,D) by joining pairs
(B,C) and (C,D) into the triple (B,C,D), and selecting
the first and third elements of the triple. In this case,
deleting an intermediate element requires ternary re-
lational information.

In the case where the deleted element(s) comes at
the end of the sequence, such modifications are analo-
gous to transitive inferences where the test pair con-
tains an end element. If we assume that a draw-
ing procedure contains an “end-of-sequence” subpro-
cedure () for terminating the drawing, then delet-
ing end elements only requires constructing a sub-
sequence containing the current and terminating el-
ements (e.g., (C,)). We noted previously that in
the special case of transitive inference where the con-
structed (test) pair contains an end element the com-
plexity of the task is binary. Since termination of a
procedure is the same process regardless of the draw-
ing (i.e., stop drawing), there is no need to identify its
value by joining intermediate relations. Thus, end-of-
sequence deletion is also binary.

End-of-sequence insertions are not modifications of
drawing procedures, as such, since the insertions are
performed only after completing a “normal” draw-
ing. Thus, the drawing procedure itself remains in-
tact. Since adding a new item does not require re-
specting any particular ordering, the complexity of
this operation is at most binary (i.e., one dimension
for selecting a drawn element plus one dimension for
selecting a new element).

Middle-of-sequence deletions and
insertions: Ternary

As explained above, middle-of-sequence deletions
are analogous to making transitive inferences where
the inferred pair does not contain an end element.
Thus, the complexity is ternary.

Middle-of-sequence insertions require placing a new
element between two ordered elements. This opera-
tion cannot be performed by constructing a single or-
dered pair. Suppose a subject intends to insert a new
element F between adjacent elements C and D to con-
struct the new subsequence (C,F,D). The adjacent
elements are represented by the binary relational in-
stance (C,D). A new ordered pair can be constructed
combining the first element of the pair (C) with the
new element (F) to form the pair (C,F). However, one
cannot construct the second ordered pair (F,D) with-
out considering what element precedes F, since the
order (F,D) is not among the original pairs. The op-
eration requires integrating the original ordered pairs
(C,D) and the inserted pair (C,F) to form the or-
dered triple (C,F,D). This operation is analogous to
a transitive inference except that the resulting join
occurs at the first element of the triple, rather than
the middle element. Again, the complexity is ternary.



Position and orientation changes:
Ternary

The older group of children also made position and
orientation changes to elements of a drawing, whereas
the younger children did not. These modifications
can be explained in terms of a series of middle-of-
sequence deletions and insertions. For example, mod-
ifying the sequence (A,B,C,D,E) to (A,B,D,C,E) is
achieved by first deleting C from the subsequence
(B,C,D) to generate (B,D) and then inserting C into
the subsequence (D,E) to generate (D,C,E). Simi-
larly, orientation changes can be regarded as reorder-
ing a subsequence of elements. For example, instead
of a head being drawn as the sequence (face, eyes,
nose, mouth), an upside-down head may be drawn as
the sequence (face, mouth, nose, eyes), which also
requires a combination of middle-of-sequence dele-
tions and insertions. Thus, both sorts of modifica-
tions have a complexity that is ternary.

Discussion: Implications

If relational complexity provides a good account of
the development of children’s drawings then a num-
ber of implications arise. Firstly, transitive inference
is attained at the median age of five years, whereas
Karmiloff-Smith’s data show that only a small per-
centage (< 10%) of 4-6 years olds make the same
sorts of modifications as the 8-10 years. This dif-
ference may be explainable in terms of methodology.
Early work on transitive inference identified the tran-
sitionary period at around seven to eight years of age
(Piaget, 1957), which is in line with the drawing data.
Yet, subsequent methodological refinements reduced
the age to five years (see Halford, 1993). Similarly,
refinements to the drawing paradigm may reduce the
age of specific modifications. However, what should
remain the same for the relational theory to hold is
the ordering of modifications (i.e., one should not find
evidence of ternary tasks before binary).

Secondly, if young children have the capacity for
binary relations one would expect the ability to con-
struct subsequences of arbitrary order by the outer
join (juxtaposition) of two unary relations. For ex-
ample, suppose the unary relation Body-part(P) =
{head, body, arm, leg}. Taking the outer join of
this unary relation with itself generates all possible
pairs of elements. Reiterated, it results in all possi-
ble lists of elements. Yet, no evidence of such ability
was demonstrated in young children.

However, the experimental paradigm of free draw-
ing doesn’t really test this possibility. Although,
Karmiloff-Smith did explicitly ask young children to
draw a man with two heads (at which they failed),
their failure can be attributed to the overriding con-
straint of having to draw a man, than the constraint
of having to draw two heads. Rather, a better test of
their capacity to access subprocedures is to ask sub-
jects to draw, for example, two heads, or a head and
a leg. This task frees the subject from the constraint

of a particular ordering. Drawing single components
requires only unary relations, and conjunctions only
binary relations®. Both of which should be within the
capacity of young children. But, modifications that
preserve some part of the original order (e.g., inser-
tions, where the first and third elements in the new
subsequence were the first and second elements of the
original subsequence) may involve ternary relations.

General discussion:
Mechanisms for change

Our primary concern in this paper was to explain
the order children’s drawing modifications so as to
constrain possible mechanisms. Unfortunately, the
notion of redescription itself does little to characterize
the mechanism. Connectionists routinely regard in-
ternal activations and weights as forms of representa-
tion. And so, it is only a short step to regard any type
of learning rule that changes those internal values as a
instance of redescription. But, clearly, there is more
intended in redescription than just learning (Clark
& Karmiloff-Smith, 1993). We said that Karmiloff-
Smith’s implicit /explicit distinction corresponds to a
difference between associative and relational repre-
sentational systems, and that the order of change is
constrained by the relational complexity of the modi-
fication task. Although we have not provided mecha-
nisms for change, our formalization allows us to be a
little more specific about the process. Our approach
is to identify connectionist networks with the proper-
ties formalized in associative and relational systems,
and then recast the problem as that of identifying
mechanisms for going from one network to the other.

Feedforward (and recurrent) networks are natural
candidates for associative systems within the connec-
tionist framework. The association (a,b) is repre-
sented by weighted connections between a group of
input units, whose activations constitute the vector @
(representing entity a); and a group of output units,
whose activations constitute the vector b (represent-
ing entity b). The weight matrix W represents the
association (a,b) by taking the outer product of cue
and target vectors (i.e., W = a ®b). A target is re-
trieved by applying a cue at the inputs, and multiply-
ing it with the weight matrix. For example, assuming
othonormal vector representations (i.e., perpendicu-
lar and unit length), aOW =a®a®b+aGc®d =
b+ 0 = b. Feedforward networks are in general uni-
directional, since bO W =b0a®b+b®c®d = 0.
Again, one can represent the reverse association,
but this requires an additional training step (i.e.,
W =W 4+ b®a). In the case of configural associa-
tions, where there may not be a linear mapping from
cue to target, a group of nonlinear hidden units is
added, which is sufficient to represent most functions

5Conjunctions of n elements do not imply n-ary relations.
Apparently, high arity relations may be reducible to lower arity
relations, contingent on an analysis of functional dependencies
between relational elements (see Phillips, 1997; Halford, Wil-
son, & Phillips, in press, and Appendix A, for examples).



(Hornik, Stinchcombe, & White, 1989). Analysis of
hidden unit activations has revealed considerable in-
ternal structure, with dimensions within the activa-
tion space coding for particular features (e.g., Elman,
1990). But, it is the analysis technique that makes
explicit a dimension of variation. Thus, feedforward
and recurrent networks capture the properties of as-
sociative systems, and the implicit level of represen-
tation.

Relations are a type of structured object. A gen-
eral connectionist method for representing structured
objects is the tensor network (Smolensky, 1990). In
a tensor network, units are connected so as to im-
plement the inner and outer product operators for
tensors of arbitrary rank. Assuming the appropriate
units and connectivity, there are two ways of repre-
senting relations with tensor networks. Suppose the
loves relation, with instances: John loves Mary and
Sue loves Tom. One method is to take the sum of
the outer products of vectors representing entities®
and their roles. So the loves relation is represented
by the tensor Ty = JQ A+ LQ R+ M ® P, and the
tensor Tsrr = S® A+ LR+T ® P, where A, R and
P are vectors representing the agent, relation and pa-
tient roles, respectively. A second method (Halford,
Wilson, Guo, Gayler, Wiles, & Stewart, 1994) is to
take the sum of the outer product of vectors repre-
senting each entity. In this case, the relation is rep-
resented by the tensor T=J QLM +SQLRT.
The second method assumes additional connections
for placing entity vectors onto the appropriate axis
of the tensor before computing the outer product.
This can be achieved by taking a special outer prod-
uct of the entity vector with its role vector, for ex-
ample, J® A = (J,—,-); L& R = (—,L,—); and
M ®' P = (—,—,M), where — indicates no activity
passed to that group of units.

In either method, there is an explicit representation
of the role vector, which is used to retrieve any re-
lational element by a network of units implementing
the inner product. By this formulation, part of the
problem of proposing mechanisms for redescription
becomes the problem of finding the appropriate en-
tity (filler) and role vectors in complex environmental
input. Initial steps towards learning role vectors from
tensor representations were done in Phillips (1994,
1995), although more work is required to apply these
ideas to mechanisms of redescription.

Conclusion

Relational complexity is not intended as a replace-
ment for representational redescription. It is intended
to help constrain and identify possible mechanisms.
Relation based capacity limitations posit four major
milestones in development: unary to quaternary that
are enabled by maturation, but also dependent on
experience. Representational redescription is a cyclic
process driven both externally and internally. These

8What Smolensky calls fillers.

two positions are not contradictory. Instead, rela-
tional complexity places an upper bound on the sorts
of internal representational changes performed.

Karmiloff-Smith argued that young children have
difficulty on modifications that require interrupting
their normal drawing procedures. We have shown
that this explanation can be made more formal in
terms of a relational model. We suggest that mech-
anisms for redescription are to be found in models
that develop the capacity to represent and process
increasingly higher arity relations.
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Appendix A: Relations

The preceding arguments were based on stan-
dard definitions of sets, relations and their opera-
tors. More formal discussion is provided here to help
ground these arguments.

A set S is a collection of abstract entities x; that
satisfies property P. That is, S = {z;|P(z;)}. Re-
lation R™(A4,...A,) is a set of tuples (z1,...,Zy,)
from the product of sets Si,...,.S, satisfying prop-
erty P. That is, R"(A4,...4,) = {(z1,...,2p) €
S1®...9 8,|P(z1,...,2,)}. Examples of relations
are: even numbers R._(X) = {2,4,...}; greater
than R%(X,Y) = {(3,1),(3,2),...}; and addition
R (X,Y,Z) = {(1,2,3),(1,3,4),...}. A nullary re-
lation is just an atomic entity - R = z. So, for
example, while the set of even numbers is a unary
relation, its elements 2, 4, etc are constant, atomic
entities and may be considered nullary relations.

As mathematical objects, there are infinitely many
possible relations, but not all of these can be stored
in a database, or represented in a cognitive system.
Most of these relations are derivable via combinations

of relational operators. Basic relational operators in-
clude: select and project for retrieving a relation from
within a relation (e.g., retrieve only those numbers
less than two); and join for constructing larger rela-
tions from smaller ones. Details of these operators
can be found in Phillips et al. (1995).

A binary relation can be constructed by taking the
outer join of two unary relations. An outer join con-
catenates every tuple in the first relation with ev-
ery tuple in the second relation. An equi-join con-
catenates only those tuples that share common ele-
ments along the specified dimensions of the two re-
lations. Equi-joins can be used to make transitive
inferences. Suppose the binary relation R2(X,Y) =
{(1,2),(2,3),(3,4),(4,5)}. Joining the relation with
itself at the Y dimension in the first instance, and
the X dimension in the second instance returns
R} (X,Y=X,Y) = {(1,2,3),(2,3,4),(3,4,5)}. Pro-
jecting onto the first and third dimensions (positions)
results in B2 (X,Y) = {(1,3),(2,4),(3,5)}.

Common knowledge of relations comes from their
use in language. But, relational complexity is not
simply a count of the nouns in a sentence. It involves
an analysis of the functional dependencies between
relation elements. Suppose the following facts:

o There is an apple and an orange on the table.
o There is a jacket and a hat on the chair.

At first glance, these two facts appear to involve a
ternary relation between two objects and their sup-
port: R3 (01,0,,5) = {(a,0,t),(j,h,c)}. But, the
same information is represented by the binary re-
lation: R2 (0,S) = {(a,t),(0,t),(j,c), (h,c)}, since
the two facts can be reconstructed by joining the bi-
nary relation with itself along the support dimension
(S). Determining, for example, where is the jacket
requires only processing a binary relation.



