
LiTAMIN: LiDAR-based Tracking And MappINg by
Stabilized ICP for Geometry Approximation with Normal Distributions

Masashi Yokozuka1, Kenji Koide1, Shuji Oishi1 and Atsuhiko Banno1

Abstract— This paper proposes a 3D LiDAR simultaneous
localization and mapping (SLAM) method that improves accu-
racy, robustness, and computational efficiency for an iterative
closest point (ICP) algorithm employing a locally approximated
geometry with clusters of normal distributions. In comparison
with previous normal distribution-based ICP methods, such
as normal distribution transformation and generalized ICP,
our ICP method is simply stabilized with normalization of
the cost function by the Frobenius norm and a regularized
covariance matrix. The previous methods are stabilized with
principal component analysis, whose computational cost is
higher than that of our method. Moreover, our SLAM method
can reduce the effect of incorrect loop closure constraints.
The experimental results show that our SLAM method has
advantages over open source state-of-the-art methods, including
LOAM, LeGO-LOAM, and hdl graph slam.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a basic
technology for autonomous mobile robots. In particular,
SLAM with light detection and ranging (LiDAR) is widely
used because it exhibits stable performance in both indoor
and outdoor environments. SLAM should be continuously
improved for better accuracy, robustness, and computational
efficiency.

SLAM methods with LiDAR are divided into two cat-
egories: matching-based and feature-based. Matching-based
methods [1]–[4] employ geometric registration techniques,
such as iterative closest point (ICP) and normal distribution
transformation (NDT). These methods provide accurate po-
sition estimation by directly using scanned points. They are,
however, not computationally efficient because they use a
huge number of points for stable registration.

Feature-based methods [5]–[7] are actively studied for
their computational efficiency; these methods extract fea-
tures and use geometric primitives, such as line segments
and planes. However, these methods become inaccurate and
unstable when the geometric features in the environment are
insufficient.

This paper describes a matching-based SLAM method that
improves the computational efficiency and the robustness
for ICP. We consider that improvement of the stability of
the ICP algorithm is a critical issue for enhancing the
overall performance of matching-based SLAM methods. Our
proposed method, LiDAR-based Tracking And MappINg
(LiTAMIN), approximates a geometric shape using normal

1Authors are with the Robot Innovation Research Center, National
Institute of Advanced Industrial Science and Technology (AIST), Japan
yokotsuka-masashi@aist.go.jp

This work was supported in part by the New Energy and Industrial
Development Organization (NEDO).

distributions. This method, instead of using the point cloud
obtained from LiDAR as it is, modifies the point cloud to
reduce the number of points and make the density more
uniform; this results in a faster and more stable SLAM. We
propose a new cost function for ICP so that the minimization
can be performed effectively and stably. Also, we introduce
an index for reducing the effect of outliers in loop detection
by LiDAR SLAM. Our experimental results show the im-
provements achieved by LiTAMIN in comparison with state-
of-the-art methods. Figure 1 is an example mapping result
by LiTAMIN.

II. RELATED WORK

ElasticFusion [3] and Surfel-based Mapping (SuMa) [4]
are two SLAM methods based on point-to-plane ICP [8].
Point-to-plane ICP is an appropriate method when the point
density is low because it deals with the distance between
a point and a plane [8] instead of the distance between
points. To apply point-to-plane ICP, SLAM systems require
information on directions normal to the map geometry
and computation of correspondences between points and
planes. One of the characteristics of ElasticFusion and SuMa
is the map representation using many surfels, which are
small disks, instead of using complicated polygon meshes.
Implementation of these methods is simple because the
point correspondence computation can be performed with
techniques similar to those of standard ICP. However, the
method is not computationally efficient because processing
for many surfels requires a GPU, and each surfel requires
normal direction estimation by using principal component
analysis (PCA), which has computational complexity.

