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1. Introduction

What can category theory contribute to cognitive
science? Presumably, this question begs a more
basic one for many cognitive scientists: What is
category theory? Category theory (Awodey, 2010;
Mac Lane, 1998; Leinster, 2014) is a branch of
(meta)mathematics invented as a formal language for
comparing mathematical constructions.

In a metamathematical sense our theory provides
general concepts applicable to all branches of ab-
stract mathematics, and so contributes to the cur-
rent trend towards uniform treatment of different
mathematical disciplines. In particular, it provides
opportunities for the comparison of constructions
and of the isomorphisms occurring in different
branches of mathematics; in this way it may oc-
casionally suggest new results by analogy. (Eilen-
berg & Mac Lane, 1945, p. 236)

In that sense, category theory can be regarded as a for-
mal theory of analogy (Brown & Porter, 2006). Or,
perhaps more aptly, category theory is to mathematics
as analogy theory is to cognitive science.

Mathematical models have been a mainstay of psy-
chology (Townsend, 2008), so the above suggests that
category theory can contribute to cognitive science,
given analogy as a core cognitive process (Hofstadter,
2001). Indeed, most cognitive models of analogy
are driven by structural consistency (Gentner & For-
bus, 2011)—cf. structure mapping theory (Gentner,
1983)—and a categorical approach to structural con-
sistency was recognized early on (Halford & Wilson,
1980). Despite this parallel, contributions to cognitive

models of analogy have been few and far between (see,
e.g., Halford, Wilson, Guo, Gayler, Wiles, & Stewart,
1994; Navarrete & Dartnell, 2017).

The sparsity of category theory contributions for
models of analogy may reflect different aspirations.
Category theorists want formal accounts of structural
relations between formal concepts. Cognitive scien-
tists seek explanations for conceptual thinking more
broadly, including commonsense concepts which are
notoriously difficult to formally define (Laurence &
Margolis, 1999). Formal concepts typically have suc-
cinct and precise definitions. Unsurprisingly, then, a
significant contribution of category theory to a field
outside mathematics has been computer science (see,
e.g., Arbib & Manes, 1975; Barr & Wells, 1990; Wal-
ters, 1991). Still, category theory may have a deeper
role to play in our understanding of cognition that has
yet to be fully recognized—a role that goes beyond
analogy as a core cognitive process.

There is more to category theory than arbitrarily
identifying interconnections.

What matters is the many real [emphasis added]
interconnections, not the wholly artificial ones.
(Mac Lane, 1997, p. 121)

The sense of artificial is exemplified by anomalous
cancellation, e.g., 16

64 = 1
4 (Weisstein, 2020). Anoma-

lous cancellation is analogous to the cancellation rule
for fractions: a

b ×
b
c = a

c . But the analogy is artificial
in that the equality only holds coincidentally (idiosyn-
cratically) for a handful of cases, whereas the cancel-
lation rule applies systematically to all non-zero num-
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bers and derives from deeper properties pertaining to
groups.1) Category theory provides a formal sense in
which an analogy is natural as opposed to artificial.

1.1 Natural and universal connections
A focus on the real connections resonates with the

systematicity property of language (Chomsky, 1980)
and thought (Fodor & Pylyshyn, 1988). Systematicity
is a property of cognition whereby certain structurally-
related capacities tend to coexist. The archetypal ex-
ample is where having a capacity to understand the ex-
pression John loves Mary implies having a capacity to
understand the (structurally related) expression Mary
loves John. A basic observation to be explained is why
you only find native (English) speakers who can un-
derstand one statement if and only if they can under-
stand the other statement. A classical explanation is
that these two capacities are intrinsically connected by
the same syntactic process that respects their seman-
tic relationship, i.e. the loves relations between agent
and patient. Hence, consistent with the data, one can
only have either both, or neither capacity, but nothing
in between. By contrast, idioms are idiosyncratic: e.g.,
John kicked the bucket (i.e, John died) is not semanti-
cally related to Mary kicked the ball. The second ex-
pression can be understood independently of the first,
despite the syntactic analogy. The expression John bit
the dust (i.e, John died) is likewise idiomatic, despite
the semantic analogy. A classical explanation also ac-
counts for this situation, because two different syntac-
tic processes are responsible for understanding these
expressions. Hence, one can have both, neither, or just
one of these capacities, which is again consistent with
the data. A theory of cognition should account for the
evident systematicity properties.

Note that counterexamples of systematicity are not
just about idioms. For example, John loves Mary is
also analogous to loves Mary John as three-word lists.
Clearly, one can have a capacity for three-word lists
without having a capacity to understand the meanings
conveyed by John loves Mary and Mary loves John. In
the latter two cases, John and Mary are “bound” to the
loves relation. As lists, those words are just related by
order. The “shape” of those structures differs, which is
an important aspect of systematicity.

Accounts of systematicity generally assume some
form of compositionality whereby representations of
complex entities are composed from representations of
constituents. Classical theory assumes symbolic rep-
resentations and processes, i.e. a combinatorial syntax

1) That is the axioms for a group, which the set of non-zero
real numbers (under multiplication) constitutes an instance.

and semantics whereby the semantic relations between
constituents are mirrored by syntactic relations be-
tween the corresponding symbols (Fodor & Pylyshyn,
1988). Non-classical (e.g., neural network) theory as-
sumes representations are composed by other means,
e.g., vector operations (e.g., Smolensky, 1990).

Whether such theories account for systematicity and
to what extent cognition is systematic has been exten-
sively debated (see Aizawa, 2003, for a review and
analysis). The essential criticism has been that such
theories generally fall short, because they also admit
constructions that fail to exhibit the requisite system-
aticity property without some additional, so-called ad
hoc assumptions that must be added to the theory to
pick out just the systematically related capacities: aux-
iliary assumptions whose sole purpose is to fit the er-
rant cases (Aizawa, 2003).

A category theory approach was introduced to ac-
count for systematicity, without such assumptions, in
terms of natural and universal constructions (Phillips
& Wilson, 2010, 2016c). The basic intuition, which
we elaborate upon later, is that natural and universal
constructions capture the generality and commonal-
ity alluded to in the John loves Mary example. Such
constructions satisfy a universal mapping property
(Awodey, 2010), hence are called universal construc-
tions. Put briefly, the systematicity properties occur
just where there are universal constructions, so no fur-
ther (ad hoc) assumptions are needed. Moreover, uni-
versal constructions follow from a universal process
(see Phillips & Wilson, 2016c), i.e. every situation
in the given context (category) points to the universal
construction, hence systematicity necessarily follows.

