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Abstract— This paper presents a range inertial localization
algorithm for a 3D prior map. The proposed algorithm tightly
couples scan-to-scan and scan-to-map point cloud registration
factors along with IMU factors on a sliding window factor
graph. The tight coupling of the scan-to-scan and scan-to-map
registration factors enables a smooth fusion of sensor ego-
motion estimation and map-based trajectory correction that
results in robust tracking of the sensor pose under severe
point cloud degeneration and defective regions in a map. We
also propose an initial sensor state estimation algorithm that
robustly estimates the gravity direction and IMU state and
helps perform global localization in 3- or 4-DoF for system
initialization without prior position information. Experimental
results show that the proposed method outperforms existing
state-of-the-art methods in extremely severe situations where
the point cloud data becomes degenerate, there are momentary
sensor interruptions, or the sensor moves along the map
boundary or into unmapped regions.

I. INTRODUCTION

Map-based sensor localization is a crucial function for
autonomous systems. Precise positional information enables
the reliable navigation and recognition required for many ap-
plications, including service robots and autonomous driving.
In particular, point-cloud-based localization algorithms have
been one of the most popular approaches due to the recent
emergence of precise and affordable range sensors, such as
LiDARs and time-of-flight depth cameras.

The most naive approach to estimating a sensor pose
on a 3D prior map is to iteratively apply fine point cloud
registration (e.g., ICP [1] and NDT [2]) between scan
point clouds and the map point cloud. Although this naive
approach works in many environments, it often becomes
unreliable under aggressive sensor motion because these
fine registration methods require an accurate initial guess
for convergence. To improve the robustness to quick sensor
motion, these scan matching methods are often integrated
with additional information sources (e.g., IMU [3] and wheel
encoders [4]) to better predict the sensor pose and maintain
registration results accurate. Furthermore, approaches that
fuse point cloud registration errors and other sensor errors
on a unified objective function (i.e., tight coupling) enable
further robustness to sensor motion and partial degeneration
of point clouds [5]. However, it is still challenging to deal
with severe point cloud degeneration and interruptions that
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Fig. 1: Indoor localization experiment using a Microsoft
Azure Kinect. The proposed method enables robust and
accurate pose estimation in challenging situations including
under quick sensor motions, complete degeneration of point
clouds, and traveling across both mapped and unmapped
regions. The color of the map point cloud indicates the height
of each point.

introduce ambiguity of sensor states. Furthermore, because
many existing map-based localization methods perform scan-
to-map registration decoupled from ego-motion estimation,
they suffer from registration failures and become corrupted
at map boundaries and in regions outside the map.

In the present paper, we propose a tightly coupled range
inertial localization method based on sliding window factor
graph optimization by extending our previous odometry es-
timation algorithm [6] to a map-based localization scenario.
Our formulation employs the same point cloud registration
error function for scan-to-scan and scan-to-map registration
constraints and jointly minimizes them along with IMU
constraints in a unified objective function. This tight coupling
of scan-to-scan and scan-to-map registration errors enables
a smooth transition between mapped and unmapped regions.



Unlike filtering-based methods, the proposed method keeps
sensor states active while the states remain in a sliding win-
dow (e.g., 5 s). Furthermore, the proposed method is robust
to cases where the point cloud has become degenerate and
existing filtering-based methods suffer from state ambiguity.
In addition, we propose a robust state initialization method
that estimates the gravity direction of scan point clouds and
helps perform 3- or 4-DoF global localization for initial pose
estimation. Through experiments, we show that the proposed
method enables robust sensor pose estimation in extremely
severe situations including traveling across both mapped and
unmapped regions and point clouds that have degenerated
and have interruptions 1.

This work has three main contributions:
1) We propose a localization approach based on a tight

coupling of scan-to-scan registration, scan-to-map reg-
istration, and IMU factors. This approach enables a
smooth transition between mapped and unmapped re-
gions and makes pose estimation robust to point cloud
degeneration and interruptions.

2) We develop a simple and robust gravity direction
estimation method based on the batch optimization
of sensor poses and IMU measurements. This method
allows us to perform global localization in a reduced
DoF.

3) We release an evaluation dataset that can be used
to evaluate the robustness of map-based localization
algorithms in extremely severe situations.

