
The Processing of Associations versus the Processing of Relations and
Symbols: A Systematic Comparison

Steven Phillips Graeme S. Halford William H. Wilson
Department of Computer Science Department of Psychology School of Computer Science & Engineering

University of Queensland University of Queensland University of New South Wales
Brisbane 4072 Australia Brisbane 4072 Australia Sydney 2052 Australia
stevep@etl.go.jp gsh@psych.psy.uq.oz.au billw@cse.unsw.edu.au

Abstract

A mathematical basis is proposed for the distinction
between associative and relational (symbolic) processing.
Associations can be contrasted with relations in terms of
ordered pairs versus general ordered N-tuples, and
unidirectional access versus omnidirectional access.
Relations also have additional properties: they can
exhibit predicate-argument bindings, they can be
arguments to higher-order structures, and they can
participate in operations of selection, projection, join,
union, intersection, and difference. Relations can be used
to represent structures such as lists, trees and graphs, and
relational instances can be thought of as propositions.
Within neural net architectures, feedforward networks can
be identified with associative processing, and tensor
product networks with relational processing. Relations
have the essential properties of symbolic processing;
flexibility, accessibility, and utility for representing
complex data structures.

Introduction

We propose a mathematical basis for the distinction
between associative and relational processing. We suggest
this distinction captures much of the meaning contained in
the distinction between traditional associationism and
symbolic processing, and has implications for neural
network modelling of psychological tasks.

We illustrate our argument using the balance-scale (which
balances when the product of weights and distances on the
two sides are equal, that is when Wl Dl = Wr Dr). A
common form of assessment has been to ask participants to
predict the balance state (whether the beam will balance, or
which side will go down) when various combinations of
weights are placed at various distances from the fulcrum
(Siegler, 1981). Other assessments require participants to
specify the weight or distance on one side that will balance
a particular combination of weight and distance on the other
side (Surber & Gzesh, 1984) To demonstrate understanding,
a participant must be able to retrieve any variable, given the
rest (e.g. given Wl, Dl, Wr, and the outcome BALANCE it
should be possible to specify Dr; given Wl, Dl, Wr, and
Dr, it should be possible to specify the state of balance).
Thus we say that access to a relational concept should be
omnidirectional.

An example of an association would be a rabbit running
on seeing a fox, that is; fox → run. It is a link between
two elements, fox and run. It is unidirectional, because

running does not automatically activate a representation of
fox.

Associative Versus Relational Processing

In this section, we give an abstract description of the
associative and relational modes of processing.

Associative Processing

Data Structures

In an associative system we assume the existence of a set of
symbols S = {a1, a2, ..., aN}. The primary data structure of
an associative system is a set of pairs of symbols A,
denoted: A = {(ai,aj) | ai,aj ∈ S and ai cues aj}

Operations

There are three basic operations in an associative system:
• Cue - takes the symbol ai and returns its associated

symbol aj, from the set of pairs in A. Fcue(ai) → aj
• Form association - takes two symbols ai and aj and adds

the pair to the set A to form a new set A'.
Fassoc(ai,aj) → A' = A ∪ {(ai,aj)}

• Delete association - takes a pair and removes it from the
set A to form a new set A'.
Fdel_a(ai,aj) → A' = A \ {(ai,aj)}
The basic symbols may themselves be composed of other

symbols (i.e., they are not necessarily atomic). In this way,
associations may be formed between three or more basic
symbols, or between complex representations.

Relational Processing

Data structures

A relational system consists of a set of relations {Ri}
where each relation Ri (of ari ty , i.e. number of
components, n(i)), corresponds to a set of n(i)-tuples:
Ri = {(x1,...,xn(i)) ∈ Si1x...xSin(i) | Ri(x1,...,xn(i)) holds}

For example, if S1 = {john, mary, tom}, and S2 is the
set of natural numbers, then a relation has-age on S1xS2
might be written as the set of pairs {(john,24), (mary, 22),
(tom,3)}.

A relation can also be conceptualised as a table. For
example, the relations "has-age" and "loves" may be
represented by the following tables:

Predicate Object Years
john
mary
tom

24
22
3

has-age
has-age
has-age

Predicate Person
loves
loves
loves

john
john

tom

mary
Object

sue
mary

It is redundant to store the predicate name as a separate
column in the table, however, we have adopted this
convention to allow for situations in which the arguments
act as cues for accessing the predicate.

Each row of the table is a tuple from the set which
formally constitutes the relation. It is also convenient to
write a relation in terms of its attributes - that is, the types
of the arguments it takes. Thus, R<s> denotes a relation R
with attribute sequence s = A1, ... , An. For example, the
binary relation 'has-age' can be identified as: has-
age<object,years>.