1.2 The shape of things to come
An empirical challenge to this categorical view is

where systematicity is not evident despite the presence
of a universal construction. This possibility was tested
in a task where participants learned cue-target rela-
tions conforming to a particular universal construction,
called a product map: specifically, a map from pairs of
letters to coloured shapes that was the product of letter-
colour and letter-shape maps (Phillips, Takeda, &Sugi-
moto, 2016). To illustrate, suppose cues and targets are
composed from three-element sets of letters, colours
and shapes. Hence, there are nine mappings from let-
ter pairs to coloured shapes. Participants were trained
on a subset of these mapping and tested on the other
pairs. In the product condition, each letter at one po-
sition uniquely maps to a colour and each letter at the
other position uniquely maps to a shape. If participants
learned the training pairs as the product of letter-colour
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and letter-shape maps, then training on four mappings
(including all constituent letters, colours and shapes,
but not all possible combinations) is sufficient for cor-
rect prediction on the test pairs. A product is a univer-
sal construction, so participants should exhibit system-
atic capacity to map letter pairs to coloured shapes.

In some product conditions, however, participants
did not exhibit systematicity as evidenced by response
errors on novel pairs. Two groups of participants were
given a series of learning tasks in either ascending of
descending order of set size, i.e. the number of cue-
target mappings constituting the task. Participants in
the ascending group exhibited systematicity on large,
but not small sized tasks.2) (Participants in the de-
scending group exhibited systematicity at all sizes.)
As a product map, the targets for novel pairs were pre-
dictable from the constituent (letter-colour and letter-
shape) maps. By contrast, novel pairs were not pre-
dictable when a cue-target map was learned without
regard to the constituent maps, i.e. without represent-
ing the universal construction. These errors revealed a
situation where systematicity did not follow from the
presence of a universal construction, challenging the
categorical view.

An alternative categorical view is that systematic-
ity and non-systematicity are two aspects of a more
general universal construction. This situation is famil-
iar in the form of (Type 1/Type 2) dual-process theo-
ries (see, e.g., Evans, 2003; Kahneman, 2011). Sub-
sequent work showed that the two aspects are related
by particular category theory constructions (Phillips,
2018a), which we elaborate later. The point of de-
parture from other modeling approaches is to regard
cues and targets as data attached to some (topological)
space. The shape (topology) of the space determines
systematicity/non-systematicity (idiosyncracy), as ev-
idenced by the empirical data.

The challenge for a categorical approach appears to
be problematical. How can category theory explain
the (systematic) emergence of systematicity without
simply appealing to a universal construction whenever
systematicity emerges—the kind of ad hoc assumption
that was problematic for connectionist (and classical)
accounts of systematicity (Aizawa, 2003)? An answer
lies with another kind of universal construction, called
an adjunction (Mac Lane, 1998), that bridges the gap
between systematicity and non-systematicity, i.e. as
a universal construction relating other constructions
(Phillips, 2018a). This situation can be seen as a form

2) Failures were attributed to a cost/benefit trade-off between
the relative difficulty of associative learning and induction of
the product (relational) structure (Phillips et al., 2016).

of second-order systematicity, i.e a systematic capac-
ity to learn certain cognitive capacities (Aizawa, 2003;
Chomsky, 1980; Phillips & Wilson, 2016b). In con-
trast, systematicity is typically introduced as a relation
between base capacities, independently of learning, as
exemplified in the previous section. Naturally, then,
our explanation for this form of systematicity involves
a second-order universal construction.

The discovery of adjunctions, in general form, was a
major contribution of category theory to mathematics
(see Marquis, 2009, for a historical perspective).

The slogan is “Adjoint functors [adjunctions] arise
everywhere.” (Mac Lane, 1998, p. vii)

In this paper, we expand upon the earlier suggestion
(Phillips, 2018a) that these opposing properties are
themselves systematically related by presenting an ad-
junction that pertains to a change in the shape of the
underlying space. We further show how some other
opposing properties of cognition—often the subject of
dual-process theories—are too related by adjunctions
(see also Phillips, 2018b, 2020b). The general point
expounded here is that universal constructions (and, in
particular, adjunctions) afford an important category
theory contribution to cognitive science.

We proceed by presenting basic category theory
concepts for our categorical approach (section 2). A
specific example follows (section 3). The adjunction
used in this example builds upon a suggestion from
earlier work (Phillips, 2018a). Then we examine how
adjoints arise in other aspects of cognition (section 4).
We discuss this principle as a category theory contri-
bution to cognitive science (section 5). No familiarity
with category theory is assumed. Some theory is given
in the appendices for convenience and specificity.

2. Categorical constructions

For readers unfamiliar with category theory, basic
definitions are given first before presenting the concept
of universal construction.

As Eilenberg-Mac Lane first observed, “category”
has been defined in order to be able to define
“functor” and “functor” has been defined in order
to be able to define “natural transformation”. (Mac
Lane, 1998, p. 18)

And “natural transformations” are defined in order to
be able to define “universal morphisms” and “universal
morphisms” are used to define “adjunctions”. To help
mitigate the seemingly endless abstraction, these con-
cepts are introduced by comparison to concepts more
familiar to cognitive scientists (Table 1).

2.1 Basics
A proportional analogy is used to bootstrap some

intuitions about categories, functors and natural trans-
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Table 1 A comparison of concepts

Concept Category
entity object
relation(al structure) morphism
domain category
source/target functor (image)
analogy natural transformation
optimal universal morphism
correspondence adjunction

formations: Ebb is to flow as wax is to wane. Anal-
ogy is generally recognized as a map of entities in a
source domain to entities in a target domain that pre-
serves their relationships (Gentner, 1983). For the cur-
rent example, the entities (concepts) ebb and flow in
the source are antonymous, and respectively map to
antonyms wax and wane in the target (see fig. 1). The
source and target are instances of a common relation(al
schema), which we write as Opposes(Primal, Dual),
i.e. Opposes(ebb, flow) and Opposes(wax, wane).

Opposes

Primal
Dual

Opposes

ebb
flow

Opposes

wax
wane

object

morphismcategory

functor

image

natural transformation

source target

Fig. 1 Ebb is to flow as wax is to wane as a natural
transformation from source to target functors.

2.1.1 Objects and morphisms
An interpretation of this analogy in terms of cate-

gory theory concepts follows.
• The schema constitutes a category (definition 1)

consisting of three objects (Opposes, Primal and
Dual) and two (non-identity) morphisms, which
capture the roles played by Primal and Dual in
the relation Opposes.

• The image of each functor (definition 5) corre-
sponds to the source and target instances of the
relation.

• The proportional analogy is the natural transfor-
mation (definition 6) from source to target functor
consisting of three maps (one for each object in
the schema) satisfying a consistency condition.