II. RELATED WORK

A. Iterative Scan Matching

Estimation of the position of a sensor on a map is essential
for navigation systems. While several kinds of map represen-
tations are used, depending on the use scenario (e.g., high-
definition vector maps [7] and wiki-based open geographic
maps like OpenStreetMap [8], [9]), 3D point cloud maps
are among the most popular representations owing to their
simplicity and expressiveness. Because constructing a point
cloud map is relatively easy with recent precise range sensors
and mapping algorithms, point cloud maps are used for a
wide range of applications, from indoor service robots to
outdoor driving of autonomous vehicles.

For sensor localization on a point cloud map, local point
cloud registration methods, such as ICP [1] and NDT [2], are
often used. By iteratively applying point cloud registration
between scan points and map points, we can easily and
efficiently track a 6-DoF sensor pose. A key to obtaining
fine registration results is to provide an accurate initial
guess to ensure the convergence. For this reason, additional
information sources, for example, IMU [3], wheel encoders
[4], and leg joint angles of quadruped robots [10], are jointly
used with range sensors to compensate for sensor motion
and better predict the current sensor pose to be used as an
initial guess for point cloud registration. A recent trend in

1See the project page for supplementary videos: https://staff.
aist.go.jp/k.koide/projects/icra2024_gl/

sensor motion estimation is a tight coupling of multi-sensor
constraints that fuses the cost functions of several sensors
on a unified objective function. This makes it possible to
keep the system well constrained when the data of a sensor
become unreliable. In particular, the LiDAR-IMU tight cou-
pling approach has been actively explored in recent studies
[11], [12], [13]. Because the tight coupling approach signif-
icantly increases the computation cost, lightweight iterated
Kalman filters are often used [5]. However, these filtering-
based approaches suffer from severe degeneration of point
cloud data because they immediately marginalize past frames
when a new frame arrives and cannot accurately propagate
the uncertainty of past observations. Furthermore, in many
studies, scan-to-map registration was decoupled from the
odometry estimation algorithm, which results in difficulty
correcting sensor poses at map boundaries and maintaining
system stability outside the map.

B. Monte Carlo Localization

Monte Carlo localization (MCL), which represents and
estimates a state distribution with a finite set of state samples,
is a popular approach to 2D map-based localization [14],
[15]. Owing to its expressiveness for non-linear and non-
Gaussian distributions, it is extremely robust to observation
ambiguity and multi-hypothesis situations. Despite its suc-
cess in 2D localization, MCL has not been commonly used
in 3D localization problems because the required number of
samples to fill a unit space grows exponentially as the num-
ber of dimensions increases, which becomes a computational
burden. Many studies have performed 3D MCL in 3-DoF
[16] or 4-DoF [17] with assumptions on sensor motion and
environment structure. Although several studies have tackled
6-DoF MCL with a smaller number of samples using efficient
state sampling [18], [19], [20], it is still difficult to perform
a general full 6-DoF MCL without such assumptions and a
prior knowledge of the sensor and the environment.

III. METHODOLOGY

A. Notation

Given a map point cloud M = {pMk ∈ R3 |k=1,...,NM },
we estimate a time series of sensor states xt in the map
frame using measurements of point cloud scans Pt = {pSk ∈
R3 |k=1,...,NP } and IMU data It = [at,ωt], where at ∈ R3

and ωt ∈ R3 are the linear acceleration and the angular
velocity, respectively. The sensor state to be estimated is
defined as:

xt = [Tt,vt, bt], (1)

where Tt = [Rt | tt] ∈ SE(3) and v ∈ R3 are respectively
the sensor pose and velocity in the map frame, and bt =
[bat , b

ω
t ] ∈ R6 is the IMU acceleration and angular velocity

bias. Note that we transform scan points into the IMU
coordinate frame and consider them as if they are in the
same coordinate frame for efficiency and simplicity.

In the following Sec. III-B and III-C, we describe the
building blocks of the proposed framework, namely the point
cloud registration factor and the preintegrated IMU factor,
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Fig. 2: Proposed factor graph structure. (a) The proposed factor graph consists of tightly coupled scan-to-scan and scan-to-
map registration factors along with IMU factors. Old frames that leave the optimization window are marginalized to bound
the computation cost. The proposed method enables robust pose estimation in challenging situations including (b) the sensor
travels over unmapped places, and (c) point cloud data becomes degenerated.

and then present the proposed factor graph structure in Sec.
III-D.

B. Point Cloud Registration Factor

To constrain the relative pose between point clouds Pi

and Pj , we use the voxelized GICP (VGICP) registration
error factor with GPU acceleration [6]. As with GICP [21],
VGICP models each point as a Gaussian distribution pk ∼
N (µk,Ck) representing the local geometrical shape and
computes a sum of the distribution-to-distribution distances
between corresponding points as follows:

ePC(Pi,Pj ,Ti,Tj) =
∑

pk∈Pi

eD2D(pk,T
−1
i Tj), (2)

eD2D(pk,Tij) = d
⊤
k

(
C ′

k + TijCkT
⊤
ij

)−1
dk, (3)

where Tij = T−1
i Tj is the relative transformation between

Pi and Pj , p′k ∼ N (µ′
k,C

′
k) is the point in Pj nearest to pk,

and dk = µ′
k−Tijµk is the residual between µ′

k and µk. The
covariance matrix Ck is computed from neighboring points
of pk. To avoid a costly nearest neighbor search, VGICP
voxelizes the target point cloud Pj at a specific resolution r
and stores the average of means and covariance matrices of
points in each voxel. During cost evaluation, it looks up a
voxel corresponding to each input point and computes Eq. 3
using the voxel as p′k.

C. Preintegrated IMU Factor

To efficiently incorporate IMU measurements into the
factor graph, we use the preintegration technique [22]. Given
an IMU measurement (at and ωt), the sensor states evolves
over time as follows:

Rt+∆t = Rt exp ((ωt − bωt − ηω
k )∆t) , (4)

vt+∆t = vt + g∆t+Rt (at − bat − ηa
t )∆t, (5)

tt+∆t = tt + vt∆t+
1

2
g∆t2 +

1

2
Rt (at − bat − ηa

t )∆t2,

(6)

where g is the gravity vector and ηa
t and ηω

t represent white
noise in the IMU measurement.

The IMU preintegration factor integrates Eqs. 4 – 6
between times i and j to obtain the relative sensor motion
∆Rij , ∆tij , and ∆vij [22]. Then, the IMU prediction error
is calculated as follows:

eIMU(xi,xj) = ∥ log
(
∆R⊤

ijR
⊤
i Rj

)
∥2

+∥∆tij −R⊤
i

(
tj − ti − v∆tij −

1

2
g∆t2ij

)
∥2

+∥∆vij −R⊤
i (vj − vi − g∆tij) ∥2.

(7)

Because IMU measurements provide a constant amount of
sensor motion information independent of the environment
structure, they help keep the factor graph well-constrained in
environments where point cloud registration factors can be
degenerate (e.g., tunnels and long corridors).

D. Factor Graph Structure

Fig. 2 (a) illustrates the proposed factor graph structure,
which consists of four major elements: scan-to-scan regis-
tration factors, scan-to-map registration factors, IMU factors,
and marginal factors.

Ego-motion estimation: To estimate the sensor ego-
motion, scan-to-scan registration factors are created between
scan point clouds. To make the estimation robust to quick
sensor motion, we create scan-to-scan registration factors
between the latest frame and N pre preceding frames (e.g., 3
frames), which results in a densely connected factor graph.
IMU factors are created between consecutive frames to help
predict the sensor pose and keep the factor graph well-
constrained under point cloud degeneration.

Map-based drift correction: To suppress estimation drift,
we create scan-to-map registration factors between every
frame and the map point cloud. We treat the map point
cloud as a static frame and create unary registration factors
that constrain only the frame poses. The key idea here is
to use the same error function for scan-to-scan and scan-
to-map registration factors and jointly minimize them. This
structure makes it possible to maintain sensor pose tracking
on map boundaries and even in unmapped regions. As shown



in Fig. 2 (b), even if a frame has only partial overlap with
the map and the scan-to-map registration factor becomes
degenerate, the latest frame is still well-constrained by the
scan-to-scan registration factors, and we can safely incor-
porate the degenerate scan-to-map registration errors into
the factor graph. Furthermore, when there is absolutely no
overlap with the map, the factor graph simply falls back to
a range inertial odometry estimation and maintains sensor
pose tracking. Once the sensor comes back to the map,
scan-to-map registration errors are re-activated and smoothly
correct the estimation drift while retaining the consecutive
frame matching consistency. The proposed graph structure
also makes the estimation robust to degeneration of point
cloud data. As in Fig. 2 (c), the tightly coupled scan-to-map
registration factors enable deficient relative pose constraints
(5-DoF with ambiguity in the corridor direction in the shown
case) to be incorporated into the factor graph to reduce
estimation errors.

Optimization: To bound the computation cost, we
marginalize old frames that leave the optimization window
(e.g., 5 s) and add constant linear factors to compensate
for the marginalized factors at the last evaluation point. For
factor graph optimization and marginalization, we use the
iSAM2 optimizer [23] and its efficient Bayes tree elimination
implemented in GTSAM [24].

In summary, the objective function of the proposed frame-
work is defined as follows:

e(X ) =
∑
xi∈X

i−1∑
j=i−N pre

ePC(Pi,Pj ,Ti,Tj)

+
∑
xi∈X

ePC(Pi,M,Ti, I4×4)

+
∑
xi∈X

eIMU(xi−1,xi) + C,

(8)

where X is a set of sensor states in the optimization window
and C is a set of linear factors for marginalization.

E. Gravity Direction Estimation

In practice, the gravity direction is useful information that
allows aligning the upward directions of scan and map point
clouds and enables the search space to be narrowed down for
global localization in 4-DoF [25] or 3-DoF with an additional
sensor height assumption [26]. Although the gravity direction
can easily be obtained using linear acceleration data when
the sensor is stationary, the estimated gravity direction can
be affected by sensor motion.

To aid global localization used for initial pose estimation,
we developed a simple and robust gravity direction and IMU
state estimation method based on batch optimization. We
first estimate the sensor trajectory using only point cloud
data. To this end, we use a combination of the continuous
time ICP (CT-ICP) [27] and the voxel-based points container
structure (linear iVox) [11]. Given the estimated sensor
trajectory and IMU measurements in a certain optimization
window (e.g., 2 s), we create a factor graph that consists of
relative pose factors based on the estimated trajectory and

preintegrated IMU factors between consecutive frames. The
objective function is defined as follows:

eInit(X ) =
∑
xi∈X

(
eRP(xi−1,xi) + eIMU(xi−1,xi)

)
, (9)

where eRP(xi,xj) = ∥ log(T̃−1
ij T

−1
i Tj)∥2 is the relative

pose constraint based on the relative pose measurement
T̃ij computed from the estimated sensor trajectory. Because
this objective function has ambiguity in the translation and
yaw-axis rotation, we add a large constant to the diagonal
elements of the information matrix of the first pose to fix the
gauge freedom and maintain system positive definiteness. As
an initial estimate of the very first frame, we compute the
average linear acceleration vector and rotate the first frame
such that the average linear acceleration vector is aligned
with the world gravity direction. The initial rotation of the
first frame is given by

ψ = µa × gw, (10)

R0 = I6×6 + ψ̂ + ψ̂2 (1− µa · gw)
|ψ|2

, (11)

where µa is the normalized average linear acceleration
vector, gw = [0, 0, 1]T is the gravity direction in the world
frame, and ·̂ is the hat operator to compute the skew sym-
metric matrix. We use the Levenberg-Marquardt optimizer
to minimize Eq. 9. After optimization, we use the optimized
sensor pose, velocity, and IMU bias of the last frame as the
initial state of the localization system.

To demonstrate the usefulness of the gravity direction
information for automatic system initialization, we imple-
mented a 2D occupancy gridmap-based global localization
algorithm using branch-and-bound search [28] 2. In outdoor
experiments shown in Sec. IV-B, we obtain a 2D slice of
scan point clouds using the estimated gravity direction and
feed it to the global localization algorithm to obtain an initial
position estimate. We then initialize the proposed localization
framework with the estimated initial position. Note that we
designed the framework so that it can dynamically load
a global localization module from a shared library. The
framework is agnostic to the global localization algorithm
and any 3- or 4-DoF global localization algorithm (e.g., [25])
can easily be incorporated into the proposed framework.

IV. EXPERIMENT

A. Indoor Experiment

Experimental setting: To demonstrate the robustness of
the proposed method, we conducted localization experiments
in the indoor environment shown in Fig. 1. Using a Microsoft
Azure Kinect, we recorded two sequences (Easy01 and
Easy02) of point cloud and IMU data without aggressive
motion, and another one sequence (Hard) with quick sen-
sor motion, point cloud degeneration, and traveling across
both mapped and unmapped regions. The durations of the

2The implementation of the 2D global localization is available at:
https://github.com/koide3/hdl_global_localization



TABLE I: Absolute trajectory errors for indoor sequences

ATE [m]
Method Easy01 Easy02 Hard

FAST LIO (odom) 2.485 ± 1.216 7.101 ± 2.396 27.942 ± 23.022
FAST LIO LOC 0.068 ± 0.044 0.150 ± 0.118 27.265 ± 25.353
hdl localization 0.210 ± 0.177 15.048 ± 10.506 25.507 ± 24.431
Proposed 0.054 ± 0.008 0.041 ± 0.011 0.282 ± 0.253

sequences Easy01, Easy02, and Hard were respectively 139,
136, and 164 s 3.

As a baseline, we ran two localization algorithms:
FAST LIO LOCALIZATION (FAST LIO LOC) 4 and
hdl localization [29]. FAST LIO LOC uses FAST LIO2, a
tightly coupled LiDAR-IMU odometry estimation based on
an iterated Kalman filter [5], to estimate the sensor ego-
motion and periodically performs scan-to-map registration
to correct estimation drift. For comparison, we also
ran FAST LIO2 [5] without map-based pose correction.
hdl localization [29] performs NDT-based scan-to-map
registration and IMU fusion based on an unscented Kalman
filter. For all the evaluated methods, we provided an initial
pose manually.

To obtain reference sensor trajectories, we manually
aligned scan point clouds with the map point cloud and
performed batch optimization of the GICP scan-to-map reg-
istration errors and IMU motion errors. We evaluated the
estimated trajectories with the absolute trajectory error (ATE)
metric [30] using the evo toolkit 5.

Easy sequences: Table I summarizes the ATEs of the
evaluated methods. We can see that FAST LIO without map-
based correction showed large trajectory estimation errors
for the Easy01 and Easy02 sequences (2.485 and 7.101
m) because the estimation drift quickly accumulated due to
the small feature-less environment and the narrow field of
view of the sensor. FAST LIO LOC significantly improved
the ATEs (0.068 and 0.150 m), and this result suggests the
necessity of map-based correction to maintain the accuracy
of sensor pose tracking. Although hdl localization showed a
decent ATE for the Easy01 sequence (0.210 m), its accuracy
largely deteriorated for the Easy02 sequence (15.048 m)
because of a scan matching failure caused by the small
feature-less environment. The proposed method showed the
best ATEs for the Easy01 and Easy02 sequences (0.054
and 0.041 m) thanks to its robustness to a feature-less
environment.

Hard sequence: For the Hard sequence, both
FAST LIO LOC and hdl localization became corrupted. Fig.
3 shows the estimated trajectories. Because hdl localization
largely relied on scan-to-map registration to maintain sensor
pose tracking, it immediately became corrupted when
the sensor entered an unmapped region. FAST LIO LOC
showed a slight estimation error in the unmapped region
because of the decoupled scan-to-map registration that

3The dataset is available at https://staff.aist.go.jp/k.
koide/projects/icra2024_gl/

4https://github.com/HViktorTsoi/FAST_LIO_
LOCALIZATION

5https://github.com/MichaelGrupp/evo
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Fig. 3: Estimated trajectories for the Hard sequence. Existing
methods suffered from unmapped regions and severe degen-
eration of point clouds. The proposed method successfully
continued tracking the sensor pose under these severe con-
ditions thanks to its tightly coupled registration factors and
windowed state optimization.

became unreliable when the overlap with the map was
small. We observed that FAST LIO LOC became unstable
under point cloud degeneration because the underlying
FAST LIO2 suffered from pose ambiguity that made it
difficult to accurately accumulate scan points into the
model point cloud. As a consequence, it eventually became
corrupted when a complete degeneration of point clouds
occurred. The proposed method successfully continued
tracking the sensor pose during the Hard sequence and
showed the best ATE among the evaluated methods (0.282
m). Because of the tightly coupled scan-to-scan and scan-
to-map registration factors, it showed smooth estimation
over the unmapped region. Furthermore, its windowed
optimization made it possible to deal with complete
degeneration of point cloud data that resulted in a smooth
trajectory estimation result.

B. Outdoor Experiment

Experimental setting: We conducted experiments in the
outdoor environment shown in Fig. 4. We recorded two
sequences of point cloud and IMU data using a Livox
MID360. To evaluate the robustness of localization methods,
we included the following challenging situations in each
sequence:

A) The sensor was moved with quick translation and
rotation (∼1.6 m/s and ∼1.1 rad/s).

B) The sensor view was occluded completely so that point
cloud data were interrupted several times.

C) The sensor was strongly shaken in random directions
(5.0 rad/s) over a long interval (5–10 s).

D) The sensor moved outside the map and traveled in
unmapped regions for about 150–300 m.

Because the dataset constrains extremely difficult situations,
when a localization method becomes corrupted, we restart
that method and count the number of corruptions that oc-
curred in each sequence.

For the proposed method, we did not provide an initial
sensor pose but rather used a combination of the proposed
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Fig. 4: Outdoor experimental environment (280 × 200 m2).
The evaluation sequences include four challenging situations:
A) large translational and rotational movements, B) point
cloud data interruptions, C) aggressive sensor rotations, and
D) traveling over unmapped regions. In particular, in the B
regions, the sensor was completely occluded several times,
which created extreme challenges to localization methods.
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Fig. 5: Automatic initialization result. (a) The gravity di-
rection of the LiDAR scans was estimated, and (b) the 2D
global localization successfully estimated the initial sensor
position.

gravity direction estimation and the 2D global localization
[28] for automatic system initialization.

Initialization: For both the Outdoor01 and Outdoor02
sequences, the initialization process properly estimated the
gravity direction of scan points as shown in Fig. 5 (a)
although the LiDAR was slightly tilted. Then, the 2D global
localization was performed based on the gravity-aligned scan
points, and it successfully estimated the sensor position, and
the localization process was initiated. The gravity direction
estimation and global localization took approximately 2.0
and 3.5 s, respectively. Consequently, the automatic initial-
ization process took 5.5 s in total.

Estimation result: Table II summarizes the quantitative
evaluation results, and Fig. 6 shows the estimated trajecto-
ries. Owing to IMU fusion, all the methods were able to
continue tracking the sensor pose under quick translation

TABLE II: Absolute trajectory errors for outdoor sequences

Method Outdoor01 Outdoor02
ATE [m] Corruptions ATE [m] Corruptions

FAST LIO LOC 6.983 ± 6.693 4 4.849 ± 4.692 4
hdl localization 5.592 ± 5.252 5 7.137 ± 6.833 5
Proposed 0.959 ± 0.838 0 0.597 ± 0.401 0

Fig. 6: Estimated trajectories for the Outdoor01 sequence.

and rotation in the region (A). Under data interruptions, both
the existing methods became unstable, and hdl localization
immediately became corrupted in the region (B). Although
FAST LIO LOC maintained pose tracking in the region (B),
in the following region (C), it became corrupted due to very
aggressive sensor rotation. Furthermore, both methods failed
to maintain sensor pose tracking in unmapped regions (D).
This result shows the weakness of decoupled scan-to-map
registration, which can be unreliable in places where only a
small overlap with the map is available.

The proposed method successfully continued tracking the
sensor pose through the Outdoor01 and Outdoor02 sequences
without estimation corruptions, whereas FAST LIO LOC
and hdl localization respectively became corrupted 4 and 5
times for each sequence. This result suggests the robustness
of the proposed method owing to the sliding-window-based
optimization and tightly coupled scan-to-map registration
factors.

Processing time: For the proposed method, point cloud
preprocessing and factor graph optimization respectively
took 7.73 ± 1.89 and 9.48 ± 6.10 ms, and the total
processing time per frame was 17.21 ms (58.1 FPS), which
was much faster than the real-time requirement (10 FPS).

V. CONCLUSION

In this work, we proposed a map-based localization algo-
rithm using the tight coupling of scan-to-scan and scan-to-
map registration factors and IMU factors. Sensor states in a
sliding window were continuously optimized. The proposed
approach enabled dealing with severe point cloud degen-
eration and traveling across both mapped and unmapped
regions. Through indoor and outdoor experiments, the pro-
posed method was shown to successfully continue tracking
the sensor pose in challenging situations with a bounded
computation cost.

In future work, we plan to incorporate a more sophisticated
4-DoF global localization method [31] for reliable system
initialization in complex 3D structured environments. We
are also considering integrating tracking failure detection
and re-localization mechanisms to deal with the kidnapping
problem.
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