Hdl graph slam [2] is a method using generalized ICP
(GICP) [9]. GICP can deal with points, line segments, and
planes flexibly by representing geometry with a set of normal
distributions, while the point-to-plane ICP deals only with
point-and-plane pairs. The merit of GICP is that it enables
uniform and general processing for geometric registration by
using covariance matrices without additional functions, such
as line-segment or plane detection. However, GICP requires
additional processing for stability because the representation
of line segments and planes by a covariance matrix is a
degenerate case.

LiDAR odometry and mapping (LOAM) [5] is an early
feature-based method with LiDAR-based SLAM; it is similar
to feature-based visual SLAM, such as ORB-SLAM [10].
This method detects geometric primitives by evaluating the
smoothness of a local region. Areas with low smoothness
are detected as edges, and areas with high smoothness

Fig. 1. Example mapping result by LiTAMIN. This map was built from the Segway dataset described in Section VI.

Fig. 2. System overview.

are detected as planes. However, the method cannot detect
appropriate features when the scene contains too many small
objects, such as vegetation and trees, because detection of
an enormous number of features increases the computation
cost. Likewise, when only a few simple objects, such as
large planes, are dominant, the method cannot detect cues
for correct registration.

Lightweight and ground-optimized LOAM (LeGO-
LOAM) [6] improved the computational efficiency and the
stability of LOAM by adding segmentation processing that
carefully selects features and reduces the number of geo-
metric primitives. LeGO-LOAM performs feature extraction
with the assumption that a robot is always on a ground
surface. The method extracts the ground surface from scan
data, and performs segmentation for the remaining regions;
appropriate features for the registration are extracted from
these regions. Even if only the ground plane is detected,
the changes in the roll, pitch, and z-value can be estimated.
Other features can be used to estimate the x-y translation
and the yaw angle of the robot. This processing can obtain
a suitable number of features stably by using segmentation
to remove regions that are too small. However, when the
assumption does not hold, such as on uneven ground, and
no suitable size segments can be identified, the method is
not functional.

III. SYSTEM OVERVIEW

Figure 2 provides an overview of our proposed SLAM
system, LiTAMIN. The LiDAR Odometry block contains
two threads: a pose tracking thread by our ICP method
and a local mapping thread using results of the tracking
thread. This block continuously computes the self-position
independently of the local mapping thread.

LiDAR odometry block does not use the global map to
avoid scan drop-outs, but uses the local map which contains
inconsistencies by the odometry. The map update-cycle is
constant since the local mapping thread does not perform
loop closure. Our system reduces the effect of inconsistency
by removing the old points from the local map. The local
map is built with accumlating every localized scans by the
tracking thread for dealing with sparseness of one scan.

The Key-Frame Maker block outputs local maps and
relative poses between the local maps, while accumulating
the LiDAR odometry and setting the key-frames every 10 m.
The memory usage is reduced by writing the key-frames to
storage, such as a hard drive or solid-state drive.

We consider the trajectory computed by the tracking thread
is accurate enough for a 10 m travel range, which is the
distance of accumulation of scans for building a key-frame.
Our system deformes the global map with the unit of the
key-frame after loop closing on the pose-graph.

The Pose Graph Optimizer block corrects the recent rela-
tive poses between key-frames and detects loops in the pose
graph. When it detects the loop candidates, the optimizer
reads the necessary key-frames from storage. Loop detection
lists all the key-frames within a 30-m radius from the current
position as the loop candidates, and then applies the ICP-
based loop closure processing.

Our system applyies ICP to every loop candidates. Some-
times the loop detector thread is delayed against the odom-
etry block for the ICP processings. Since the odometry
computation is independent of the global map, the delay does
not affect the total computation results, although the global
mapping is possibly delayed. After applying ICP, our system
inserts the all relative poses, which are included errors, into
the pose-graph; our system elminates the wrong poses on the
pose-graph optimization.

IV. FAST AND STABLE ICP

In the SLAM system, which requires real-time processing,
ICP methods have to balance accuracy and robustness to
obtain computational efficiency. The standard ICP and other
robust methods [11]–[13] directly employ point clouds. Fine
initial solutions and uniform point density in the point clouds

TABLE I: Comparison of ICP variants for local approximation with a cluster of normal distributions.