Analogy is modeled as a natural transformation be-
tween functors that pick out the source and target rela-
tions constituting the proportion.3)

2.1.2 Generalized (shaped) “elements”
A quintessential difference between category and

set theory views is the focus on maps versus elements.
To wit, an element a in a set A is equivalently a map
that points to a, i.e. a : ∗ 7→ a, where ∗ is some element
whose identity is unimportant. The map a : 1→ A is
called a generalized element of A, where object 1 is a
terminal object (definition 3). In general, a morphism
f : X → A is called a generalized X-shaped element f
of A. Focusing on maps affords a convenient treatment
of certain kinds of (universal) constructions.

2.2 Universals
In the formal language of category theory, a univer-

sal construction is a construction that satisfies a uni-
versal mapping property—a kind of optimal (unique
existence) condition for the given situation, or context,
pertaining to a special case of natural transformations.
Examples are given to illustrate these connections.

2.2.1 Pairs and products
Pairing elements is one of the most basic forms of

compositionality, and this form is an instance of a
more general class of universal constructions. We use
the notion of generalized element, introduced in the
previous section, to derive this class of universal con-
structions, called a (categorical) product (definition 4),
from the more familiar notion of sets of element pairs.

As sets, the (Cartesian) product of A and B, writ-
ten A× B, is the set of all pairs, (a,b), where a is
drawn from A and b is drawn from B (example 5). As
maps, each pair (a,b) is equivalently the generalized
element ∗ 7→ (a,b), written ⟨a,b⟩ : 1→ A× B. The
product of functions f : X → A and g : Y → B, writ-
ten f ×g : X×Y → A×B, is defined elementwise, i.e.
f × g : (x,y) 7→ ( f (x),g(y)). Pair (a,b) obtains from
product a×b : (∗,∗) 7→ (a,b), and pair (∗,∗) is equiva-
lently generalized element ⟨1,1⟩ : ∗ 7→ (∗,∗). So, every
generalized element ⟨a,b⟩ is the composite of ⟨1,1⟩
and a×b. The map ⟨1,1⟩ is universal among such el-
ements, constituting a universal element, which is an
example of a universal construction.

The product construction for sets generalizes to ob-
jects in a category by regarding ⟨ f ,g⟩ : Z→ A×B as
a generalized Z-shaped element of the product of ob-

3) What counts as an object/morphism depends on the cat-
egory: e.g., categories are also objects in a larger category
whose morphisms are functors; a functor category has func-
tors for objects and natural transformations for morphisms.
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jects A×B in some category C. Accordingly, ⟨ f ,g⟩
is the composite of morphisms ⟨1,1⟩ : Z→ Z×Z and
f ×g, where ⟨1,1⟩ constitutes the universal morphism
among such elements, which is another example of a
universal construction.

The Cartesian product comes with two functions
that retrieve the first and second elements of each pair,
i.e. π1 : (a,b) 7→ a and π2 : (a,b) 7→ b. These functions
are also universal, as all such functions f : Z→ A and
g : Z→ B are composites of ⟨ f ,g⟩ and (π1,π2). Again,
generalizing to objects in a category, the (canonical)
categorical product is the object A×B and the pair of
morphisms π́ : A×B→A and π̀ : A×B→B, satisfying
the universal mapping property.

2.2.2 Universal morphisms and limits
All previous instances of universal constructions are

universal morphisms (definition 7), which are optimal
in a formal sense. A universal morphism consists of a
mediating morphism (remark 4) that pertains to a nat-
ural transformation involving a constant functor (ex-
ample 11). The mediating morphism is an “extreme”
member among the family of morphisms constitut-
ing the natural transformation—every member factors
through the mediating morphism (see example 14).

An important class of universal morphisms is called
limit (definition 8), including products (example 15).
All limits are determined by shape, i.e. a category used
by a functor (called a diagram) to pick out a collection
of objects and morphisms. For instance, a product is
the limit of a diagram whose shape is a two-object cat-
egory, one object for each constituent of the product.
As we shall see in the next section, shape plays an im-
portant role in accounting for cognitive capacity.

2.2.3 Duals
The examples of universal construction involved

two “opposite” forms. For products, the morphism
⟨ f ,g⟩ building up the product of objects A× B is a
composite of the common morphism ⟨1,1⟩ and the
(unique) morphism f × g, i.e. ⟨ f ,g⟩ = f × g ◦ ⟨1,1⟩.
The pair of morphisms ( f ,g) retrieving constituent
objects A and B is the composite of the (unique)
morphism ⟨ f ,g⟩ and the common pair of morphisms
(π́, π̀), i.e. f = π́ ◦ ⟨ f ,g⟩ and g = π̀ ◦ ⟨ f ,g⟩. In the
first case, the common morphism is composed before
the unique morphism, but is composed after the unique
morphism in the second case.

This situation is typical in that constructions have
two forms: primal and dual (remark 1). For instance,
product is the primal construction and coproduct is the
dual (example 6). A construction in regard to one cat-

egory generally has a dual construction obtained by
reversing the directions of the morphisms.

2.3 Adjunctions
In certain situations, primal and dual forms of uni-

versal constructions are closely related by a pair of op-
posing functors, and this relationship is called an ad-
joint situation, or simply an adjunction (definition 9).
An adjunction between F : C→ D and G : D→ C in-
volves universal constructions in both directions, i.e.
from F to every object in D and from every object in
C to G. Such situations afford an important category
theory contribution to cognitive science.

The motivation for adjunctions is two-fold. Firstly,
adjunctions express a weaker form of correspondence
that is generally more useful than isomorphism (defi-
nition 2)—a kind of second-order isomorphism when
a first-order isomorphism may not exist. Secondly, ad-
junctions embody the kinds of trade-offs that interest
dual-process theorists, alluded to previously. Two ex-
amples follow that illustrate these motivations.

2.3.1 Approximation and precision
We consider approximation and precision as con-

ceptual, but not actual inverses (isomorphisms), since
approximation discards information—real numbers
are approximated by integers, but their sets are not iso-
morphic. Yet, there is a “second-order isomorphism”
affording comparisons with reals in terms of integers
without loss of precision. We can interpret an adjunc-
tion as a relation between opposing functors: e.g., one
functor sends each real to its ceiling (approximation:
e.g., 2.3 7→ 3) and the other functor sends each inte-
ger to its corresponding real (precision: e.g., 3 7→ 3.0).
The integers, likewise reals, with the usual order form
a category (example 2). The two number systems are
related by adjunctions (example 17). Effectively, com-
parisons of reals to upper and lower (integer) bounds
can be computed in terms of integers, thus avoiding a
need for infinite precision. In a cognitive context, an
infinite world is represented by finite resources. This
example also shows how adjunctions convey a second-
order isomorphism even though a first-order isomor-
phism does not exist.

