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Abstract

This paper presents a new approach to view-based localization and navigation in outdoor environments, which are indispensable
functions for mobile robots. Several approaches have been proposed for autonomous navigation. GPS-based systems are widely
used especially in the case of automobiles, however, they can be unreliable or non-operational near tall buildings. Localization with
a precise 3D digital map of the target environment also enables mobile robots equipped with range sensors to estimate accurate
poses, but maintaining a large-scale outdoor map is often costly. We have therefore developed a novel view-based localization
method SeqSLAM++ by extending the conventional SeqSLAM in order not only to robustly estimate the robot position comparing
image sequences but also to cope with changes in a robot’s heading and speed as well as view changes using wide-angle images
and a Markov localization scheme. According to the direction to move provided by the SeqSLAM++, the local-level path planner
navigates the robot by setting subgoals repeatedly considering the structure of the surrounding environment using a 3D LiDAR. The
entire navigation system has been implemented in the ROS framework, and the effectiveness and accuracy of the proposed method
was evaluated through off-line/on-line navigation experiments.
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1. Introduction

The mobile service robot is an emerging application area in
robotics. Such a robot is expected to provide various service
tasks like attending, guiding, and searching. One of the nec-
essary functions of mobile service robots is navigation, which5

makes it possible for a robot to move from one place to another
autonomously. Since outdoor environments are an important
part of human activity, mobile service robots should be able to
navigate themselves in the outdoors.

Outdoor navigation can be divided into two levels. The10

global level deals with localization and subgoal selection, while
the local level deals with safe navigation in a local area. This
is an analogy to a navigated car driving; a car navigation sys-
tem tells a driver where the car is and which way to go, and the
driver is responsible for safe driving, including following traffic15

rules and avoiding possible collisions.
Several approaches are possible for outdoor global local-

ization. GPS-based systems are often used [18, 19], but can be
unreliable or non-operational near tall buildings. A precise dig-
ital map of the environment is also required in this approach.20

A map-based approach is also popular in the SLAM context
[20, 21, 22], however making a large-scale outdoor map is often
costly. In this paper, we seek a simpler way, that is, view-based
localization [1, 2, 3, 4].

In a typical view-based localization, a route to follow is25

represented by a sequence of views and a view-matching pro-
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cedure is employed for determining the robot’s current loca-
tion. One of the issues when applying this approach to out-
door scenes is robustness to view changes due to changes of,
for example, weather, seasons, and time of day. Among vari-30

ous approaches to resolving the issue, we adopt the SeqSLAM
method [9], which achieves a high robustness even under ex-
treme view changes by using image sequence matching. Al-
though this method shows a good performance for image se-
quences taken from a vehicle, it is not always directly applica-35

ble to mobile robot navigation.
We therefore developed SeqSLAM++ by extending the con-

ventional SeqSLAM for a new view-based navigation frame-
work for mobile robots. The major contribution of this paper
is to generalize the SeqSLAM so that it can handle frequent40

changes of a robot’s heading and speed due to its motion, and
provide a direction to move at a certain interval to follow the
training trajectory. As shown in Fig. 1, the proposed SeqS-
LAM++ autonomously navigates the mobile robot to the des-
tination according to the result of the robust image sequence45

matching. Combined with local mapping and path planning ca-
pabilities, the SeqSLAM++ generates a local subgoal based on
the estimated direction to move and makes the mobile robot go
to the destination tracing each subgoal.

The rest of the paper is organized as follows. Sec. 2 presents50

related work on view-based localization. Sec. 3 describes the
detail of the proposed SeqSLAM++ for global-level mobile
robot localization and navigation. Sec. 4 describes a local navi-
gation strategy including local mapping, subgoal selection, and
path planning. Sec. 5 shows the experimental results of off-line55
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(a) Mobile robot navigating itself to a destination. (b) Input image and selected moving direction.

(c) Estimated location (The best matched image in the training sequence). (d) Local path planning along with the direction to move.

Figure 1: Autonomous navigation with the proposed SeqSLAM++.

performance validation, on-line navigation, and trajectory eval-
uation. Sec. 6 concludes the paper and discusses future work.

2. Related Work

View-based localization is to find the location of a robot or
a vehicle by matching the current view with those in a set of60

views that has been previously obtained. The Robustness of
matching to large view changes is, therefore, the key to reliable
localization, and many approaches have been proposed. Such
an image-to-image matching also appears in the context of loop
closure detection for SLAM [23, 24] or in visual place recogni-65

tion [25].
Local image descriptors such as SIFT [26] and SURF [27]

are sometimes used for characterizing an image with, for exam-
ple, the Bag-of-Visual-Words model [28]. This visual words-
based approach is popular in outdoor localization [29, 4]. FAB-70

Map [3, 30] improves this approach by constructing and using
a generative model of visual words based on their probabilistic
relationships. Local image descriptors are, however, sometimes
weak to large changes of weather and seasons [4].