Map Point Degeneracy
Method representation association avoidance Cost function

Standard ICP k-d tree k-d tree not required ∑i (qi − (Rpi + t))T (qi − (Rpi + t))
NDT voxel voxel PCA ∑i (qi − (Rpi + t))T C−1

i (qi − (Rpi + t))
Generalized ICP k-d tree k-d tree PCA ∑i (qi − (Rpi + t))T (Cq

i +RCp
i RT)−1 (qi − (Rpi + t))

LiTAMIN (proposed method) voxel k-d tree not required ∑i (qi − (Rpi + t))T wi(Ci +λ I)−1

∥(Ci +λ I)−1∥F
(qi − (Rpi + t))

are desirable for these methods. Although some robust and
accurate ICP methods [14]–[16] can ensure global optima
without an initial solution, they have high computational
costs. These methods are not practical for a SLAM that
requires constant ICP processing for every frame. Reduction
of the number of 3D points is one of the most effective
solutions for improving the computational efficiency. Many
ICP-based SLAM systems [9], [17]–[20] often use ICP
methods with voxel grids and normal distributions because
they can reduce the computational cost while still retaining
enough geometric information. Among them, NDT [17] and
GICP [9] are the most popular methods.

Our objective was to improve the accuracy and the ro-
bustness of these normal distribution-based methods while
achieving a computational efficiency that is comparable
to feature-based methods. Table I indicates the differences
between our ICP method and the others.

A. Map representation and point association

Voxel grids or k-d trees are used for map representation
and correspondence searching in SLAM systems. Voxel grid
representation has an advantage in computational efficiency
because the number of voxels is significantly lower than
the number of points in the original point cloud. In con-
trast, k-d tree representation has an advantage in accuracy
and robustness for registration. With respect to finding the
corresponding points, k-d tree representation can find the
association points with a nearest neighbor (NN) search, while
voxel grid representation has no guarantee for the NN search.
With regard to computational cost, voxel grid representation
has an advantage in the correspondence search because the
cost of computation with voxel grids is O(N) and that with k-
d trees is O(Nlog(N)). LiTAMIN combines the merits of the
two representations. Our system represents LiDAR data as a
reduced number of point sets by voxel filtering, where each
voxel is represented by a single point, specifically the center
of mass of the 3D points included in the voxel. The map
is also represented by voxel grids for reducing the number
of the points and making the density more uniform. The
point associations are determined by the NN search with k-d
tree representation. We implemented a voxel size of 1 m;
therefore, the size of a local map corresponding to a key-
frame is 200 m × 200 m × 40 m.

B. Cost function and degeneracy avoidance

LiTAMIN adopted an ICP with local geometry approxi-
mated by normal distributions in a manner similar to that

in NDT [17] and GICP [9], which should cope with the
degeneracy of covariance matrices. If the local geometry is
a plane, the minimum eigenvalue of the covariance matrix
is 0 or extremely small; thus, the cost functions of NDT
and GICP in Table I diverge with the degenerate covariance
matrices. Some NDT-based methods apply PCA and change
the representation to point-to-plane distance metrics if the
covariance matrix does not have an inverse. GICP uses co-
variance matrix C by applying the following transformation
after PCA:

C :=V diag(1,1,ε)V T , (1)

where V is a matrix with arranged eigenvectors given by PCA
and diag(· · ·) is a diagonal matrix with arranged eigenvalues.
GICP sets the eigenvalues to 1 except for the minimum
eigenvalue, and replaces the minimum with a small value
ε that does not create computational problems.