2.3.2 Parts and wholes
One commonly held distinction is whether cognitive

processes operate on cognitive representations wholis-
tically or componentially (whole/part). For example,
kicked the bucket can be interpreted wholistically (id-
iomatically) as died, or componentially as an act of
kicking. We have already seen a basic example of
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compositionality in the form of the categorical prod-
uct. Products are constructed by the product functor
(example 7), which can be seen as putting together
parts into wholes. The conceptual inverse is to take
wholes and regard them as parts of a larger construc-
tion. The diagonal functor (example 9) plays this role
as the conceptual inverse of the product functor. The
two functors are adjoints (example 18): the diagonal
functor is left adjoint to the product functor.

As with the previous example, these functors are not
actual inverses. The diagonal functor does not take
a whole and return its original parts. However, as
we shall see, adjointness is more useful. In the psy-
chological sense, the part-whole relationship pertains
to chunking and dechunking, often seen as a way of
circumventing cognitive capacity limitations (see Hal-
ford, Wilson, Andrews, & Phillips, 2014).

2.3.3 A categorical principle: adjointness
Every adjunction induces a natural isomorphism be-

tween a pair of set-valued functors (remark 8). The
natural isomorphism is a local connection between two
categories that need not be globally isomorphic, as we
saw with the integers and reals. This situation alludes
to a general category theory principle for cognitive sci-
ence: adjointness as the bridge between apparently
disparate dual-processing forms of cognition.

Adjointness is a special case of the universal con-
struction principle that affords a formal framework
for thinking about cognition as a collection of dual-
process systems. Dual-process situations typically re-
alize a trade-off between resources and goals. The two
situations just given are examples. The first exempli-
fies a common situation that is a speed-accuracy trade-
off in that real numbers afford the benefit of precision
at the expense of response time. The second is a kind
of space-accuracy trade-off that we will explore in the
next section, as an empirical implication of the theo-
retical principle.

3. Systematicity: an adjoint situation

Recall the cue-target learning task from the intro-
duction (section 1.2), which was designed to explore
an interaction between systematic and idiosyncratic
properties of cognition, as a kind of trade-off charac-
terized by an adjunction. We hypothesized that failures
of systematicity in the presence of a universal con-
struction were due to task demands. For relatively sim-
ple situations, participants would learn the task with-
out the cost of representing the universal construction,
thereby exhibiting idiosyncracy. For more complex
situations, the benefit of universal construction would

outweigh the cost, thereby exhibiting systematicity.
Response errors on novel cues for various levels of
learning difficulty provided support for this hypothe-
sis (Phillips et al., 2016).

There are two aspects of the data, with regard to
novel cues, that interest us here for the purpose of
relating the universal construction (adjunction) prin-
ciple to empirical implications. They pertain to the
successes and failures to predict targets, regarded as
instances of systematicity and idiosyncracy (respec-
tively). The first aspect pertains to generalization from
the training set to the testing set, which is all possible
cue-target mappings for the given task (section 3.1).
The second aspect pertains to one group of participants
that showed a transition from no generalization on
tasks involving a small number of cue-target mappings
to generalization on tasks involving a larger number of
mappings (section 3.2). We show how both aspects
are related by adjunctions that depend on the “shape”
of the representations for the cues and targets.

3.1 Representation as “shaped” data
A standard approach to cognitive modeling is to rep-

resent inputs and outputs as data encoded as vectors
in some vector space. We depart from this approach
by modeling inputs and outputs as data on (attached
to) some topological space (definition 11). These
representations are special kinds of functors, called
presheaves (definition 12) and sheaves (definition 13).
In this way, the shape (topology) of the underlying
space is explicitly modelled. The data are shaped by
the space, which has implications for cognitive capac-
ity, as we shall see in this section.

The cue-target learning task is modeled using
presheaves and sheaves, which can be conceptualized
in terms of relational database tables (Abramsky &
Brandenburger, 2011). For example, suppose pairs of
letters GA, GE and KA. Each pair is regarded as data
attached to a topological space that consists of the first
and second letter positions as the points of the space.
In the case that the space has a discrete topology (ex-
ample 25) this arrangement is a presheaf correspond-
ing to a two-column table with three rows—one col-
umn per position and one row per pair. There are two
possible letters in the first position, G and K, and two
possible letters in the second position, A and E. This
presheaf is not a sheaf because it does not contain the
pair KE. A sheaf is a “complete” presheaf. Targets are
modeled likewise, where the attached data are colour-
shape pairs. A cue-target map is a presheaf morphism
(remark 13), i.e. a natural transformation.

Generalization from the training to the testing set is
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modeled by a sheaf theory construction, called sheav-
ing, or sheafification (definition 14). Sheaving is a
functor that completes each presheaf by sending it to
the nearest sheaf. For example, applying the sheaving
functor to the presheaf representing the pairs GA, GE
and KA constructs the sheaf with the pair KE added.
Likewise, sheaving sends presheaf morphisms to sheaf
morphisms. Generalization is modeled by the sheav-
ing functor which sends the training set (presheaf mor-
phism) to the testing set (sheaf morphism). Applying
the sheaving functor to a sheaf just returns that sheaf.

For a given topological space, the category of
sheaves is a subcategory of the category of presheaves,
hence are related by an inclusion functor (example 10).
The sheaving functor sends presheaves to sheaves, and
the inclusion functor going in the other direction iden-
tifies those presheaves that are sheaves. Presheaves
model (possibly partial) knowledge afforded by the
training set. Sheaves model complete knowledge of
the task, in the form of correct responses for all
testable cues. The sheaving functor is left adjoint to
the inclusion functor. In other words, training and test-
ing are related by a pair of adjoint functors.

3.2 Re-representation as change-of-shape
One group of participants showed no generalization

to the novel cues on tasks involving a small number
of cue-target mappings, but showed generalization on
tasks involving more mappings (Phillips et al., 2016).
These results were interpreted as participants hav-
ing learned the tasks as two different kinds of maps.
The tasks involving fewer mappings were learned as
cue-target associations that disregarded the constituent
maps, i.e. the cues and targets were regarded as sin-
gle items. The larger tasks were learned as pairs of
letter-colour and letter-shape maps. Participants re-
represented the structure of the task from a single map
to a pair of maps, as the task required learning more
mappings. The suggestion was that these two situa-
tions (i.e. generalization and no generalization) were
related by another kind of adjunction that pertains to a
change in the shape of the underlying space (Phillips,
2018a). We expand upon this suggestion, here, by
showing how the two situations relate by a continuous
function (definition 15) that changes the topological
space. This function induces a pair of adjoint functors
that correspond to familiar psychological processes:
chunking and dechunking.

