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Abstract—This paper presents a real-time 3D mapping
framework based on global matching cost minimization and
LiDAR-IMU tight coupling. The proposed framework com-
prises a preprocessing module and three estimation modules:
odometry estimation, local mapping, and global mapping, which
are all based on the tight coupling of the GPU-accelerated
voxelized GICP matching cost factor and the IMU preinte-
gration factor. The odometry estimation module employs a
keyframe-based fixed-lag smoothing approach for efficient and
low-drift trajectory estimation, with a bounded computation
cost. The global mapping module constructs a factor graph that
minimizes the global registration error over the entire map with
the support of IMU constraints, ensuring robust optimization
in feature-less environments. The evaluation results on the
Newer College dataset and KAIST urban dataset show that the
proposed framework enables accurate and robust localization
and mapping in challenging environments.

I. INTRODUCTION

Environmental mapping is an inevitable function of au-
tonomous systems and LiDAR is one of the most common
sensors used for mapping tasks owing to its ranging accuracy
and reliability. Following recent visual SLAM studies, tightly
coupled LiDAR-IMU fusion techniques have been widely
studied in recent years [1], [2]. The tight coupling scheme
fuses LiDAR and IMU measurements on a unified objective
function and makes the sensor trajectory estimation robust to
quick sensor motion, as well as feature-less environments,
where sufficient geometrical constraints are not available.
Furthermore, IMU measurements provide information on
the direction of gravity, which enables a reduction of the
estimation drift [3].

However, the use of the LiDAR-IMU tight coupling
scheme has mostly been limited to the frontend (i.e., odome-
try estimation) of the system in the context of LIDAR SLAM.
This is because the backend (i.e., global optimization) of
most existing methods relies on pose graph optimization;
this uses approximated relative pose constraints constructed
from the estimation result of the frontend, resulting in the
separation of LiDAR- and IMU-based estimation.

In this paper, we propose a real-time SLAM framework
that employs a tightly coupled LiDAR-IMU fusion scheme
for all estimation stages (i.e., from odometry estimation to
global optimization). We use the voxel-based GICP matching
cost factor, which can fully leverage GPU parallel processing
and enables the creation of a factor graph to minimize the
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scan matching error over the entire map [4]. We combine
the GPU-accelerated matching cost factor with the IMU
preintegration factor to jointly consider the LiDAR and IMU
constraints for global trajectory optimization. This approach
enables us to accurately correct estimation drift in challeng-
ing environments while preserving the global consistency of
the map. To the best of our knowledge, this is the first study
to perform global trajectory optimization based on the tight
coupling of LiDAR and IMU constraints. We also propose a
keyframe-based LiDAR-IMU frontend algorithm with fixed-
lag smoothing that enables efficient and low-drift sensor ego-
motion estimation with a bounded computation cost. We
show that the proposed framework enables highly accurate
and robust trajectory estimation through experiments on the
Newer College dataset [S] and KAIST urban dataset [6].

The proposed framework is distinct from existing LiDAR-
IMU SLAM frameworks in several aspects.

1) It is based on the voxelized GICP matching cost factor
[4], which uses a larger number of points to calculate
the registration error compared to the commonly used
scan matching based on line and plane point match-
ing [1]. This enables accurate and robust constraint
of sensor poses while fully leveraging GPU parallel
processing.

2) Its tightly coupled odometry estimation module em-
ploys a keyframe-based fixed-lag smoothing method
inspired by [7], which enables a low-drift trajectory
estimation with a bounded computation cost.

3) It also employs the tight coupling approach for the
backend. The backend constructs a densely connected
matching cost factor graph with the support of the
IMU factors and exhibits outstanding accuracy. It also
introduces the concept of endpoints of submaps to
strongly constrain submaps at a large time interval with
IMU constraints.

II. RELATED WORK
A. LiDAR-IMU frontend

Following the recent progress in visual-inertial SLAM
techniques [3], [8], [9], LiDAR-IMU fusion has been an
important topic for LiIDAR SLAM [10]. The use of IMU
enables us to predict sensor motion at a frequency of 100-
1000 Hz, facilitating good initial estimates of the sensor
pose and correct distortion of LiDAR points under quick
sensor motion. Furthermore, IMU measurements provide
information on the direction of gravity, enabling a reduction
of the trajectory estimation drift in four DoFs by aligning
the trajectory with this direction [3].



One method for fusing IMU and LiDAR measurements
is the loose coupling scheme, which separately considers
LiDAR-based estimation and IMU-based estimation and
fuses the estimation results in the pose space using, for exam-
ple, an extended Kalman filter [11] or a factor graph [10],
[12]. While the loose coupling scheme is computationally
efficient, another approach, i.e., the tight coupling scheme,
can theoretically be more accurate and robust than the loose
coupling scheme [1].

The tight coupling scheme fuses LiDAR and IMU mea-
surements on a unified objective function. This approach
enables robust estimation of sensor trajectory in feature-less
environments, where sufficient geometrical information is
not available through LiDAR data, because IMU constraints
help to constrain the sensor trajectory based on inertial
information. Owing to their high accuracy and robustness,
tightly coupled LiDAR-IMU methods have been widely
studied in recent years [1], [2], [13], [14].

Despite its theoretical advantages, the tight coupling ap-
proach considerably increases system complexity and com-
putational cost and can be unstable in extreme situations. To
avoid increasing system complexity, several methods employ
an IMU-centric loose coupling approach to make the system
robust in extreme environments (e.g., in an underground
environment) [15], [16].

B. LiDAR-IMU backend

While there are many LiDAR SLAM frontend methods
based on LiDAR-IMU fusion, the use of IMU constraints
is mostly limited to the frontend (i.e., odometry estimation)
in most existing methods [10], [14], [17] because they use
pose graph optimization for global trajectory optimization,
which minimizes errors in the pose space. As pose graph
optimization uses SE3 relative pose constraints to constrain
sensor poses, separation of the LiDAR-based estimation
and IMU-based estimation is unavoidable. It also affects
the consistency of the map when closing a large loop or
constraining small overlapping frames because it employs
an approximated representation (i.e., Gaussian distribution)
for relative pose constraints [4].

The backend of the proposed framework is conceptu-
ally similar to Voxgraph [18], which also considers point
cloud registration errors for global trajectory optimization.
It uses the Euclidean signed distance field [19] to represent
submaps and efficiently computes the registration error be-
tween submaps, without requiring a costly nearest-neighbor
search. However, the registration error minimization was
still computationally expensive, and global optimization was
conducted using a random subset of registration residuals
with the support of SE3 relative pose factors. The proposed
method eliminates inaccurate SE3 relative pose factors and
fully relies on matching cost factors for all optimization
stages, resulting in globally consistent mapping results. Fur-
thermore, it also enables the construction of a tightly coupled
global trajectory optimization, which greatly improves the
robustness of the mapping process in severely feature-less
environments.
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Fig. 1: System overview.

III. METHODOLOGY

Fig. 1 shows an overview of the proposed framework,
comprising a preprocessing module and three estimation
modules, i.e., odometry estimation, local mapping, and
global mapping, which are all based on tightly coupled
LiDAR-IMU fusion. The odometry estimation (i.e., frontend)
module robustly estimates the sensor motion and provides an
initial estimate of the latest sensor state. The estimated sensor
states are refined by the following local mapping module, and
several local frames are merged into one submap. The global
mapping module then optimizes the submap poses such that
the global registration error is minimized while preserving
the consistency of the map. We run these modules in parallel
via multi-threading.

We define the sensor state a; that will be estimated in the
estimation modules as

Ty = [Eavhbt]Ta (1)

where T; = [R:|t;] € SE(3) is the sensor pose, v; €
R? is the velocity, and b; = [b¢,b¢] € RS is the IMU
acceleration and angular velocity bias. We estimate the time
series of sensor states from LiDAR point clouds P; and IMU
measurements (linear acceleration a; and angular velocity
wy). Note that we transform LiDAR point clouds into the
IMU coordinate frame and, for efficiency and simplicity,
consider them as if they are in a unified sensor coordinate
frame.

In the following Sec. III-A and III-B, we first introduce
two types of factors, the LiDAR matching cost factor and
the IMU preintegration factor, that are the main components
of the factor graphs used in the proposed framework. Then,
we explain each module in the proposed framework in Sec.
1I-C to II-F.

A. LiDAR Matching Cost Factor

The matching cost factor constrains two sensor poses (T
and T) such that the matching cost between the point clouds
(P; and P;) is minimized. As the matching cost, we choose
the voxelized GICP (VGICP) cost [20], which is a variant
of generalized ICP [21] suitable for GPU computation.

VGICP models each input point p; € P; as a Gaussian
distribution py, = (pg, Cx), and the covariance matrix CY is
computed from the neighboring points of py. It discretizes



P; into voxels and computes a Gaussian distribution for each
voxel by aggregating the means and covariances of the points
in the voxel. Then, the matching cost e between P; and
P; is defined based on the GICP distribution-to-distribution
distance:

M(PL Py TLT) = Y PP (pr, T 'TY), )
PLEP;:
e”P(py, Ty;) = dj, (C}, + T;;C.T5) " "dy,  (3)

where p), = (p},,C},) is the mean and covariance of the
corresponding voxel of pj; given by looking up the voxel
map of P;, and dj, = p) — T;;py is the residual between
py and p) .

From the derivatives of Eq. 2, we obtain a Hessian
factor to constrain the relative pose between T; and T}.
It is worth emphasizing that we re-evaluate and linearize
eM at the current linearization point for every optimization
iteration, which results in a more accurate constraint than the
traditional SE3 relative pose constraint [4].

B. IMU Preintegration Factor

We use the IMU preintegration technique [22] to effi-
ciently incorporate IMU constraints into the factor graph.
Given an IMU measurement (a; and w;), the sensor state
evolves as follows:

Riiat = Ryexp ((we — by —my)) At), “)

Vit At = Uy + gAt + Rt (at — b(tl — T]?) At, (5)
1 1

tt+At E tt + ’UtAt —+ §gAt2 + iRt (a,t — b? — T]?) AtQ,

(6)

where g is the gravity vector and 1 and ny’ are white noise
in the IMU measurement.

The IMU preintegration factor integrates the system evo-
Iution between two time steps ¢ and j to obtain the relative
body motion constraints (see [22] for a detailed derivation):

AR;; = R R;exp (6¢pi5) , @)
Avij = R (vj — v; — gAtij) + dvyj, (®)

1
Atij = RLT <tj — tj, — ’UAtij — 29Atfj) + 5tij7 (9)

where §¢;;, 0v;;, and 0p;; are white noise in the integration
process.

The IMU preintegration factor enables us to keep the
factor graph well-constrained in environments where geo-
metrical features are insufficient and LiDAR factors can
be deficient. Furthermore, it provides information on the
direction of gravity and reduces the estimation drift in 4
DoF [3].

C. Preprocessing

We first downsample the input point clouds with a voxel
grid filter. For the following deskewing process, we average
the timestamps of points in addition to the positions for each
voxel. If a point has a timestamp that is significantly different
from that of the corresponding voxel (e.g., |tPo" — t7o¥l| >
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Fig. 2: Frontend factor graph. Only the factors related to
the latest frame (xg) are illustrated. Matching cost factors
are created for the last N frames and keyframes. If a
keyframe is outside the fixed-lag smoothing window (is
already marginalized out), we create a unary matching cost
factor. IMU preintegration factors are created between con-
secutive frames.

%:”, where d*“" is the scan duration), we assign the point
to another new voxel to avoid fusing the first and last points
of a scan. We then find k neighboring points for each point
required for the subsequent point covariance estimation. We
assume that the neighborhood relationship of points does
not largely change during the following deskewing process
and use the precomputed nearest neighbors in covariance
estimation, which is performed after deskewing.

D. Odometry Estimation

The odometry estimation module compensates for quick
sensor motion and robustly estimates the sensor state by
fusing LiDAR and IMU measurements. We first correct the
distortion on the point cloud caused by the sensor motion
by transforming the points into the IMU frame with motion
prediction based on IMU dynamics. We then compute the
covariance of each point using the precomputed neighboring
points.

Given the deskewed point clouds, we construct the factor
graph shown in Fig. 2. To limit computation cost and ensure
that the system is real-time capable, we use a fixed-lag
smoothing approach and marginalize the old frames. Inspired
by direct sparse odometry [7], we introduce a keyframe
mechanism for efficient and low-drift trajectory estimation.
Keyframes are a set of frames that are selected such that they
are spatially well-distributed while having sufficient overlap
with the latest frame. We create a matching cost factor
between the latest frame and every keyframe to efficiently
reduce estimation drift. If a keyframe is already marginalized
from the fixed-lag smoother, we consider the keyframe
pose as fixed and create a unary matching cost factor that
constrains the latest sensor pose with respect to the fixed
keyframe.

To manage keyframes, we define an overlap rate between
two frames P; and P; as the fraction of points in P; that fall
within a voxel of P; [4]. Every time a new frame arrives, we
evaluate the overlap rate between that frame and the latest
keyframe and, if the overlap is smaller than a threshold (e.g.,
90%), we insert that frame into the keyframe list. Similar
to the keyframe marginalization strategy in [7], we remove
redundant keyframes using the following strategy:
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Fig. 3: Backend factor graph. The local mapping module
merges several local frames into one submap using an
all-to-all registration strategy. The global mapping module
optimizes the submap poses such that the global registration
error is minimized over the entire map. Both modules take
advantage of IMU factors to stabilize the estimation in severe
feature-less environments and reduce estimation drift.

1) We remove keyframes that overlap the latest keyframe
by less than a certain threshold (e.g., 5%).

2) If more than N°d™ (e.g., 20) frames exist in the
keyframe list, we remove the keyframe that minimizes
the following score:

s(i) = o(i, Nodom) >

je [1,N”‘{"/"71]\{i}

(1 - 0(27])) )
(10)

where o(i,7) is the overlap rate between the i-th
and j-th keyframes. The score function is heuristically
designed to keep keyframes spatially well-distributed
while leaving more keyframes close to the latest one.

In addition to the keyframes, we create matching cost
factors between the latest frame and the last few frames (e.g.,
last three frames) to make the odometry estimation robust to
quick sensor motion. We also create an IMU preintegration
factor between consecutive frames for robustness in feature-
less environments.

E. Local Mapping

Once a frame is marginalized from the odometry esti-
mation graph, it is fed to the local mapping module as an
initial estimate of the sensor state. The local mapping module
merges several local frames into one submap to reduce the
number of optimized variables in the global mapping module.

We first re-perform deskewing and covariance estimation
with the marginalized state, which is expected to improve
upon the initial prediction made at the beginning of the
odometry estimation. We then evaluate the overlap rate
between that frame with the latest frame in the submap and,
if the overlap rate is smaller than a threshold (e.g., 90%),
insert that frame into the submap factor graph.

As shown in Fig. 3, we create a matching cost factor
for every combination of frames in the submap (i.e., all-to-
all registration). We also add an IMU preintegration factor
between consecutive frames and add a prior factor for the
velocity and bias of each frame, based on the marginalized
state, to better stabilize the submap optimization.

Once the number of frames in the submap becomes equal
to INsub (e.g., 15) or the overlap between the first and
last frames becomes smaller than a threshold (e.g., 5 %),
we perform factor graph optimization using the Levenberg-
Marquardt optimizer [23] and merge the frames into one
submap based on the optimization result.

FE. Global Mapping

The global mapping module corrects the estimation drift
to obtain a globally consistent mapping result. We create
a matching cost factor between every submap pair with an
overlap rate exceeding a small threshold (e.g., 5%). This
results in an extremely dense factor graph. Every submap is
aligned with not only adjacent submaps on the graph but also
every revisited submap that results in closing loops implicitly.

Submaps are created at a larger time interval (e.g., 10 s).
If we simply create an IMU factor between submaps, its un-
certainty becomes too large, and it cannot strongly constrain
the relative pose between submaps [8], [24]. Furthermore, we
also lose information on the velocity and IMU bias estimated
by the local mapping module. To address these problems, we
introduce two states called endpoints (z; and z%) for each
submap a*; they hold the states of the first and last frames
in the submap with respect to the submap pose.

Given an estimate of sensor states [xq,- -« ,@nw] in a
submap !, we define the submap origin T as the pose of
the sensor pose at the center T /5. Then, the sensor state
x; relative to the submap origin is given as:

T = (T°) ' T, (11)
v = (Ri)_l'vt, (12)
b, = b;. (13)

We create relative state factors between a submap =* and
endpoints =, and x?, such that they satisfy the relative state
relationship described by Eqgs. 11 - 13. We then create an
IMU factor between a:lﬁ and acf“l. In this way, an IMU factor
covers a small time interval and can strongly constrain the
submap poses while avoiding the loss of the velocity and
bias information estimated by the local mapping module.

Every few times a new submap is inserted (e.g., every five
submaps), the factor graph is incrementally optimized via the
iSAM?2 optimizer [25] in GTSAM'.

1V. EVALUATION
A. Evaluation on the Newer College Dataset

We conducted experiments on the Newer College dataset
[5] recorded with an Ouster OS-1 64, which provides LiDAR
point clouds at 10 Hz accompanied by synchronized IMU
data at 100 Hz. We compared the proposed framework with
two state-of-the-art LIDAR-IMU SLAM frameworks — i.e.,
LIO-mapping (LIOM) [1] and LIO-SAM [10] — on the
long_experiment sequence, which is the longest sequence
in the Newer College dataset (3,060 m / 2,650 s). As

'https://gtsam.org/



TABLE I: Evaluation results on the Newer College dataset

Metric ‘ LIOM (odom) LIO-SAM (odom) LIO-SAM Proposed (odom) Proposed
RTE [m] | 2.224 + 1.402 2215 £ 1.376 2.156 + 1.357 2.140 + 1.348 2.160 £ 1.356
ATE [m] | 3.392 £+ 1.653 1.176 £ 0.641 0.529 £+ 0.259 0.899 £ 0.595 0.276 £+ 0.093
0.00 0.55 1.10
1 1 |
. - s A
LIDAR
N, // =
--- reference \ ( 1\ w
\ MU j
100 \ e —
E | |
x Fig. 5: Sensor configuration of KAIST urban dataset.
50
TABLE II: Processing time through the KAIST07 sequence
Module Process Time [msec]
0 50 100 150 200
y [m] Downsampling 44+ 1.0
(a) Proposed Preprocess kNN search 189 + 3.1
Total 233 £ 4.0
--- reference
Deskew & Cov. 6.7 £ 62
L Optimization 21.0 £ 11.7
100 S
Odometry estimation Keyframe update 13.5 £ 129
T Total 413 £ 183
* Deskew & Cov. 8.0 + 7.6
50 - Total (per-frame) 8.9 £ 8.0
Local mapping Optimization 117.0 + 488
Merging frames 5052
0 50 100 150 200 Total (per-submap) 122.0 £ 49.7
y[m]
Factor creation 222 £ 21.1
LIO-SAM
(b) LIO-S Global mapping Optimization 208.9 £+ 120.0
Fig. 4: Sensor trajectories estimated by the proposed frame- Total 242.5 4 136.1

work and LIO-SAM for the long_experiment sequence in the
Newer College dataset. The color indicates the magnitude of
the ATE.

the evaluation metric, we used the absolute trajectory error
(ATE) and 100 m relative trajectory error (RTE) [26].

Table I presents the quantitative evaluation results. The
proposed frontend algorithm showed a comparable RTE
(2.140 m) to those of LIO-mapping and LIO-SAM (2.224
m and 2.215 m, respectively). This result suggests that
the proposed keyframe-based odometry estimation enables a
low-drift trajectory estimation. With global optimization, the
proposed framework greatly improved the trajectory consis-
tency and demonstrates a significantly better ATE (0.276 m)
than that of LIO-SAM (0.529 m).

Fig. 4 shows the trajectories estimated by the proposed
framework and LIO-SAM. LIO-SAM exhibited large errors
on a large curve. We infer that is because 1) the density
of the frames is relatively small at the corner and LIO-
SAM failed to create sufficient relative pose constraints. 2)
LIO-SAM does not incorporate IMU factors in the global
optimization that resulted in losing the gravity direction
information. Meanwhile, the proposed framework showed an
accurate and consistent trajectory estimation result owing to
the global matching cost minimization scheme and the tight

coupling of LiDAR and IMU constraints.

It is worth mentioning that the proposed method is very
robust to quick sensor motion. We confirmed that it success-
fully estimated the sensor trajectory in quad_with_dynamics
and dynamic_spinning sequences, which presented aggressive
sensor motion (up to 1.5 m/s and 3.5 rad/s)>.

B. Evaluation on KAIST Urban Dataset

To demonstrate that the proposed framework can robustly
estimate the sensor trajectory in challenging situations, we
conducted experiments on KAIST urban dataset [6]. In this
dataset, a LIDAR (Velodyne VLP-16) was vertically mounted
on the vehicle (see Fig. 5), and thus consecutive LiDAR point
clouds only have a small overlap when the vehicle is running.
It is often difficult to obtain sufficient geometrical constraints
from LiDAR point clouds, and tight coupling of LiDAR and
IMU constraints is inevitable.

Fig. 6 shows a mapping result for the KAISTO7 sequence.
We can see that the proposed method was able to create
a consistent environmental map in the challenging setting
thanks to the tightly coupled LiDAR-IMU fusion scheme.
We can also see that the proposed framework aggressively

2See the supplementary video.



(a) Estimated map and trajectory

(b) Factor graph

Fig. 6: Mapping result for the KAISTO7 sequence.

(a) Constraints between small overlapping frames

(b) Feature-less highway environment

Fig. 7: Snapshots for the mapping process through the KAIST17 sequence. The orange points indicate the latest LIDAR
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Fig. 8: Number of submaps and matching cost factors and
the processing time of the global optimization through the
KAISTO7 sequence.

creates matching cost factors between small overlapping
frames, and an extremely dense factor graph is constructed.

Fig. 7 shows snapshots of a trial with the KAIST17
sequence. The proposed backend algorithm is very powerful
and enables the creation of constraints between small over-
lapping frames, which helps correcting trajectory estimation
drift, as shown in Fig. 7 (a). It can also robustly estimate
the sensor trajectory in a feature-less highway environment,
as shown in Fig. 7 (b) 2. Note that the global optimization
corrupted on the highway environment without the IMU
constraints due to insufficient geometrical features.

Through the KAISTO7 sequence, the proposed framework
ran approximately twice as fast as the real-time elapsed
(20 FPS). Table II summarizes the processing times of
each module in the proposed framework. The preprocessing
and odometry estimation modules respectively took 23.3 ms
and 41.3 ms per frame and were sufficiently faster than
the real-time requirement (100 ms per frame). The submap
optimization, which was performed approximately every 2
s, took 122.0 ms on average. The global map optimization,
which was performed approximately every 5 s, took 242.5
ms on average.

Fig. 8 shows how the global optimization time grew as
the number of submaps and matching cost factors increased.
While a massive amount of matching cost factors are created
(over 6,000 factors), the global optimization converged in
less than one second thanks to the incremental optimizer
and GPU acceleration.

V. CONCLUSIONS

This paper presents a LiDAR-IMU mapping framework.
The proposed framework comprises odometry estimation,
local mapping, and global mapping modules, which are all
based on the LiDAR-IMU tight coupling. For odometry
estimation, an efficient keyframe mechanism and fixed-lag
smoothing technique are used to achieve a low-drift estima-
tion with a bounded computation cost. A new factor graph
structure for the backend was proposed to realize tightly
coupled LiDAR-IMU fusion. We validated the efficiency
and accuracy of the proposed framework using the Newer
College dataset and KAIST urban dataset.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

REFERENCES

H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3D lidar inertial odom-
etry and mapping,” in IEEE International Conference on Robotics and
Automation. 1EEE, May 2019, pp. 3144-3150.

C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu, “LINS:
A lidar-inertial state estimator for robust and efficient navigation,” in
IEEE International Conference on Robotics and Automation. 1EEE,
May 2020, pp. 8899-8906.

T. Qin, P. Li, and S. Shen, “VINS-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004-1020, Aug. 2018.

K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Globally consis-
tent 3D LiDAR mapping with GPU-accelerated GICP matching cost
factors,” IEEE Robotics and Automation Letters, pp. 1-8, 2021.

M. Ramezani, Y. Wang, M. Camurri, D. Wisth, M. Mattamala, and
M. Fallon, “The newer college dataset: Handheld LiDAR, inertial and
vision with ground truth,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, Oct. 2020, pp. 4353-4360.
J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex urban
LiDAR data set,” in IEEE International Conference on Robotics and
Automation. 1EEE, May 2018, pp. 6344-6351.

J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” I[EEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 3, pp. 611-625, Mar. 2018.

L. V. Stumberg, V. Usenko, and D. Cremers, “Direct sparse visual-
inertial odometry using dynamic marginalization,” in /IEEE Interna-
tional Conference on Robotics and Automation. 1EEE, May 2018,
pp- 2510-2517.

C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. M. Montiel, and J. D.
Tardos, “ORB-SLAM3: An accurate open-source library for visual,
visual—inertial, and multimap SLAM,” IEEE Transactions on Robotics,
pp. 1-17, 2021.

T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and R. Daniela,
“LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and
mapping,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems. 1EEE, Oct. 2020, pp. 5135-5142.

S. Weiss and R. Siegwart, “Real-time metric state estimation for
modular vision-inertial systems,” in IEEE International Conference
on Robotics and Automation. 1EEE, May 2011, pp. 4531-4537.

V. Indelman, S. Williams, M. Kaess, and F. Dellaert, “Information
fusion in navigation systems via factor graph based incremental
smoothing,” Robotics and Autonomous Systems, vol. 61, no. 8, pp.
721-738, Aug. 2013.

W. Xu and F. Zhang, “FAST-LIO: A fast, robust LiDAR-inertial
odometry package by tightly-coupled iterated kalman filter,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 3317-3324, Apr.
2021.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

K. Li, M. Li, and U. D. Hanebeck, “Towards high-performance solid-
state-LiDAR-inertial odometry and mapping,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5167-5174, July 2021.

M. Palieri, B. Morrell, A. Thakur, K. Ebadi, J. Nash, A. Chatterjee,
C. Kanellakis, L. Carlone, C. Guaragnella, and A. akbar Agha-
mohammadi, “LOCUS: A multi-sensor lidar-centric solution for high-
precision odometry and 3d mapping in real-time,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 421-428, Apr. 2021.

S. Zhao, H. Zhang, P. Wang, L. Nogueira, and S. Scherer, “Super
Odometry: IMU-centric LIDAR-Visual-Inertial estimator for challeng-
ing environments,” arXiv:2104.14938, 2021.

T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, Oct. 2018, pp. 4758-4765.

V. Reijgwart, A. Millane, H. Oleynikova, R. Siegwart, C. Cadena, and
J. Nieto, “Voxgraph: Globally consistent, volumetric mapping using
signed distance function submaps,” IEEE Robotics and Automation
Letters, vol. 5, no. 1, pp. 227-234, Jan. 2020.

H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
“Voxblox: Incremental 3d euclidean signed distance fields for on-board
MAV planning,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems. 1EEE, Sept. 2017, pp. 1366—-1373.

K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Voxelized GICP for
fast and accurate 3D point cloud registration,” in /EEE International

Conference on Robotics and Automation. 1EEE, May 2021.
A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics:

Science and Systems V. Robotics: Science and Systems Foundation,
June 2009, pp. 435-443.

C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual-inertial odometry,” IEEE Transac-
tions on Robotics, vol. 33, no. 1, pp. 1-21, Feb. 2017.

K. Levenberg, “A method for the solution of certain non-linear
problems in least squares,” Quarterly of Applied Mathematics, vol. 2,
no. 2, pp. 164-168, July 1944.

R. Mur-Artal and J. D. Tardos, “Visual-Inertial monocular SLAM with
map reuse,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
796-803, Apr. 2017.

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iISAM2: Incremental smoothing and mapping using the
bayes tree,” International Journal of Robotics Research, vol. 31, no. 2,
pp. 216-235, Dec. 2011.

Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, Oct. 2018, pp.
7244-7251.