Global image features such as GIST are also used for place75

recognition [31]. Combination of GIST with saliency-based
landmarks is also proposed [32, 33] for localization in a topo-
logical map. However, since global image features still cannot
cope with large view changes, an image database must be con-
structed by training under various lighting conditions [5].80

Enhancing direct image-to-image matching is another ap-
proach, examples of which include a robust template matching
[8], an SVM learning of objects with varying views [7, 6], and
an illumination invariant image transformation [34]. Among
those, the SeqSLAM method [9] achieves highly robust local-85

ization based on a robust image sequence matching. We extend
this SeqSLAM for our view-based robot localization system.

3. View-based Localization by SeqSLAM and Its Improve-
ments

3.1. SeqSLAM90

SeqSLAM [9] is a view-based localization method which
compares a reference image sequence with an input sequence
for robust matching. It achieves highly accurate visual recog-
nition by calculating the similarity between the reference and
the input image sequences to estimate the best matching loca-95

tion instead of single image comparison. For robust estimation
in an extreme lighting condition between training and testing
time, it applies local contrast enhancement as follows.

Let D be the vector of the differences between an input im-
age and the images in the reference sequence, which is con-100

sidered to cover the possible range of reference images for the
input image. Each element Di in D is normalized by:

D̂i =
(
Di − D̄l

)
/σl, (1)

where Dl and σl are the mean and the standard deviation of D.
By this enhancement, even if an input image is largely differ-
ent from the reference images and all of the difference values105

become large due to significant illumination change, the differ-
ence for the true correspondence is expected to be sufficiently
small compared to the others.

These enhanced vectors are compiled for ds+1 frames into a
matrix M which has the reference and the input image sequence110

in the row and the column, respectively:

M =
[
D̂T−ds , D̂T−ds+1, . . . , D̂T

]
(2)

An example matrix is shown in Fig. 4.
Then, assuming a constant velocity during the sequence, a

line is searched for which minimizes the following total differ-
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ence S :115

S =

T∑
t=T−ds

Dt
k, (3)

k = s + V(ds − T + t), (4)

where V is the gradient of the line (or a relative velocity in input
and reference acquisition) and k is the index of the correspond-
ing image in the reference sequence for the input image at time
t.

SeqSLAM exhibited great performances against drastic view120

changes, at least for road sequence images. There are, however,
room for improvements when applied to mobile robot naviga-
tion. The following subsections explain our improvements.

3.2. SeqSLAM++ : Extension of the SeqSLAM for mobile robot
navigation125

3.2.1. Robust image matching and motion determination
The original SeqSLAM uses intensity values normalized

within a small window as the feature for image matching. The
method is simple and fast, however, is not robust to image de-
formations. In addition, it is not able to deal with large view di-130

rection changes due to the robot’s motion. We therefore adopt
two improvements: HOG feature matching and the use of a
wide angle camera.

HOG feature matching: HOG feature [10] is a histogram
of edges in a local region and suitable for representing shape in-135

formation. The training images have 90◦ FOV (Field Of View),
and the cell size for calculating HOG is determined so that each
cell has 5◦ FOV. In addition, the number of bins is set as 9 and
the block consists of 2 × 2 cells.

Fig. 2 shows an example of SeqSLAM’s normalization and140

HOG calculation. Compared with the normalization method,
HOG can extract an appearance feature invariant to lighting
conditions and small deformations thanks to the discretized gra-
dient representation and block normalization. The dissimilarity
between images is obtained by calculating a normal SAD (Sum145

of Absolute Differences) in the proposed SeqSLAM++.
Moving direction determination to deal with a variety

of robot motion: Mobile robots changes their moving direc-
tions frequently not only for moving toward a destination but
also when avoiding collisions with people and obstacles. Since150

each image in a view sequence captures a scene in a specific
direction, it is very likely to have a different orientation dur-
ing navigation, thereby degrading the view-based localization
performance.

Morita and Miura [11] used an omnidirectional camera to155

cope with this problem. We also take a similar approach us-
ing wide-angle images that have about 180◦ horizontal FOV
as input images. A training image is scanned horizontally on
the wide-angle input image within ±45◦ range at 5◦ interval,
and choose the minimum distance position, which is then used160

for determining the subgoal direction (i.e., the direction for the
robot to move). Fig. 3 shows an example of the direction deter-
mination.

(a) Example scenes.

(b) Image normalization results by SeqSLAM.

(c) Extracted HOG features.

Figure 2: Feature representation for image matching.

(a) Training image. (b) Input image with the selected direction (red box).

Figure 3: Selection of moving direction.

3.2.2. Adaptive and efficient sequence matching against robot
motion variations165

The original SeqSLAM assumes a constant speed during the
acquisition of training and input image sequences; the matrix
is searched for the best line which minimizes the total differ-
ence. This assumption is sometimes violated in the case of mo-
bile robots because they need to adjust their speed adaptively to170

the surrounding situation for, for example, avoiding a collision
and/or not scaring people by getting too close. We therefore
use a DP to cope with such speed variations during image ac-
quisition. We also effectively utilize the history of movement to
increase reliability and reduce the calculation cost.175

DP Matching: DP (Dynamic Programming) matching [12]
is a tool for calculating a match between two data sequences at
non-constant intervals between data. Fig. 4 shows an example
of DP matching for image sequences with non-constant robot
motions; a linear matching is not suitable for this case. We set a180

limitation on the speed difference between the training and the
navigation phase and apply the DP matching for obtaining the
best matched image pairs with an evaluation. In addition, unlike
SeqSLAM, we use the latest frame as a representative image of
a sequence so that the current location is estimated on-line.185
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(a) line-based matching is not optimal.
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(b) DP matching can find the best matches.

Figure 4: DP matching between training and navigational image sequences. In
the matrix, darker elements have smaller differences.

Markov localization: Mobile robot localization often uses
a movement history, which is effective to limit the possible
robot positions in prediction. Miura and Yamamoto [7] adopted
a Markov localization strategy in a view-based localization. In
[7], a discrete set of locations are provided for localization and190

a probabilistic model of transitions between locations was used
in the prediction step. This can reduce not only localization
failures but also the calculation cost with a limited number of
sequence matches.

The Markov localization here is formulated as follows:195

B̂el(l) ←
∑

l′
Pm(l|l′)Bel(l′), (5)

Bel(l) ← αPo(s|l)B̂el(l), (6)

Po(s|l) =
S min

S l
, (7)

where Pm(l|l′) denotes the transition probability from frame l′

to l, Bel(l) the belief of the robot being location l, Po(s|l) the
likelihood of location l with sensing s, which is calculated by
the minimum matching score of the DP matching divided by
the score for location l.200

The state transition model Pm(l|l′) is determined by consid-
ering the image acquisition interval and the robot’s motion pat-
terns. Currently, the training images are taken at about one me-
ter interval and the robot takes one image per two seconds with
moving at 1 m/s. Since the robot speed changes frequently due205

to various reasons such as collision avoidance and turning mo-
tions, we use a transition model in which the robot may move
to locations corresponding to one of the current and the three
subsequent location with equal probabilities.

4. Local Path Planning using View-Based Localization Re-210

sults

The proposed SeqSLAM++ localizes the robot position and
provides the direction to move. That information by itself is,
however, not enough for guiding an actual robot safely. We
therefore have implemented a local navigation system which215

includes local mapping, subgoal selection, and path planning.

4.1. Local mapping

A 3D LiDAR is used to create local 2D maps, which is for
finding free spaces. We detect obstacles in two ways. One is
to use a height map which detects regions with relatively high220

obstacles. We use a grid coordinate at 10 cm intervals for rep-
resenting height maps. The pose of the range sensors relative
to the ground plane is estimated by fitting a plane to the data
points in the region in front of the robot.

The other way is to find low steps. Since it is sometimes225

difficult to find such steps only from the height due to a limited
ranging accuracy and the error in ground plane estimation, we
examine the differentiation of height data. A region with a large
height difference with a certain number of data points is consid-
ered to be an obstacle region (i.e., A low step). Fig. 5(b) shows230

an example of obstacle detection in a real scene as shown in
Fig. 5(a). The obstacles including low steps in the surrounding
environment are successfully detected.

The point cloud of the detected obstacle is periodically fed
to GMapping[16] that is a well-known SLAM utilizing the Rao-235

Blackwellized particle filter[17] to generate a local map at each
position (Fig. 5(c)).

4.2. Subgoal selection and path planning

The direction to move is suggested by the proposed SeqS-
LAM++, however, it is not always possible to move in that di-240

rection due to obstacles. Since the free spaces are recognized
only in the local map, we need to set a subgoal in the local map
which is safe and leads the robot to the destination. We here
adopt the concept of frontier which is often used in exploration
planning in an unknown space [13]. A frontier point is a point245

which is free and adjacent to an unknown point. Such a point is
either inside the local map or on the edge of the map. All fron-
tier points in front of the robot are detected as candidates for the
subgoal by examining each free cell in the local map whether it
has any unknown points in the 8-neighbor cells around it. The250

most appropriate frontier point is then selected as the subgoal
which has the minimum orientational difference with the sug-
gested moving direction. Fig. 5(d) shows an example selection
of subgoal (frontier).

Once the subgoal is set, the path toward it is generated. We255

use the A* and the Dynamic Window Approach (DWA) algo-
rithm for global and local path planning, respectively[14, 15].
The SeqSLAM++ executes the view-based global localization
at a certain interval, and a new subgoal is generated one after
another according to the localization and moving direction es-260

timation results.

5. Experiments

5.1. Experimental setup

Fig. 6 shows the mobile robot used in this research. It
is based on an electric wheelchair (Patrafour by Toyota Motor265

East Japan Inc.) equipped with a wide-angle camera (Omni60
by Occam Vision Group) for view-based localizations, and 3D
LiDAR(s) (Two FX-8x by Nippon Signal Co. or HDL-32e
by Velodyne LiDAR, Inc.) for local mapping and finding free
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(a) Scene. (b) Obstacle detection. (c) Local mapping and obstacle inflation. (d) Frontier detection and path planning.

Figure 5: Obstacle detection and subgoal selection : In a scene (a), the mobile robot detects obstacles based on a height map and projects them onto a 2D grid
map (b). Feeding the obstacles into GMapping periodically, the robot builds a local 2D map at each position and finds the collision-free space (c) by inflating it. A
subgoal is determined by selecting the frontier point that has the minimum orientation difference with the moving direction suggested by SeqSLAM++, then the
path toward it (d) is generated with A* and DWA.

HDL-32e
Velodyne LiDAR

Omni 60
Occam Vision Group

Patrafour
Toyota Motor East Japan Inc.

Figure 6: Our robot equipped with a wide-angle camera and a 3D LiDAR.

spaces to generate subgoals. The HDL-32e has 360◦ horizontal270

FOV and measures the structure of the surrounding environ-
ment. Although the Omni60 also has 360◦ horizontal FOV, the
frontal 90◦and180◦ parts are used for capturing the training and
input images, respectively.

The following experiments were carried out in the campus275

of Toyohashi University of Technology. As shown in Fig. 7,
two routes are defined: Route A is about 300 m long and rela-
tively straight while Route B has some curves where the mobile
robot needs to make a sharp turn to follow it.

5.2. Off-line localization280

In this experiment, we manually moved the robot making it
follow route A and acquired a set of training images and two
sets of test images. The training and the first test image sets
were taken while the robot moved along the route. On the other
hand, the second test image set was captured as the robot moved285

in a zig-zag so that the direction of the robot changes largely
from position to position. The image sets are shown in Fig. 8
and the detail is summarized in Table 1.

We compared the localization performance of the SeqS-
LAM and the proposed SeqSLAM++ for the test image se-290

quences. Fig. 9 shows the localization results. Note that since
the original SeqSLAM exhibited quite a low performance for

Route A

Route B

a

f

g
hi

j

b

c

d

e

Figure 7: Experiment environment and routes for the navigation performance
evaluation.

Table 1: Summaries of the training and testing image sets.
Camera Date and weather # of images Robot motion

Training 90◦ FOV March 5, 2015, Fine 259 Smooth
Test 1 180◦ FOV July 11, 2015, Cloudy 263 Smooth
Test 2 180◦ FOV July 11, 2015, Cloudy 282 Zig-zag

the second test image sequence due to a large variation of the
robot’s heading, we additionally implemented the same hori-
zontal scanning in the SeqSLAM to find the best matched posi-295

tion in the wide image. Both comparison results show that the
proposed method exhibits a much better performance.

Fig. 10 shows the evaluation of localization accuracy. The
ground truth is determined by manually comparing the training
and test images. When an input image is judged to be located300

between two consecutive training images, the true position is
set in the middle of the training images. The maximum frame
difference by the proposed method is two for most of frames,
meaning the maximum localization error is about 2 m because
the training images are acquired at about one meter interval.305

Table 2 summarizes the performance in terms of localization
success rate and direction selection success rate. Localization
is considered success when the difference is within two frames,
while the direction is considered correctly selected when the
directional difference is less than 5◦. Fig. 11 shows a scene310

where the proposed and the SeqSLAM with horizontal scanning
suggest different moving directions. Since SeqSLAM does a
direct comparison of (normalized) pixel values, it is sometimes
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(a) Training image sequence along the route A.

(b) Input image sequence with smooth motion (test1).

(c) Input image sequence with zig-zag motion (test2).

Figure 8: Image sets captured along the route A in Fig. 7 for off-line localization experiment.

(a) Test image sequence 1 (Smooth). (b) Test image sequence 2 (Zig-zag).

Figure 9: Localization results.

(a) Test image sequence 1 (Smooth). (b) Test image sequence 2 (Zig-zag).

Figure 10: Localization accuracy.

weak to scenes with less textures as shown in the figure.

5.3. Autonomous navigation315

Next, we conducted autonomous navigation experiments in
the routes shown in Fig. 7. In the same way as in Sec. 5.2,
training datasets were captured manually by moving the robot
to follow the routes. On the other hand, the input images were
taken in real time while the mobile robot was controlling itself320

according to the outputs of SeqSLAM++. Fig. 12 shows snap-
shots of the runs, and the names of the locations correspond to
symbols in Fig. 7.

As shown in Fig. 12, the robot successfully completed the
autonomous navigation in each routes localizing its position325

Table 2: Quantitative evaluation results.

Test image Method Localization success rate (%) Direction selection success rate (%)
Test 1 SeqSLAM 86.1 -

SeqSLAM++ 99.6 99.6
Test 2 SeqSLAM 74.2 63.1

SeqSLAM++ 95.8 95.8

SeqSLAM+SCAN

Proposed
training image

Figure 11: Comparison in selecting the moving direction.

based on the view sequence. Additionally, some parts of the
actual trajectories during the navigation were measured to eval-
uate the accuracy of the robot motion with the LiDAR-based
localization technique that was capable of estimating the robot
position correctly by comparing the global 3D map created in330

advance and the local range data with Normal Distribution Trans-
formation (NDT) [35].

As shown in Fig. 13, the mobile robot follows the training
routes properly and the proposed SeqSLAM++ combined with
local planning works on-line with high reliability. When it was335

difficult to exactly follow the path and when the robot slightly
went off the target route due to static/dynamic obstacles or the
structure of the surrounding environment, local path planning
provided appropriate paths to keep the robot traveling in the
right direction given by SeqSLAM++.340
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Location a. Location f.

Location b. Location g.

Location c. Location h.

Location d. Location i.

Location e. Location j.

(a) Route A. (b) Route B.

Figure 12: Navigation experiments. Left:Robot in motion. Center:Estimated location (i.e., best matched training image). Right:Input image and selected moving
direction.

6. Conclusions and Future Work

In this paper, we proposed a new view-based localization
and navigation system SeqSLAM++ by extending the original
SeqSLAM to deal with several issues in mobile robot naviga-
tion. The SeqSLAM++ is capable of localizing the robot ro-345

bustly even when the input images have deformations or view
direction changes from the training images due to the robot mo-
tion by taking advantage of HOG feature and DP dissimilarity
calculation in the sequence matching, the horizontal scanning
in the wider input image, and the probabilistic model based on350

Markov localization strategy. The reliability has been shown in
the off-line evaluations in an outdoor environment, and achieved
95.8% localization success rate against the dataset with large
view direction changes.

In addition, we have also developed an autonomous system355

that can navigate itself given an image sequence of the target
route to follow. Combined with the local mapping and path
planning algorithm, the mobile robot successfully reached the
destinations tracing subgoals generated by SeqSLAM++ ac-
cording to the sequence matching results.360

The entire system has been validated in just two routes in
the campus of Toyohashi University of Technology. To examine
the ability and limitation of the proposed SeqSLAM++, it is
necessary to evaluate the system in a wider variety of scenes,

that is, more variations in weather, season, surrounding objects365

(buildings or forests), and so on.
At the same time, toward an inexpensive and easily appli-

cable navigation system, it is essential to develop an alternative
local mapping algorithm with visual SLAM techniques. In the
current system, geometric information around the mobile robot370

is obtained with an expensive 3D LiDAR. Instead of using that
kind of range sensor, we will build a comprehensive system that
performs the global-level localization with SeqSLAM++ uti-
lizing local-level motion planning with 3D reconstruction tech-
niques for a mobile robot equipped only with digital cameras.375
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