We model this situation by considering the gener-
alization and no generalization situations as data at-
tached to discrete and indiscrete topological spaces
(example 25), respectively. We have already seen

the discrete case, where participants regard the
cues/targets as data composed along two component
dimensions. The indiscrete space corresponds to data
attached to a single dimension, i.e. a psychological no-
tion of chunking in the sense that each pair of letters
is regarded as single item; likewise, each target is re-
garded as a single object, not a colour-shape pair. The
corresponding relational tables have just a single col-
umn whose rows contain the cues/targets. In this case,
all presheaves are sheaves, so the result of applying the
sheaving functor to the training set is just the training
set. No new mappings are added. So, sheaving with
respect to the indiscrete space models the no general-
ization case. All presheaves are sheaves, in this situ-
ation, so the adjunction is trivial whereby the adjoints
are the identity functor.

The indiscrete and discrete spaces are related by a
continuous function, which induces two functors: the
direct image functor and the indirect image functor
(example 26). The direct image functor corresponds
to chunking the data attached to the two-dimensional
space to data attached to the one-dimensional space:
e.g., treating a pair of letters as a single letter
chunk. The inverse image functor corresponds to
dechunking—the reverse operation that splits chunks
into their constituents. Dechunking involves sheaving.
So dechunking the training set generates the missing
test mappings, hence obtains generalization. The di-
rect and inverse image functors form an adjoint pair.
Put another way, dechunking is left adjoint to chunk-
ing. Thus, the associative-relational form of dual-
process is connected by an adjunction.

4. Cognitive adjoint situations

Adjoint situations in cognition were supposed to
arise as trade-offs over cognitive resources, such as
memory and attention. Adjunctions arise in many ar-
eas of mathematics. Their prevalence suggests that
other resource trade-offs that motivate dual-process
theories in cognition (Evans, 2003; Kahneman, 2011)
are likewise adjoint situations. Dual-process theories
are controversial, in part because they are vaguely de-
fined (Evans & Stanovich, 2013). A strength of cat-
egory theory is the precise formalization of relations
between formal systems—a kind of meta-theory (see
opening quote). In this regard, category theory can
help make precise in what sense a cognitive system
supposedly involves dual-processes. We sketch out
two examples, in this section, showing how category
theory can help in this way. (See Phillips, 2018b, for
further discussion and examples.)
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4.1 Serial versus parallel processes
The relational complexity theory of cognitive capac-

ity says that the number of task dimensions (relational
arity) is an important factor in determining task diffi-
culty (Halford, Wilson, &Phillips, 1998; Halford etal.,
2014). The theory also says that relational complexity
can be mitigated by chunking (as we saw in the pre-
vious section), or segmentation, i.e. serialization of
a single step into multiple sequential steps. This ex-
ample views segmentation as another instance of an
adjunction.

Segmentation, as a serial/parallel distinction, is ex-
pressed by the product-exponential adjunction (exam-
ple 20). As applied to functions, this adjunction is
called the (un)curry transform in computer science:
e.g., +(x,y)⇔ +̃(x)(y). Here, the general advantage
of parallel processing is speed, since multiple argu-
ments are applied concurrently, but at the expense of
attention to more than one input.

4.2 Automatic versus controlled processes
Another dual-process distinction pertains to auto-

matic versus controlled processes.4) For example,
counting a list of items, one-by-one, is a controlled
(serial) process. However, a small number of items,
up to about four, can be determined automatically
and effortlessly, by a putative (parallel) process called
subitizing (Rensink, 2013). These two processes are
viewed as another adjoint situation.

The free-forgetful adjunction (example 21) ex-
presses this distinction. Counting is modelled as a
monoid: the natural numbers with addition, and zero
as the identity element—counting is a serial process
starting at zero and adding one until all items are
counted. The free functor sends a set to the free
monoid on that set, which affords the counting pro-
cess. The forgetful functor sends a monoid to its un-
derlying set, forgetting the monoid operation. So, the
free functor constructs the control process, whereas
the forgetful functor constructs the corresponding au-
tomatic process, a map that obviates the control steps,
expressing the distinction between automatic and con-
trolled processes. The automatic process associates
lists of items to their count, the controlled process
steps through each list item, hence the automatic pro-
cess is fast, effortless and effectively parallel since the
intermediate counting steps are obviated.

5. Discussion

We return to the original question: What can cat-

4) See Evans and Stanovich (2013) for a list of characteristic
distinctions between Type 1 and Type 2 processes.

egory theory contribute to cognitive science? The
emerging view from the examples presented here is
that category theory contributes the principle of cog-
nition as universal construction. We look at how this
principle extends to other aspects of cognitive science.

5.1 Beyond analogies
A recurring theme throughout this paper is the use

of analogies, as a topic of study and as an expository
device. Analogies play a key role in mathematics.

A mathematician is a person who can find analo-
gies between theorems; a better mathematician is
one who can see analogies between proofs and the
best mathematician can notice analogies between
theories. One can imagine that the ultimate math-
ematician is one who can see analogies between
analogies. (Randrianantoanina & Randrianantoan-
ina, 2007, p. v—quoting Stefan Banach)

Mathematics is a cognitive activity (Lakoff & Nunez,
2000), and analogies play a key role in cognition. So,
where do analogies come from?

A straightforward answer to this question comes
from our earlier interpretation of analogies in terms of
natural transformations. Natural transformations ob-
tain from another kind of universal construction, called
the end of a (bi)functor (Mac Lane, 1998). So, analo-
gies come from another kind of universal construction.

An example is relational schema induction (Halford
et al., 1998), where subjects are trained on a series
of tasks conforming to a common relational (analog-
ical) structure, which is needed to predict targets for
novel cues in novel task instances. The analogies ob-
tain by the end of a functor modeling the task instances
(Phillips, 2020a).

5.2 Categorical compositionality
All constructions are derived from a more general

construction, called Kan extension (definition 10).
The notion of Kan extensions subsumes all the
other fundamental concepts of category theory.
(Mac Lane, 1998, p. 248).

Duality is not a universal mapping property as such.
However, duality is incorporated as the left and right
Kan extensions (remark 10). For example, products
obtain from a right Kan extension (example 22); du-
ally, coproducts obtain from the left Kan extension
(example 23). Other limits are constructed likewise
(remark 9).

Products, and limits generally, are constructed in
two closely related ways. The direct way is by ap-
plication of the product (or, limit) functor that directly
constructs the product (or, limit) from its constituents.
The indirect way is via the relevant universal mapping
property. The product (limit) functor is right adjoint
to the diagonal functor. Adjoints obtain from Kan ex-
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tensions (example 24), hence the product (limit) con-
struction is uniquely determined by an extension (re-
mark 11). Thus, category theory provides the how and
why of compositionality, as a functorial construction
that derives from a universal mapping property (i.e. as
an optimally consistent construction).