Relations are a general purpose data structure, and in fact
can be used to represent other commonly used data
structures, such as lists, trees and graphs. For example, the
list of objects L1 = [john, mary, tom] can be represented by
the relation:

is-list-of<list, head, tail> = {(L1, john, L2), (L2, mary,
L3), (L3, tom, nil)}. (Here nil is a constant representing an
empty list.) Furthermore, relational instances (i.e., rows of
a table) have an assigned truth value (i.e., TRUE), and so
can be thought of as propositions. For example, larger-
than(whale,man) is a proposition that is TRUE.

Operations

We provide informal definitions of relational operators:
• Fselect - given a relation and one or more components,

returns the row(s) with those components.
Example 1: Fselect(has-age,Person=tom) → (tom,3).

• Fproject - given a relation and one or more attributes
(column names), returns those columns of the table.
Example 2: Fproject(loves, Person) → {john, john,
mary}.

• Fjoin - takes two tables and returns a new table joined at
common components in specified columns.
Example 3: Fjoin could be used to “paste together” the
relation has-age, defined above, with a relation has-height
= {(john, 175), (mary, 165), (tom, 95)} (where the second
component is height in centimetres), joining at the
Person column, to produce a new relation age-and-height
= {(john, 24, 175), (mary, 22, 165), (tom, 3, 95)}.
Example 4: Consider the relation smaller-than<animal1,
animal2> = {mouse, cat), (cat, dog), (dog, horse)}. A
more complicated form of Fjoin could be used to “paste
together” one instance of relation smaller-than, joining at
the animal2 column, with another instance of the same
relation smaller-than, joining at the animal1 column, to
produce a new relation (call it “much-smaller-than”) =

{(mouse, dog), (cat, horse)}. This example composes the
relation with itself, much as in transitive inference.
In addition, there are set-like operators, Funion,

Fintersection, and Fdifference, which form the set-theoretic
union, intersection and difference of two relations with the
same attribute lists, and operators Fadd_r, Fdel_r, and
Fupdate_r, for adding, deleting, and updating relational
instances (Codd, 1990).

Comparison Between Associative and Relational
Modes

Both associative and relational systems utilise links
between component symbols to construct more complex
symbols. However, beyond this similarity there are
significant differences in their processability.

Compositionality: Associations are limited to pairs of
symbols, whereas relations can be between arbitrarily many
symbols (including pairs). Furthermore, associations do not
recognise a predicate (a symbol for the relationship between
other symbols). Relations on the other hand are predicated.
This is a crucial distinction between associations as
implicit representations (representations that are not
available to other processes), and relations as explicit
representations (relations that are available to other
processes). The predicate is the explicitation of links
between symbols. Because a relation is explicitated via the
predicate symbol, relations are available as arguments to
other relations. Associations may cue other associations
through chaining, but they are not themselves available for
association. Relations, on the other hand, can exist between
other relations. For example, the relation "because" can take
the unary relation "cried" and the binary relations "kissed"
as arguments: because(cried(Tom), kissed(John,Mary)).

Directionality: Associative systems are unidirectional: the
first component can cue the second, but not the reverse.
Relations, however, are in general omnidirectional. Any
subset of components can be used to access the remaining
components. The number of returned relational instances
will, of course, depend on the uniqueness of the supplied
components.

Structure sensitivity: Associative systems are
structurally very weak. An associative system can be
conceptualised as a single table of two columns. Relational
systems, by contrast, are stronger structurally. Components
are accessible purely by their roles. Furthermore, new
relations can be created on the basis of structural operations.
A relation R can be used to generate its inverse by using
the project operator (i.e., R-1 = Fproject(R<A1,A2>, A2,
A1)). For example, > (greater-than) can be mapped to <
(less-than), by swapping arguments, without having to
learn an entirely new table of associations. In other words,
relational systems have the capacity to create virtual tables,
thus circumventing extensive retraining.

Implications

The data structures and operations defined in the previous
section have a number of implications in terms of resources
(both time and space) for models utilising these two modes
of processing. Suppose we a relation R<subject, relation,

object> includes the concepts "John loves Mary" and "Sue
loves Tom", from which there is sufficient information to
correctly answer questions such as: "Who loves Mary?";
Who does Sue love?"; and "What is the relationship
between Sue and Tom?".

