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Abstract Kruglyak [4] demonstrated that weights exist to implement the N-2-N encoder for all 

finite N, but it is known that Backpropagation (BP) is unusually poor at learning such solutions for 
N > 8 ([6]). We show that the learning problem lies not with BP, but with the pattern representation 

typically used in the encoder task. With an appropriate representation, we demonstrate that BP 

can learn encoders in approximately linear time with N as large as 100. This underlines yet again 
the crucial importance of pattern representation in neural network learning. 

1 Introduction 

The N-M-N encoder is a simple task that has been used to study the training properties of the 

Backpropagation learning algorithm [1, 2, 7]. A three-layer network consisting of N input and 
output units, and M hidden units, must learn to compress a set of N input patterns into M hidden 

units, and reconstruct them on the output units. If M is less than log2 N, the encoder is termed a 

tight encoder [2]. 

The most popular encoder in the current literature is the N-2-N. This is the tightest encoder 

possible (for N > 2), and is known to present BP with a formidable learning task [5]. Kruglyak 

[4] proved geometrically that weights exist to implement the N-2-N encoder for any finite N. It 

was noted, however, that the existence of these weights does not imply that BP can learn them; 

he reported that he was only aware of encoders as large as 8-2-8 being learned successfully by a 

"modified" version of BP. The N-2-N was hence proposed as a challenging task for testing new 

learning algorithms [4]. 

The N-2-N is a good test of a learning algorithm because it requires that all input patterns be 

compressed into 2-dimensional hidden unit space. The efficient use of hidden unit space is vital 

in neural net learning tasks, where the number of hidden units is usually minimized to improve 
generalization. 

2 Solving the N-2-N encoder task 

Kruglyak [4] plotted a theoretical solution of the N-2-N encoder; in Figure 1 we show the hidden 
unit space of an actual solutionl to the 19-2-19 encoder, similar to that found by Lister [5]. The 

activation range of hidden unit 1 is on the abscissa, and that of hidden unit 2 is on the ordinate. 

The 19 data points in Figure 1 correspond to the internal representations of the input patterns, and 

the line segments represent the 19 hyperplanes determined by the weights to each output unit. With 

respect to a particular output unit, the solution requires all hyperplanes to be arranged so that each 
point is on the low side of all but one of the hyperplanes; this corresponds to an output response 

of 0 for all patterns except one. When this constraint is extended to all output units, the solution 

requires the points to be evenly distributed to form an approximate circle with each hyperplane 

uniquely partitioning off one point [4]. 

The difficulty of the task is due to the critical positioning of the points and hyperplanes. As N 

increases, the triangular region which isolates a single point becomes smaller. Consequently, finding a 
solution requires greater precision and hence smaller steps across the error surface. Empirical results 

'This 19-2-19 encoder was learned by standard BP in 38.3 million pattern presentations 
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Figure 1: Solution of the 19-2-19 encoder with local encoding on the target vectors. 

bear this out: Lister's [6] convergence figures demonstrate that learning time grows exponentially 

with N. 

3 Would a Different Representation Help? 

Representation is a crucial factor in neural network learning [3]. In studying the learning dynamics 

of the N-2-N problem, we noticed that the input and output representation traditionally used greatly 

handicaps Backpropagation. The standard encoding is local, with one unit on and all others off. For 

example, in the 6-2-6 encoder, the input (and target) set is: 

100000010000001000000100000010 000001 

Note that for every output unit, the target is 0 for (N-1) patterns, and 1 for just one pattern. When 

training commences, we have observed that BP always sets all output values to near-zero values in 

the first few epochs. This is because a null output vector is a very close approximation of all of the 

target vectors shown above [6]. This initial action, though understandable, is actually a step away 

from the final solution. It leads to all weights in the output layer becoming negative and saturates 

the output units, making further learning very slow (the flat-spot effect; [2]). 

Obviously, this problem is directly related to the preponderance of zeroes in the local pattern 

encoding. This prompted us to speculate that the difficulty that BP has in learning the N-2-N task 

may not be due so much to the demands of the task itself, but due to the output representation 

typically used. 

We decided to experiment with different representations to test this hypothesis. The N-2-N task 

remains logically the same (information must be compressed into a bottleneck and reconstructed), 

but we used a pattern encoding that has equal (or near equal) quantities of l's and O's in the target 

patterns. This will be referred to as N /2 block encoding. 

For example, in the 6-2-6 encoder, the target vectors become: 

111000 011100 001110 000111100011 110001 

It was expected that the use of block encoding on the target vectors would stop the counterproductive 

behaviour of Backpropagation in the initial stages of training, and would lead to faster convergence 

on N-2-N encoders, as well as the ability to learn larger encoders. 

4 Simulations and Results 

Standard Backpropagation [i] was used to learn N-2-N encoders for increasing N. For each N and 

each target pattern encoding (local and block), ten trials were run using a set of matched starting 

weights. Starting weights were matched to control for their influence on convergence times. A 
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learning rate of 0.01, epoch update and a momentum factor of 0.9 were used in all runs; a training 

run was considered to have converged if all outputs were within 0.5 of their target values. 

Table 1: Median number of pattern presentations required to achieve convergence. 

Median number of pattern presentations 

Encoder Local Encoding Block Encoding 

4-2-4 5416 2208 

9-2-9 743058 4077 

14-2-14 8950718 4844 

19-2-19 35583922 6973 

50-2-50 12600 

100-2-100 30300 

With a learning rate of 0.01 and a local encoding scheme on the target vectors, BP was only 

able to learn up to N = 19. When the block representation was used, however, BP was able to learn 

all encoders faster, and was able to learn the 100-2-100 encoder consistently in just a few hundred 

epochs. 

5 Analysis and Discussion 

The use of N /2 block encoding on the target vectors resulted in significantly accelerated learning 

and the ability to learn much larger encoders than in the local case. This effect can be explained 

both in terms of learning dynamics, and in the organization of hyperplanes required to implement 

the solution. 

Firstly, the equalization of the number of 1 's and O's presented to the output units as targets 

changed the learning behaviour of BP; instead of all output activations moving to 0 and saturating 

in the first few epochs, we now find all output units moving to an intermediate activation value of 

0.5. Although significant, this does not completely explain the magnitude of the speedup reported. 

In examining the hidden unit space of the solution (see Figure 2), we found that the use of N/2 

block encoding fundamentally changes the arrangement of hyperplanes required to solve the encoder. 

Instead of each hyperplane being required to carve oft' one unique data point, it now only has to 

carve oft' N /2 points; that is, in each case, half of the output units must be "on", and the other 

half "oft"'. This requires far less precision than in the local encoding case, as each point can now be 

isolated within a larger region of hidden unit activation space. 

In fact, with a block encoding, learning time (number of pattern presentations) grew approx­

imately linearly with the size of the encoder (N). This is a dramatic improvement over the local 

encoding case where, with the same learning algorithm (BP) and parameters, learning time grew 

exponentially with N. 

6 Conclusion 

Because of its simplicity, the N-2-N encoder/decoder is a useful and interesting problem for charac­

terizing the learning properties of Backpropagation. We found that BP learned much faster when 

a desired response was distributed over half the output units (block encoding), than when confined 

to a single output unit (local encoding), which is the more common practice. This reiterates the 

important point that learnability is determined not only by the search technique, but also by the 

representation of the problem [3]. We agree with Lister's [6] conclusions that the poor performance 

of BP on the encoder task is due to the error surface being ill-conditioned for gradient descent. The 

block representation used her.e creates an error surface more conducive to gradient descent search. 
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Figure2: Solution of the 19-2-19 encoder with block encoding on the target vectors. 

In further work, we are trying to establish the limits of block encoding. We have been able to 

consistently solve 500-2-500 encoders, and are currently attempting the 1000-2-1000. We anticipate 

that, subject to the precision of the simulator, any size encoder can be tractably learned. 
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