However, this stabilization technique by PCA is not suit-
able for fast computation because applying PCA to all voxels
has a high computational cost. To reduce the cost, we propose
the following covariance transformation:

C−1 :=
w(C+λ I)−1

∥(C+λ I)−1∥F
, (2)

where w, I, and λ are the weight, identity matrix, and
constant, respectively, and ∥ · ∥F indicates the Frobenius
norm. w indicates the weight of point q; this weight is
for an alternative because the magnitude of the transformed
covariance matrix elements does not correspond to accuracy.
We set w by occupancy probability [21] for each voxel. We
set λ as 10−6 empirically, because this number corresponds
to a normal distribution with a standard deviation of 1
mm; this number is not expected to affect the ICP results
because LiDAR’s range of measurement error is several
centimeters. Replacing the eigenvalues with diag(1,1,ε) in
GICP indicates that the magnitude of eigenvalues does not
affect the accuracy of ICP results; the degeneracy direction of
covariance matrices plays an important role in the accuracy
of GICP. From this consideration, we normalize the covari-
ance matrix by the Frobenius norm because scaling a matrix
with eigenvalues does not affect the geometric registration.
The Frobenius norm, which indicates the scale of the matrix
by the sum of squares of the eigenvalues, is defined as
follows:

∥A∥F =

√
n

∑
i=1

n

∑
j=1

|ai j|2 =

√
n

∑
i=1

σ2
i . (3)

V. ROBUST LOOP CLOSURE

ICP-based loop closure should assume failures because
ICP has no guarantee of global optima. Recent robust pose
graph optimization methods can be categorized to two types:
methods with initial guesses by odometry [22]–[27] and
methods without initial guesses [28]–[30]. The methods with
initial guesses detect outliers of loop constraints when a pose
graph exceeds an assumed odometry error after adding con-
straints. These methods include approaches that use iterative
reweighted least squares [22]–[24], approaches that use the
χ2 test [25], [26], and an approach that detects outliers by
using a Gaussian mixture model [27]. The methods without
initial guesses detect outliers by convex programming. Our
method uses the approach that employs iterative reweighted
least squares. Further, we propose a simple intuitive weight-
ing method.

A. Cost function

The cost function in our method for pose graph optimiza-
tion is the following:

E = ∑
i, j

wi j
(
∥RiRT

j ·∆RT
i j − I∥2

F +∥(ti − t j)−∆ti j∥2
2
)
, (4)

where i, j are key-frame indices, wi j is weight, Ri is rotation,
ti is translation, ∆Ri j is relative rotation, ∆ti j is relative
translation, and ∥ · ∥2 indicates the L2 norm. Although ∆Ri j
and ∆ti j are provided by the ICP results, the values have
possible outliers because ICP has no guarantee of global
optima. In consideration of the errors eR = RiRT

j ·∆RT
i j − I

and et = (ti − t j)−∆ti j, our method addresses the problem
with the following weight computation:

wi j =

√√√√(1−
∥et∥2

∥et∥2 +σt

)(
1−

∥eR∥F

∥eR∥F +σR

)
, (5)

where σt and σR indicate the tolerated error of translation and
rotation, respectively; when et and eR are large, wi j becomes
zero. Because the values of σt and σR depend on the accuracy
of ICP, we determined the number by considering the error
when ICP outputs optimum values. In the optimum situation,
we considered the following small change of a rotation
matrix by employing the angular velocity ω = (ωx,ωy,ωz)

T :

dR
dt

= I +

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (6)

When the rotation matrix RiRT
j ·∆RT

i j is small enough, be-
cause the diagonal elements of eR become zero, the error eR
has only non-diagonal elements, and ∥eR∥F can be approxi-
mated as

∥eR∥F ≈
√

2∥ω∥2. (7)

Because we see ∥ω∥2 as a rotation angle with an arbitrary
axis, we concluded that the accuracy of the rotation angle for
ICP results is within 3 degrees of the optimum value, and
we set the value as σR = 3

√
2 degrees. Similarly, because

we consider the accuracy of translation to be about 10 cm,

Fig. 3. Experimental devices and conditions.

we set the value as σt = 0.1 m. When eR and et are larger
than the tolerated error, wi j approaches zero. Our method
can remove the failure results of ICP as outliers because the
corresponding constraint does not affect the cost function for
a weight of zero.