5.3 Empirical/Methodological implications
Categories are abstractly defined. No specific claims

are made about the nature of the objects, morphisms
and composition operation, only that they cohere in a
certain way. However, there is more to category theory
than abstraction.

Put differently, good general theory does not
search for the maximum generality, but for the
right [emphasis added] generality. (Mac Lane,
1998, p. 108)

Good theories in the natural sciences make testable
predictions. What testable predictions follow from the
category theory principle of universal construction?

All universal constructions share the same general
form. There is a family of morphisms whereby every
member is uniquely composed from a common me-
diating morphism. The empirical implication is that
if one has the mediating morphism and each of the
unique constituent morphisms then necessarily one has
their compositions. This situation arises as the product
of two sets of morphisms. So, a test of this empirical
implication is analogous to the test of generalization
for the product construction in the cue-target learning
task (section 3). Here, the constituents are themselves
morphisms.

The converse situation is that removing the mediat-
ing morphism implies removing the entire family of
morphisms for the universal construction. This situ-
ation was detailed in an analysis (Phillips & Wilson,
2016a) of the claim of compositionality in birdsong
(Suzuki, Wheatcroft, & Griesser, 2016). The method-
ological implication follows from our category theory
account of systematicity. If birdsong is compositional
in a way that is analogous to human language, then
there needs to be some test for systematicity, i.e. in-
terfering with the process corresponding to the medi-
ating morphism implies interfering with all systemat-
ically related processes (universally) constructed that
way. Without such tests, claims of human-like compo-
sitionality are premature.

Another example pertains to cognitive development.
For instance, young children below five years of age
typically find certain tasks difficult relative to older
children, despite comparative performance in other ar-
eas, and this difference has been attributed to a capac-
ity to process relations (Halford etal., 1998, 2014). An

early example used category theory to make empirical
predictions in this regard (Halford & Wilson, 1980).
Later work related development of cognitive capacity
to differences between certain universal constructions
(Phillips, Wilson, & Halford, 2009).

The categorical explanation for compositionality
from universal construction has another methodolog-
ical implication. Universal constructions are only
unique up to a unique isomorphism (theorem 1). So,
for example, any object and pair of maps that together
satisfy the unique-existence conditions qualifies as a
product.5) Thus, cognitive representations need not
be (canonically) composed from constituent symbols
or dimensions (Phillips, 2020b), whereby constituents
are “tokened” (inscribed, or written out) as part of the
tokening of their complex hosts—a characteristic fea-
ture of classical (symbolic) compositionality (Fodor &
Pylyshyn, 1988). The “atoms of thought” need not be
classically tokened, and may only have meaning in an
established context. The methodological implication
is that context is primal, whence compositionality nec-
essarily follows by universal construction.

5.4 Other contributions
Category theory approaches to cognitive science are

in their infancy. We have just scratched the surface
with one particular approach, vis-a-vis, various in-
stances of universal constructions. Applications of
category theory to other areas of cognitive science,
not yet mentioned, include language (Clark, Coecke,
& Sadrzadeh, 2008), memory and neural systems
(Ehresmann & Gomez-Ramirez, 2015; Healy, Olinger,
Young, Taylor, Caudell, & Larson, 2009), including
learning by backpropagation (Fong, Spivak, & Tuy-
eras, 2017; Fong & Johnson, 2019), consciousness
(Tsuchiya, Taguchi, & Saigo, 2016; Tsuchiya & Saigo,
2020), and philosophical aspects of cognition (Eller-
man, 2016a, 2016b). More generally, category theory
provides a unifying framework for recursion and, du-
ally, corecursion (Hinze & Wu, 2016), which serves as
a basis for (co)recursive aspects of cognition (Phillips
& Wilson, 2012), including methods for obtaining uni-
versal constructions (Phillips & Wilson, 2016c).

Looking further ahead, Quantum Probability the-
ory was developed to address non-classical (quantum-
like) aspects of cognition (Busemeyer & Bruza, 2012).
Quantum systems are closely related to presheaves
(Abramsky & Brandenburger, 2011), suggesting sheaf
theory can be used to model quantum-like cognition
(Phillips, 2020b). Category theory has revealed many
hitherto unrecognized connections between formal

5) Just being isomorphic to the product object is not enough.
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systems, foreshadowing other categorical approaches
to cognitive science that are yet to be explored.

One promising direction is enriched category theory
(Kelly, 2005), where the sets of morphisms between
objects are replaced by more general structures. En-
riched category theory affords methods for modeling
resources (Fong & Spivak, 2018), which has an impor-
tant role in our treatment of dual-process cognition.

5.5 Occam’s razor and Chatton’s dual
We have shown how universal construction affords

a category theory principle for cognitive science. A
universal construction appears to embody Occam’s ra-
zor, i.e. the principle of simplicity over complexity, in
that all solutions to a family of problems factor through
a common component. Adjunctions appear to be the
antithesis of this principle, in admitting distinct paths
that are functionally identical. This preference for
complexity over simplicity embodies the lesser known
principle called Chatton’s anti-razor, seen here as Oc-
cam’s dual in the category theory sense. However, a
universal construction is essentially a balance of these
two principles: the uniqueness condition requires at
most one morphism (Occam); at least one morphism
is required for the existence condition (Chatton). Oc-
cam’s razor is used as a heuristic to justify, e.g., biases
in machine learning. Category theory affords a formal
foundation for this heuristic as part of the universal
construction principle.

5.6 Final remark
Note that the expository style of the current work

alludes to our adjoint basis for dual-process cognition:
an informal main text on one hand and a formal ap-
pendix on the other. The main text is an approximate,
yet more readily accessible exposition with links to
the latter more precise, yet densely written alternative.
Bidirectional exploitation of such trade-offs, in general
form, is seen as the quintessential advance of human
cognition (Phillips, 2017).
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Appendix

A. Basic theory

This appendix provides the basic category theory
used for our approach to cognition. Deeper and
broader coverage of category theory, assuming differ-
ent backgrounds, can be found in many textbooks on
the topic (see e.g., Lawvere & Schanuel, 1997; Lein-
ster, 2014; Simmons, 2011; Spivak, 2014).
Definition 1 (Category). A category C consists of a
collection of objects, O(C) = {A,B, . . .}, a collection
of morphisms,M(C)= { f ,g, . . .}—a morphism writ-
ten in full as f : A→B indicates object A as the domain
and object B as the codomain of f —including for each
object A ∈ O(C) the identity morphism 1A : A→ A,
and a composition operation, ◦, that sends each pair of
compatible morphisms f : A→ B and g : B→ C (i.e.
the codomain of f is the domain of g) to the composite
morphism g◦ f : A→C, that together satisfy
• identity: f ◦1A = f = 1B ◦ f , f ∈M(C), and
• associativity: h ◦ (g ◦ f ) = (h ◦ g) ◦ f for every

triple of compatible morphisms f ,g,h ∈M(C).
Example 1 (Sets). The collection (class) of sets and
functions between sets forms a category, denoted Set.
Each set is an object and each function is a morphism.
The identity morphisms are the identity functions, and
composition is function composition.
Example 2 (Naturals, reals). The natural numbers, N,
with the usual order form a category, denoted (N,≤),
that has numbers n ∈ N for objects and order relations
m ≤ n for morphisms. The identities are n ≤ n, and
composition is given by transitivity. Likewise, the set
of reals, R, constitute a category, denoted (R,≤).
Definition 2 (Isomorphism). A morphism f : A→ B
is called an isomorphism if there exists a morphism
g : B→ A such that f ◦ g = 1B and g ◦ f = 1A. If g

exists then it is called the inverse of f .
Definition 3 (Terminal). In a category C, a terminal
object is an object, denoted 1, such that for every ob-
ject Z in C there exists a unique morphism u : Z→ 1.
Example 3 (Singleton). A terminal object in the cate-
gory Set is any singleton set.
Example 4 (Infinity). Infinity is the terminal object in
the category (N∪{∞},≤).
Definition 4 (Product). In a category C, a product of
objects A and B is an object P, also denoted A× B,
together with morphisms π́ : P→ A and π̀ : P→ B,
called projections, such that for every object Z and
morphisms f : Z → A and g : Z → B, all in C, there
exists a unique morphism u : Z→ P such that ( f ,g) =
(π́, π̀) ◦ u. Morphism u is also denoted ⟨ f ,g⟩ as it is
determined by f and g.
Example 5 (Cartesian product). In Set, the product
of sets A and B is the Cartesian product—set of pairs
drawn from A and B, i.e. A×B= {(a,b)|a∈ A,b∈ B}.
Remark 1. Category theory constructions come in
two forms: primal and dual. The dual construction is
obtained by reversing the directions of the morphisms
in the primal construction. The dual construction of
a primal construction in the category C is the primal
construction in the category, denoted Cop, which con-
sists of the objects of C and the morphisms f op : B→
A whenever f : A→ B is a morphism of C.
Example 6 (Coproduct). The coproduct of objects A
and B, in C, is (Q, ι), where ι is the pair of morphisms
ὶ : A→Q and ί : B→Q, called injections (cf. product
in Cop). In Set, the coproduct is disjoint union.
Definition 5 (Functor). A functor is a “structure-
preserving” map from a category C to a category D,
written F : C→ D, sending each object A and mor-
phism f : A→ B in C to the object F(A) and the mor-
phism F( f ) : F(A)→F(B) in D (respectively) that sat-
isfies the laws of:
• identity: F(1A) = 1F(A) for all A ∈O(C), and
• compositionality: F(g ◦C f ) = F(g)◦D F( f ) for

all compatible morphisms f ,g ∈M(C).
Example 7 (Product). The product functor constructs
products, i.e. Π : (A,B) 7→ A×B,( f ,g) 7→ f ×g.
Example 8 (Projections). Projection functors Π1 :
(A,B) 7→A,( f ,g) 7→ f and Π2 : (A,B) 7→B,( f ,g) 7→ g.
Example 9 (Diagonal). The diagonal functor doubles
objects and morphisms, i.e. ∆ : A 7→ (A,A), f 7→ ( f , f ).
Example 10 (Inclusion). The inclusion functor is the
category theory analog of inclusion between sets: a
functor identifying a subcategory of a category.
Example 11 (Constant). A constant functor, written
K : C→ D, sends every object and morphism in C to
the object K and identity morphism 1K in D.
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Definition 6 (Natural transformation). Suppose func-
tors F,G : C→ D. A natural transformation from F
to G, written η : F→̇G, is a family of D-morphisms
{ηA : F(A)→G(A)|A∈O(C)} such that G( f )◦ηA =

ηB ◦F( f ) for every morphism f : A→ B in C.
Remark 2. A natural transformation is called a natu-
ral isomorphism when every ηA is an isomorphism.
Example 12 (Projections). π́ : Π→̇Π1 and π̀ : Π→̇Π2.
Definition 7 (Universal morphism). Let F : C→D be
a functor and Y an object in D. A universal morphism
from F to Y is a pair (A,ψ) consisting of an object A
in C and a morphism ψ : F(A)→ Y in D such that for
every object X in C and morphism g : F(X)→ Y in
D there exists a unique morphism u : X → A in C such
that g=ψ ◦F(u). ψ is called the mediating morphism.
Remark 3. The dual form of universal morphism is
defined by arrow reversal: a universal morphism from
an object X in C to a functor G : D → C is a pair
(A,ϕ) consisting of an object A in D and a morphism
ϕ : X → G(A) in D such that for every object Y in D
and morphism f : X→ F(Y ) in C there exists a unique
morphism u : A→ Y in D such that f = G(u)◦ϕ .
Example 13 (Product). Pair (A×B,π) is a universal
morphism from ∆ to (A,B), where π = (π́A, π̀B), i.e.
π́A : A×B→ A and π̀B : A×B→ B.
Remark 4. The mediating morphism (relabeled ψA)
is the “optimal” member of natural transformation ψ :
F→̇Y , where Y is the constant functor—every member
of ψ factors through ψA.
Example 14 (Projection as mediating morphism). The
projections (π́A, π̀B) are the mediating morphisms of
the product A×B, hence the optimal members of the
natural transformation (π́, π̀) : ∆→̇(A,B).
Definition 8 (Limit). A limit of a (J-shaped) functor
D : C→ CJ is a universal morphism from D to an ob-
ject (functor) in CJ—the category of functors (from J
to C) and natural transformations.
Example 15 (Product). The product (A×B,π) is the
limit of the diagonal functor, ∆, to the functor (A,B) :
2→ C, picking out the pair (A,B), where J = 2 is a
two-object category with no non-identity morphisms.
Example 16 (Limits). Other important limits (of
shape J) are: terminal (0), equalizer (∗⇒ ∗), and pull-
back (∗→ ∗←∗). In Set, the terminal is any singleton
set; the equalizer of f ,g : A→C is the set of elements
a ∈ A such that f and g agree (i.e., f (a) = g(a)); and
the pullback of f : A→ C and g : B→ C is the set of
pairs (a,b) ∈ A×B such that f (a) = g(b).
Remark 5. All (finite) limits are constructed from
products and equalizers.
Theorem 1 (Uniqueness). Let F : C→ D be a func-
tor, Y an object in D, and (A,ψ) be a universal mor-

phism from F to Y . If (A′,ψ ′) is a universal morphism
from F to Y then there exists a unique isomorphism
υ : A∼= A′ such that ψ = ψ ′ ◦F(υ).
Remark 6. In other words, universal morphisms are
unique up to unique isomorphism.
Definition 9 (Adjunction). An adjunction from a cat-
egory C to a category D is a triple, (F,G,η) : C ⇀ D,
consisting of functors F : C→ D and G : D→ C, and
a natural transformation η : 1→̇G◦F such that for ev-
ery object X in C the pair (F(X),ηX ) is a universal
morphism from X to G. Functor F is called the left ad-
joint of G (G is called the right adjoint of F), denoted
F ⊣ G, and η is called the unit of the adjunction.
Remark 7. Equivalently, an adjunction is a triple,
(F,G,ε) : C ⇀ D, consisting of a natural transforma-
tion ε : F ◦G→̇1 such that for every object Y in D the
pair (G(Y ),εY ) is a universal morphism from F to Y .
(ε is called the counit of the adjunction.)
Example 17 (Approximation). The functions Ceil and
Floor are adjoints to inclusion.

i Ceil ⊣ Incl with unit x≤ ⌈x⌉ and counit y≤ y.
ii Incl ⊣ Floor with unit x≤ x and counit ⌊y⌋ ≤ y.

Example 18 (Product). The diagonal functor is left
adjoint to the product functor: ∆ ⊣Π with unit ⟨1,1⟩ :
Z→ Z×Z and counit (π́, π̀) : (A×B,A×B)→ (A,B).
Remark 8. Every adjunction induces a natural iso-
morphism: ϕ : Hom(F−,−)∼= Hom(−,G−) : ψ .
Example 19 (Bounds). Instantiating F ⊣ G as:

i Ceil ⊣ Incl yields ⌈x⌉ ≤ y⇔ x≤ y, and
ii Incl ⊣ Floor yields x≤ y⇔ ⌊x⌋ ≤ y.

Example 20 (Serial/parallel). The product functor
ΠB : A 7→A×B. The exponential functor ΛB : C 7→CB.
The exponential functor is right adjoint to the product
functor, i.e. Hom(A×B,C) ∼= Hom(A,CB). For func-
tions, this situation is the familiar curry-uncurry pair
of operators in computer science: f (a,b) = f̃ (a)(b).
Example 21 (Free/forgetful). A general class of ad-
joint situations arise from the relationship between an
algebra and its underlying set. For example, a monoid,
(M, ·,e), is a set, M, with a binary operation, ·, that is
associative (i.e. a · (b · c) = (a · b) · c) and unital (i.e.
a · e = e = e · a), and a unit element (i.e. e ∈M). The
forgetful functor sends monoids to their underlying set,
i.e. U : (M, ·,e) 7→M, and the free functor sends each
set S to the free monoid on S, i.e. F : S 7→ S∗. The
free/forgetful functor is a left/right adjoint. A famil-
iar example is the free functor that constructs “words”
(strings) from an alphabet, F : A 7→ A∗.
Definition 10 (Kan extension). Let X : A → C and
F : A → B be functors. The (right) Kan extension
of X along F is a pair (R,η) consisting of a functor
R : B → C and a natural transformation η : RF→̇X
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such that for any functor M : B→C and natural trans-
formation µ : MF→̇X there exists a unique natural
transformation δF : M→̇R such that µ = η ◦δF .
Example 22 (Product as right Kan extension). A
product is obtained as the right Kan extension of
(A,B) : 2→ C along ! : 2→ 1.
Remark 9. All limits obtain this way.
Remark 10. The left Kan extension of X along F is
the dual of the right Kan extension.
Example 23 (Coproduct as left Kan extension). A
coproduct is obtained as the left Kan extension of
(A,B) : 2→ C along ! : 2→ 1.
Example 24 (Adjunction as Kan extension). Suppose
F : C→ D and G : D→ C are left and right adjoints.
Left adjoint F obtains as the right Kan extension of the
identity functor on D along G. Dually, G obtains as the
left Kan extension of the identity on C along F .
Remark 11. Kan extensions are unique up to unique
isomorphism. Hence, for a given functor, the (left, or
right) adjoint (if it exists) is likewise unique.

B. Presheaves and sheaves

Some basic constructions are provided here (see
Phillips, 2018a, 2020b, for further details). Deeper
introductions to sheaf theory from a category theory
perspective are also available (see e.g., Leinster, 2014;
Mac Lane & Moerdijk, 1992).
Definition 11 (Topological space). A topological
space is a pair (X ,T ) consisting of a set X and a col-
lection of subsets T of X , called the open sets of X ,
that consists of the empty set and X , arbitrary unions
(if U and V are open sets of X , then so is U ∪V ), and
finite intersections (if U and V are open sets of X , then
so is U ∩V ). The set T is called the topology of X , and
the space is sometimes simply denoted X .
Example 25 (Indiscrete, discrete). The indiscrete
topology consists of just the empty set and X . The
discrete topology consists of all subsets of X .
Remark 12. A topological space is a category consist-
ing of open sets (objects) and inclusions (morphisms).
Definition 12 (Presheaf). A presheaf is a functor F :

X → Set that sends each inclusion V →U of X to the
restriction morphism f |V : F(U)→ F(V ), i.e. each
function over U is restricted to V .
Definition 13 (Sheaf). A sheaf is a universal presheaf.
Remark 13. The collection of (pre)sheaves on a topo-
logical space X forms a (functor) category, whence
(pre)sheaf morphisms are natural transformations.
Definition 14 (Sheaving). Let PSh(X)/Sh(X) be the
category of presheaves/sheaves on X . The sheaving
functor, F+ : PSh(X)→ Sh(X), sends presheaves to
their universal presheaves (sheaves).

Remark 14. Sheaving is left adjoint to inclusion.
Definition 15 (Continuous function). A continuous
function is a function between topological spaces, f :
X→Y , that reflects open sets: if U is an open set of Y ,
then the preimage f−1[U ] of U is an open set of X .
Example 26 (Images). Every continuous function f :
Y → X induces two functors.

i The direct image functor, f∗ : Sh(Y )→ Sh(X),
sends sheaves on Y to sheaves on X , by assigning
to the open sets of X the data on their preimages.

ii The inverse image functor, f ∗ : Sh(X)→ Sh(Y ),
sends sheaves on X to sheaves on Y . This opera-
tion involves (co)limits, because the image of an
open set in Y may not be an open set in X , and the
corresponding assignment may not be a sheaf.

The direct image functor is right adjoint to the inverse
image functor.
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