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Abstract

We provide a mathematical category theory account of the size and
location of the authors’ Functional View Field (FVF). Category theory
explains systematic cognitive ability via universal construction, that is, a
necessary and sufficient condition for composition of cognitive processes.
Similarly, FVF size and location is derived from a (universal) construction
called a fibre (pullback) bundle. Hulleman & Olivers (H&O) account for
an impressively diverse array of visual search data with a single free pa-
rameter: the “size” of (number of items in) their putative Functional View
Field (FVF). Nonetheless, we see two critical shortcomings: (1) FVF is
purely descriptive and lacking independent motivation, which is indicative
of an ad hoc assumption (Aizawa, 2003); and (2) FVF size is potentially
infinite in continuous domains, making it unclear how such cases are sup-
posed to be unified with search in finite settings. In support of the target
article, we provide a mathematical (categorical/topological) basis for FVF
(size and location), called a fibre (pullback) bundle (Husemoller, 1994),
to help resolve these problems.

A category consists of a collection of objects, a collection of morphisms be-
tween objects, and an operation for composing morphisms (Mac Lane, 1998).
For example, every topological space is a category whose objects are the subsets
constituting the topology, and morphisms are inclusions. Categories can model
cognition by interpreting objects as cognitive states or spaces, morphisms as
cognitive processes between states/spaces, and the operation as composition of
cognitive processes. A universal construction is an arrangement whereby every
morphism is composed of a common morphism and a unique morphism. This ar-
rangement generalizes and refines classical/symbolic (Fodor & Pylyshyn, 1988)
and connectionist/functional (van Gelder, 1990) compositionality by providing
a necessary and sufficient condition for the indivisibility of certain clusters of
cognitive capacities (Phillips & Wilson, 2010, 2011, 2012), without the ad hoc
assumptions that were problematic in other approaches (Aizawa, 2003). More-
over, every universal construction is optimal in a certain category-theoretical
sense. Thus, the preference for aligning relations over features in analogy (Gen-
tner, 1983), affording optimal transfer of source knowledge to target domain,
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derives from a universal construction (Phillips 2014). Visual search also in-
volves compositionality and systematicity, hence our pullback approach to some
differences between feature versus conjunctive search (Phillips, 2014). Similar
considerations motivate our fibre bundle approach to FVFs. We regard the FVF
as a projection of visual information formalized as a fibre bundle (E,B, π, F ):
a topological space E, called the total space, that is locally a product of base B
and fibre F , together with a projection π : E → B that is a continuous surjec-
tive map. Projections can be filters, discussed in the target article, in the sense
of maps from unfiltered display (total) spaces to filtered view (base) spaces. For
example, the projection π1 : C×O → C filters out features in orientation space
O so that attention is focused on features in colour space C—total space C×O
is the product of base C and fibre O. Likewise, π2 : C × O → O filters out
colour features to focus attention on orientation features, as the task demands.
Search involves changes in fixation that are bundle maps. In particular, a pull-
back bundle is obtained by “pulling back” a fibre bundle along a continuous
map f : B′ → B between base spaces, obtaining total space f∗B of pairs (b′, e),
in a way that preserves bundle structure. That is, Figure 1(a) is a commut-
ing (pullback) square: π(g(b′, e)) = f(π′(b′, e)). Commute means that fixation
change after filtered view is the same as filtered view after fixation change, so
search over view space is effectively search over display space. This construction
is likened to a database lens, developed for a conceptually similar view update
problem (Johnson, Rosebrugh, & Wood, 2012), hence the expression “cognitive
lens.”

FVF size and location are determined by the nature of the projection and an
inverse. A fibre over a point b ∈ B, that is, the set of points in E that project
to b, denoted π−1[b], corresponds to an FVF. Hence, the size of an FVF is the
number of elements in π−1[b]. A section of a fibre bundle is a continuous right
inverse of its projection, that is, a function σ : B → E such that π(σ(b)) = b.
The location of an FVF associated with point b in view space is the point σ(b)
in display space. The pullback condition (Mac Lane, 1998) restricts bundles to
disjoint unions of fibres, an optimal partitioning that prohibits gaps between
fibres or overlaps.

Projections based on convex hulls of (topologically) neighbouring elements
are one way to realize FVF for search in both natural and laboratory settings.
For example, Figure 1(b) depicts a “natural” scene (E). Each convex hull
(smallest set) enclosing one of the three scene components, that is, two people, a
dog, and a tree, has a centre of mass, hi. The projection (π) sends each point e ∈
E to the closest centre. The fibre Fi is the region containing hi, with boundaries
indicated by dashed lines (cf. Voroni diagram). The base (B) is the (discrete)
topological space on the three-centre set H, that is, the set of all subsets of H
(cf. Delauney diagram). FVF location is the corresponding centre. An “X”
indicates fixation before and after attentional shift, and dashed circles indicate
corresponding items in the base. Pullback squares compose (Mac Lane, 1998).
So response time corresponds to the number of composed squares to termination.
By commutativity, search need only involve the three items in the base, rather
than a very large (potentially infinite) number of locations in the display; greater
resolution implies more locations (cf. texture-based search). An analogous
situation applies to feature versus conjunctive search, shown in Figure 1(c, d).
Lines connecting bars indicate neighbours in topological space; connected graphs
correspond to fibres, which are larger in feature than conjunctive search, hence
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feature search is generally more efficient. Off-item fixation corresponds to a
virtual bar at the “centre of mass” of a multinode graph, so fixation need not
coincide with a displayed bar. This situation is akin to perceptual grouping
(Duncan & Humphreys, 1989). Similar considerations apply to conjunctive
search (Wolfe, Cave, & Franzel, 1989): Nearby items are less likely to be of the
same kind, hence FVFs are smaller and the number of fibres greater, implying
the observed steeper search slope. A base can contain non-visual items, for
example, categories affording category-guided search (Zelinsky, Adeli, Peng, &
Samaras, 2013). The challenge is to develop an FVF model incorporating the
mathematical theory.
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Figure 1: Fibre bundle (a) commuting/pullback square, and corresponding ex-
amples for (b) a natural scene, (c) feature search, and (d) conjunctive search.
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