B. Re-weighting schedule

We can reduce the wrong loop-closure constraints with
weighting; however, our method may not close the loops,
even if the ICP results are correct, because the initial error
is potentially much larger than the tolerated error when
closing loops. For this reason, our method used adaptive
weights in the optimization iterations; we set wi j = 1 at
the first iteration, and the weight according to Eq. (5)
at the second and subsequent iterations. Furthermore, our
method incrementally optimizes the cost function by adding
constraints one by one to avoid local optima. Our method
tries to test the correctness of constraints by weighting of the
first iteration. If the constraint is correct, that is, the errors
eR and et are within tolerated values, the constraint becomes
active with a non-zero weight after the second iteration.

VI. EXPERIMENT

In this experiment, we evaluated the accuracy of tra-
jectories generated by LiTAMIN and other state-of-the-art
methods and compared them with the ground truth trajectory
obtained from the experimental devices shown in Fig. 3.
We obtained four evaluation datasets with changing mo-
bility using a cart, walking, a wheelchair, and a Segway.
Each SLAM method reconstructed the trajectories using
a Velodyne VLP-16 LiDAR. We also used the precision
survey instruments, the Leica Pegasus system and a real-
time kinematic GPS (RTK-GPS), to obtain ground truth
data. The accuracy of Leica Pegasus is 2 cm according
to the manufacturer specifications. In this experiment, four
other SLAM methods were compared with LiTAMIN: PCA
method, hdl graph slam, LeGO-LOAM, and LOAM. The
PCA method replaced Eq. (2) in LiTAMIN with Eq. (1).
Hdl graph slam [2] is a GICP-based method, and LeGO-
LOAM [6] and LOAM [5] are feature-based methods. For
this experiment, the evaluation was performed using a laptop
with an Intel Core i7-7820HQ processor. The error metric
for the evaluation was the root mean square error (RMSE),

calculated as

Overall RMSE =

√
1
T

T

∑
t=1

|gggt − pppt |22, (8)

where t is the time index, gggt = (Xt ,Yt ,Zt)
T is the ground

truth trajectory, and pppt = (xt ,yt ,zt)
T indicates the trajectory

estimated by each SLAM method. Additionally, we evaluated
the height error,

Height RMSE =

√
1
T

T

∑
t=1

|Zt − zt |22, (9)

with respect to the ground plane,

2D RMSE =

√
1
T

T

∑
t=1

|(Xt ,Yt)T − (xt ,yt)T |22, (10)

and errors in a segment cut from a trajectory,

RMSE per X m =

√√√√ 1
(T2 −T1)

T2

∑
t=T1

|gggt − xxxt |22, (11)

where ∑T2−1
t=T1

√
|ggg(t+1)−gggt |22 = X . The RMSE per X (in

meters) was computed by cutting a segment with a length
X from the trajectory and sliding it along the trajectory. For
this reason, the RMSE per X can be computed for more than
one sample from one trajectory, and this metric can be used
to obtain the average and standard deviation. We evaluated
the height RMSE and 2D RMSE to confirm the direction
in which the error is larger. We considered the RMSE per
X with the short segment to indicate the accuracy of pose
tracking; the long segment indicates the drift of localization
results over a longer time span. Moreover, RMSE per X
can evaluate the accuracy of each method stably even if
the method fails position tracking locally because the error
is evaluated by the segments. A similar error metric was
proposed by Zhang et al. [31].

Table II indicates the results of error evaluation. In the
table, red results indicate the best accuracy, blue results
indicate the second-best accuracy, and bold results indicate
the third-best accuracy for each error metric. Figure 4 shows
the ground truth trajectories and the trajectories estimated
by each method. Figure 5 shows the mapping results by
LiTAMIN. Table III reports the computational time for each
method, as well as the actual travel time. The results were
obtained from the total computation time for building a map
using all VLP-16 data-frames without frame drops and thread
sleep. The font colors and bold rank the computation time
in the same way as done in Table II. Table IV indicates the
average computation time for each function in our SLAM
system per execution function.

In order to evaluate the accuracy of LiTAMIN for a
big loop case, we conducted an experiment in a larger
environment with the same experimental device of Segway
dataset. Figure 6 shows the trajectories by each method and
the ground truth; Figure 7 shows the mapping result by
LiTAMIN superimposed on an aerial photograph. