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Abstract—This paper describes a method of building a seman-
tic map of a greenhouse for a robot path planning. Existing
mapping methods only consider whether there are obstacles
in a certain region. They are not sufficient for path planning
in greenhouses where traversable regions are often covered by
branches and leaves which are also recognized as obstacles.
We propose a mapping method which generates a map with
semantic information on the types of obstacles. By integrating
RGB-D based visual SLAM (Simultaneous Localization And
Mapping) and semantic segmentation by a deep neural network,
we obtain a 3D map with semantic labels. In order to deal with
the uncertainty of observations, we introduce a Bayesian label
updating strategy which effectively utilizes the fact that the robot
traverses a region. Through evaluations, we confirmed that the
proposed method can perform a more accurate semantic labeling
than the one only using SegNet.

Index Terms—Agricultural robot, Mapping, Environment
recognition

I. INTRODUCTION

In recent years, agriculture has been facing various prob-
lems. Decreasing number of farmers and their aging are
particularly serious problems. The number of people mainly
engaged in farming in Japan was 1,571,100 in 2017, down
by 79,000 (5.0%) from 2016 and by 246,700 (14.1%) from
2015. Moreover, 66.4% of the farmers are over 65 years old
[1]. In the future, further manpower shortage will become
more severe as this generation retires. Against this backdrop,
labor reduction and improvement of production efficiency in
agriculture are important issues.

As measures against such a situation, “smart agriculture”
is being promoted in Japan, which applies RT (robot tech-
nology) and ICT to agriculture. Examples are autonomous
driving of vehicles such as tractors and rice transplanters
[2] and autonomous harvesting robots of fruits [3]. We are
developing a mobile robot for supporting agricultural work
in a greenhouse for flower cultivation [4]. This robot has an
autonomous movement and a person tracking function, and
supports workers in harvesting and transportation.

One of the functions necessary for an autonomous mobile
robot is generation of a map for path planning. In greenhouses,
paths are often covered by plants. While humans can recognize
such paths to be traversable and go through by pushing the
plants aside, robots with conventional mapping methods which
recognize every object as an obstacle cannot recognize such
traversable paths.

In this paper, we propose a method of generating a 3D
map with object type information. A generated map has
probabilistic semantic information on the type of objects
calculated by image-based object recognition results and past
robot trajectories. This realizes a path planning considering
not only the presence of obstacles but also the traversability
of each object.

The rest of the paper is organized as follows. Section II
describes existing studies regarding with agricultral mobile
robots. Section III describes the problems in mapping inside
greenhouses and the elements necessary to solve them. Section
IV describes the details of the proposed method. Section V
shows the result of map generation by the proposed method
and discusses its validity. Section VI summarizes this research
and discusses future work.

II. RELATED WORK

In this section, we describe relevant studies focusing on
navigation and SLAM methods in agricultural robots and
general semantic mapping, as well as applications of semantic
mapping in agricultural robots.

There have been numerous studies in navigation, localiza-
tion and mapping for autonomous agricultural robots as well-
summarized in [2]. Nørremark et al. proposed a method of
navigating a tractor using real-time kinematic GPS (RTK-
GPS) and Kalman filter which enables it to perform real-
time positioning and control of side-shift and cycloid hoe [5].
Kise et al. proposed a method which integrates RTK-GPS and
a Fiber Optical Gyroscope (FOG) as navigation sensors [6].
When it comes to localization of robots inside greenhouses, on
which we focus in this research, GPS is not suitable in terms
of accuracy since there may be variety of physical barriers

Auat Cheein et al. proposed a SLAM method for precision
agriculture mapping in olive groves [7]. This method detects
olive stems utilizing both range data from a laser range finder
and visual data from a monocular camera, and process a
SLAM algorithm based on Extended Information Filter using
the detected stems as landmarks. Shalal et al. proposed a
mapping method for mobile robots targeting orchards [8].
Their method simply maps trees and non-tree objects detected
by a camera and a laser scaner using the Extended Kalman
Filter-based SLAM, also utilizing the trees as landmarks.
While those methods are optimized for their specific operating
environments, their assumptions of almost regularly arranged



(a) A traversable region covered by
plant (b) Two-dimensional map

Fig. 1. 2D map inside a greenhouse generated by conventional mapping
method

trees and object-free paths are not suitable for the general
autonomous agricultural robot we are seeking.

Bernuy et al. proposed a method of semantic mapping in
outdoor environment aiming at the application in autonomous
off-road driving [9]. In their method, 2D large-scale topolog-
ical map is built using semantic image information. Weiss et
al. proposed a method of semantic classification and mapping
in agricultural fields [10]. In this work, they partition an
agricultural field into several location classes such as open
field, row, row start and row end. The method uses a low-
resolution 3D laser sensor and classifies the sensor data into
the classes. Like all of the work mentioned above, however,
the map generated by their method does not consider any
traversable objects.

III. MAP FOR AUTONOMOUS ROBOTS IN GREENHOUSES

In greenhouses for horticulture, paths are often covered by
plants. In the case of rose cultivation, for example, branches
emerging in the early stage of growth are artificially bent
down as assimilation shoots for effective photosynthesis [11].
The bent assimilation shoots are spread out over the paths.
The paths could also be covered by branches and leaves in
the case of other crops. When moving on the paths, it is
necessary for a robot to push those branches and leaves or step
on them. However, conventional mapping methods consider
only the presence of obstacles [12] [13] and regions without
obstacles are treated as traversable regions. Crop harvesting
is generally carried out with people entering between rows of
plants. Therefore, a path planning function considering the
traversable regions inside the greenhouses is important for
autonomous mobile robots for supporting farmers.

Humans can recognize that the leaves and branches can
be pushed aside or stepped on, and walk through the paths
covered by plants by pushing them. In order to realize such
inference on the robot, the following elements are necessary.

• Object recognition to distinguish possibly traversable
objects such as plants.

• Knowledge on the likelihood that the region can be
traversed according to a model of traversability for each
object.

Probabilistic information on the type of the objects for each
region is given to the map.

Fig. 2. Flow of labeling based on the kind of object

IV. PROPOSED METHOD

A. Overview

We first generate 3D map by RTAB-Map [14] using RGB
and depth images taken by Kinect v2 traveling through a
greenhouse. SegNet [15] labels the type of object on each
pixel of the RGB images. By associating the map given as
point clouds generated by RTAB-Map with the object labels
estimated by SegNet, we obtain a 3D map labeled by the types
of objects (see Fig. 2).

The labeling by SegNet has uncertainty of result due to
recoginition failures. In order to deal with the uncertainty, the
object labels are treated probabilistically. At first, we segment
the labeled 3D map into voxels. And then the probability of
objects in each voxel is calculated from the frequency of the
labels in the voxel.

In addition, we define the likelihood of traversability for
each type of object in a heuristic manner. For voxels which
the robot has traversed, the probabilities of objects are updated
by Bayes’ inference using the priors of the types of objects
and the likelihood on trversability.

B. 3D Mapping

RTAB-Map [14] is used for generating a map. RTAB-Map
is a visual SLAM (Simultaneous Localization And Mapping)
methods which carries out camera localization and mapping
simultaneously using data from RGB-D sensors. Using RTAB-
Map, we obtain map which consists of an RGB image, a depth
image and the camera pose at each location where the data
have been obtained, and estimated trajectory of the camera.
We can generate 3D point cloud map from those data.

C. Semantic labeling of 3D map

We first process semantic labeling of an RGB image from
Kinect by SegNet [15]. SegNet is an encoder-decoder type



Fig. 3. Overview of voxelization of 3D map

deep neural network architecture for pixel-wise semantic la-
beling of an RGB image. We use a model trained by CamVid
dataset [16] consisting of images of outdoor environment.
Twelve object classes are defined in the model. Because some
of the classes are not likely to exist in greenhouses (e.g.,
Signs, Bikes etc.), we limit the classes to the following three;
Building, Tree and Pavement by normalizing the likelihood of
those classes in the output and utilizing only them. The labels
on the 2D image are then mapped onto the corresponding 3D
points.

D. Voxelization and generating a histogram of the labels

The labeling by SegNet includes uncertainty due to recog-
inition failures. With a naive mapping of 2D labels onto 3D
point cloud, the result with such false recognition is simply
reflected and may affect the estimation of traversability of
the regions in a path planning based on the object types of
regions. In order to realize robust environment recognition
under such uncertainty, we divide the 3D space into voxels,
and calculate the probabilities of objects of the sub-region
from the frequency of each label.

A voxel is a cube with the edge length of 0.2 [m]. For each
voxel, we calculate frequencies of labels of 3D points within
it. By normalizing the frequencies, we obtain the probability
P (o) that the voxel is a certain object o as follows:

P (o) =
No∑
i Ni

, (1)

where Ni represents the number of points with label i within
the voxel. Fig. 3 illustrates the process of voxelization.

E. Label refinement by Bayesian inference

We can say that the objects in regions where a robot has
traversed are more likely to be plants than to be the other
two objects. For such an inference, we utilize the fact that the
robot has traversed a region as evidence, and update the label
probabilities by Bayesian inference. We assume the robot’s
shape to be a cuboid. Voxels within the cuboid at each node
of the map can be considered as traversed voxels. Using
that information, the probabilities of labels of the voxels are
updated by following Bayes’ rule:

TABLE I
LIKELIHOOD THAT OBJECT o IS TRAVERSABLE

Building Tree Pavement
P (τ |o) 0.05 0.6 0.05

Fig. 4. A path covered by plant in a greenhouse at Toyohashi University of
Technology. The region shown in a blue rounded rectangle is covered by the
branches spreading out from the cultivation device on the left.

P (o|τ) = αP (τ |o)P (o), (2)

where o is a type of object，τ is an event that the voxel has
been traversed, P (o|τ) is the posterior of object o after the
event, P (τ |o) is the likelihood that object o is traversable,
and α is a normalization constant. The prior P (o) can be
calculated by eq. (1). We define the likelihood P (τ |o) as
shown in Table I. These values are heuristically set based
on our knowledge that plants can sometimes be traversed
by robots while buildings and pavements are usually not
traversable.

V. EXPERIMENT

A. Experiment method

Our mapping method is implemented on ROS (Robot Op-
erating System) [17]. ROS is a middleware which supports
building robot applications by connecting units of functions
called nodes.

In our experiment, we used data from the sensor recorded
by rosbag, a functionality of ROS which records and replays
ROS messages [18]. This allows us to reproduce the situation
where the sensor data are recorded.

We recorded the data in a greenhouse for tomatoes at
Toyohashi University of Technology. Some parts of paths were
covered by leaves and branches (see Fig. 4).

B. Equipments

We used Kinect v2 as an RGB-D sensor. Kinect v2 is able
to take depth data within the range of 0.5 to 8.0 [m] from the
sensor, as well as 1920×1080 RGB images. The specification
of the PC we used in our experiment is shown in Table II.



TABLE II
SPECIFICATION OF THE PC

OS Ubuntu 16.04
Memory 32GB

CPU Intel Core i7-6700HQ
GPU Nvidia GeForce GTX 970M

Fig. 5. Relation of the nodes

C. Software configuration

The nodes we developed are as follows.
• rtabmap segnet

A node to generate map data. This node is based on
rtabmap node in rtabmap ros package [19]. We modified
the original rtabmap node so that it subscribes to label
images from SegNet as well as RGB and depth images
and odometry. It publishes a message mapData which
includes RGB images, labeled images, depth images,
camera poses etc. recorded at all the observation points.

• segnet ros
A node to use SegNet in ROS environment. It subscribes
to RGB images and publishes semantically labeled im-
ages.

• semantic map
A node for constructing a 3D map with seman-
tic labels. This subscribes to mapData published by
rtabmap ros segnet and store them. After all mapData
has been published, it processes the voxelization and
the label the refinement using Bayesian inference, and
publishes the resulting point cloud map.

Fig. 5 illustrates the entire structure of the software.

D. Result

Fig. 6 shows the result of the label update. The first row
is a part of the 3D map generated with the original RGB
images, the second row is the result of the labeling without the
refinement, and the third row is the labels after the refinement
by Bayesian inference. The colors of the voxels represent
the label of the highest probability, red as Building, blue as
Pavement and yellow as Tree. The regions indicated by the
circles in the figures are areas which are covered by plants
and the robot has traversed. While some of the voxels are
misclassified as Building in the second row, the corresponding

TABLE III
PROPORTION OF VOXELS WHOSE LABEL WITH THE HIGHEST PROBABILITY

WAS CHANGED

Turned to Tree Building and Pavement Proportion
819 4244 0.193

TABLE IV
AVERAGE PROBABILITIES OF OBJECTS WITH AND WITHOUT THE

REFINEMENT

Tree Building Pavement
Without the label refinement 0.545 0.294 0.161

With the label refinement 0.625 0.235 0.140

voxels in the third row have been changed to Plant. This means
that more accurate classification is made using the observation
of the robot traversing those voxels.

Table III shows how many of the traversed voxels with the
highest probability of Building or Pavement were changed to
Plant, and their proportion against the voxles that are originally
Building or Pavement. There were 819 voxels turned to Tree
after the refinement out of 4244 voxels being Building or
Pavement before the refinement.

Table IV shows the average probability of each object
among the all voxels traversed by the robot. The avarage
probability of Tree increased after the refinement while those
of Building and Pavement decreased by approximately 20 [%]
and 13 [%] respectively. Although the label refinement worked
as expected by turning the traversed Building and Pavement
to Tree, a significant number of traversed voxels remained
Building or Pavement. This is because the probability of a
certain object was significantly higher than of the other two,
with some of those even having one on one object type and
zero on the others, and thus the posterior of Tree could not be
higher than the object.

The computational times with and without the label refine-
ment are shown in Table V.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a method of generating a 3D map with
semantic labels for autonomous robots used in greenhouses
by integrating the 3D mapping and semantic labeling of 2D
images. In order to realize robust environment recognition
against observations with ambiguity, our method voxelizes
the 3D map and calculate the probability of each object for
each voxel from the frequency of the labels. Furthermore, the
probabilities of voxels traversed by the robot are updated by
Bayes’ inference.

TABLE V
COMPUTATIONAL TIME (THE AVERAGE OF THREE TRIALS EACH)

Without the label refinement With the label refinement
61,285[msec] 140,718[msec]



Fig. 6. The result of label refinement based on Bayesian inference

We conducted an experiment to generate a map from the
data recorded in a greenhouse with paths partly covered by
plants. We have shown that the proposed method can perform
a more accurate semantic labeling than the one only using
SegNet.

As future work, we are considering the following;

• Improving the method of generating histograms: In the
proposed method, we generated the histograms of object
labels in each voxel. It resulted in overly biased his-
tograms with probabilities of zero on a object or two,
which cannot be properly updated in our method. By
utilizing the likelihood of the labels in SegNet in which
a value other than zero is assigned for each label, this
problem could be avoided.

• Designing a probabilistic model considering physical
attributes of objects: Basically, it is difficult for robots
to estimate the traversability of regions using only object
type information. For example, branches and leaves of
plants are flexible and likely to be traversable while their
stem is usually not traversable. Such a fact indicates that
the traversability of a region highly depends on physical
attributes of each part of objects. We need to extend our
method by taking them into consideration.

• Developing object recognition specialized for green-
houses: In the experiment, we used a pre-trained model
for outdoor environment in the object recognition. Al-
though the model showed quite good accuracy especially
for the plants, there are a lot of recognition failure which
cannot be updated by our method. By using a model
trained for scenes inside greenhouses, the accuracy of

the object recognition could be improved. We should also
consider the image segmentation method other than pixel-
wise ones, since our system does not require such detailed
classification.
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