An associative system, where the only complex data
structure is a pair, must construct new symbols in order to
correctly answer these questions. For example, (loves-Mary,
John), (Sue-beloved, Tom), and (Sue-Tom-relation, loves).
Each question is matched against the first component of
each pair. The pair with the closest match triggers the
second component resulting in the correct answer. In fact,
each concept requires three associations, one for each
possible response (e.g., loves, John, Mary).

A relational system, using the same two concepts, only
requires a single table with two entries: (loves,John, Mary),
and (loves,Sue, Tom). The select and project operators are
sufficient to extract any combination of components. For
example,

Fproject(Fselect(R, <relation=loves,object=Mary>),
subject) = John;

Fproject(Fselect(R, <(subject,John),(object,Mary)>),
relation) = loves.

In the relational case, only one entry per concept is
required. Thus, a relational system uses less space than an
equivalent associative system. However, the associative
system only makes one match to the left-hand side of each
pair, whereas the relational system must align the input
cues with the appropriate relational components. The
reduction in space is at the expense of additional processing
required to perform some sort of structural alignment in the
relational system.

The flexibility of relational operators relates to a further
implication which is generalisation. Suppose we have the
concept: "a whale is larger than a horse", which implies the
related concept "a horse is smaller than a whale". In an
associative system both concepts require separate learning
steps (i.e., use of the Fassoc operator). The relational
system, by contrast, need only be trained on the first
instance. Since the inverse relation can be constructed
dynamically via the project operator, it is not necessary to
have also been trained on the second concept for subsequent
processing. Thus, relations have a greater degree of
generalisation.

Neural Network Implementations
This section suggests neural network architectures that can
readily be used to implement systems with similar
properties to the associative and relational systems that we
have described in the preceding section. Of course, neural
network architectures may be of enormous variety, and we
do not mean to suggest that these are the only NN
architectures that match associative/relational systems (see
for instance Hinton (1988)).

Feedforward networks (FFN)

FFN (for example, Rumelhart, Hinton, & Williams, 1986)
have two modes of operation: (1) processing mode - input
activations are propagated throughout the network resulting

in output activations; and (2) learning mode - error signals
are propagated throughout the network resulting in changes
to connection weights. The first mode corresponds to the
Fassoc operator. The network returns a vector which is
some (possibly non-linear) combination of matched first
argument vectors. The second mode corresponds to the
Fassoc and Fdel_a operators by adding/deleting new input-
output pairs encoded as weighted connections.

FFNs have demonstrated generalisation in the sense that
component symbols can be brought together to form a new
symbol at the hidden layer of units. It is not necessary for
the network to be trained on all combinations (see, for
example, Phillips & Wiles, 1993). However, this form of
generalisation is different from generalisation to all
functions implied by a relation. A FFN, in general, cannot
demonstrate this degree of generalisation and therefore is not
a relational processor.

To illustrate this point, consider the simple case of
representing and processing the following binary relation:
R 2 = {(a,b)}. Derivable from this relation are two
functions: f1(a) = b, and f2(b) = a. To completely represent
R2, an FFN must implement the second order function:

F(f1, a) = b; F(f2, b) = a.
For this simple relation R2, the co-domain of F can be

completely determined by the second arguments (i.e., a and
b) only. Dropping the first arguments for simplicity, the
FFN must implement the function:

F(a) → b; F(b) → a.
Since, in general, there is no similarity between a and b,

the FFN must be trained on both instances of the function
F before the network is guaranteed to implement F, in the
sense of approximating F at above-chance level over
repeated trials, and therefore, representing R2. Hence, a
standard FFN implementation of relational representations
necessitates being trained on all implicated functions.

The second crucial point is that the relationship between
component symbols is encoded as weighted connections and
activation functions between groups of units. These
weights (encodings) are, in general, not available to other
processes within the FFN, although they may be analyzed
via external processes such as cluster analysis or principal
components analysis. In other words, the predicate (i.e., the
name for the set of pairs) is implicit to the system, not
explicit as in a relational system. The properties of
unidirectionality and implicit predication identify the FFN
as an associative system.

So FFNs can be used to implement an association in a
natural way.

Tensor Networks (TN)

In a tensor network, predicate and arguments are bound
together via an organisation of unit connectivity that
implements the outer product operator (Halford, Wilson,
Guo, Gayler, Wiles, & Stewart, 1994), which contrasts
with Smolensky's (1990) use of the tensor where role and
filler components are bound together via the outer product.
The arguments are supplied as inputs, and weights are
updated as the outer product of the two inputs. This allows
for either a or b, applied to the right set of input units to

map to the other vector (by implementing the inner product
operator).

Mathematically, the learning process can be thought of as
a function TL (for tensor learning), which, given a tensor
network F and (say) a pair to learn, (a,b), returns a modified
version F' of F that "knows" the pair (a,b): TL(F, (a,b)) →
F', where F'(a,_) → b, F'(_,b) → a.

The important point is that T need only be applied once
to represent both implicated functions. Thus, at one crucial
point the tensor network operates in the relational mode of
processing. Secondly, since the predicate-argument bindings
can be explicitly represented as an activation tensor, this
tensor can also be used as an argument to other tensors (via
the outer product), thereby implementing relations between
relations. Thus, the properties of omnidirectionality and
generalization to implicated functions identifies the tensor
network as an implementation of a relational system.

Psychological tasks

McClelland (1995) has modelled human performance on the
balance scale as a three-layered network. There are input
units which code the weights and distances on the left and
right, a hidden layer, and output units which code the
balance-state. The model gives a good fit to human
performance in predicting the balance state, and captures the
important torque difference effect (the size of the difference
in torque between left and right affects judgment). However
the model computes only one function: given Wl, Dl, Wr
and Dr it computes the balance-state.

The balance scale can also be represented as a tensor
product of five vectors representing the balance state, and
each of the input variables, Wl, Dl, Wr, Dr (Halford,
1993). With this representation, any variable can be output,
given the remaining variables as input (given any four of
Wl, Dl, Wr, Dr and balance-state, the remaining variable
can be determined). This model is relational, and gives
omni-directional access, whereas the three-layered net is
associative, and gives uni-directional access.

The three-layered network does not represent human
understanding of the balance scale, because we would be
reluctant to attribute complete understanding to a person
who could compute only one function in this situation.
There are of course other considerations which favor the
feedforward network model (e.g. simulating the torque
difference effect), and we would not contend that either
model is necessarily superior at this stage. However the
example neatly illustrates an important difference between
associative and relational models of cognitive tasks.

Conclusion

Relations capture many of the properties of symbolic
thought. Whereas associations are unidirectional, access to
relations is omnidirectional, and so relations have the
flexibility characteristic of symbolic thought. There are
predicates explicitly representing relations, making them
accessible to other cognitive processes, whereas there is no
explicit symbol for an associative link. Relations can
represent symbolic structures such as propositions, lists,

trees and graphs. We have argued that feedforward networks
can be used in a natural way to implement associative
modes of processing, and that relational modes of
processing can be implemented using tensor product
networks. We have characterized the difference between
associations and relations and their processing in terms of
mathematical properties, and linked each to suitable neural
network architectures, and psychological tasks.

References
Codd, E.F. (1990). The Relational Model for Database

Management: Version 2. Addison-Wesley.
Halford, G.S. (1993). Children's understanding: the

development of mental models. Hillsdale, N. J.:
Erlbaum.

Halford, G.S., Wilson, W.H., Guo, J., Gayler, R.W.,
Wiles, J., & Stewart, J.E.M. (1994). Connectionist
implications for processing capacity limitations in
analogies. In K. J. Holyoak & J. Barnden (Eds.),
Advances in connnectionist and neural computation
theory, Vol. 2: Analogical connections (pp. 363-415).
Norwood, NJ: Ablex.

Hinton, G.E. (1990) Mapping part-whole hierarchies into
connectionist networks. Artificial Intelligence 46, 47-75.

McClelland, J.L. (1995). A connectionist perspective on
knowledge and development. In T. Simon & G. S.
Halford (Eds.), Developing Cognitive Competence: New
Approaches to Cognitive Modelling. Hillsdale, NJ:
Erlbaum.

Phillips, S., & Wiles, J. (1993). Exponential
Generalizations from a Polynomial Number of Examples
in a Combinatorial Domain. In Proceeedings of the
International Joint Conference on Neural Networks, (pp.
505-508). Nagoya, Japan:

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986).
Learning internal representations by error propagation. In
D. E. Rumelhart & J. L. McClelland (Eds.), Parallel
Distributed Processing: Explorations in the
Microstructure of Cognition (pp. 318-362). Cambridge:
MIT Press.

Siegler, R. S. (1981). Developmental sequences within and
between concepts. Monographs of the Society for
Research in Child Development, 46, 1-84.

Smolensky, P. (1990). Tensor product variable binding and
the representation of symbolic structures in connectionist
systems. Artificial Intelligence, 46(1-2), 159-216.

Surber, C. F., & Gzesh, S. M. (1984). Reversible
operations in the balance scale task. Journal of
Experimental Child Psychology, 38, 254-274.

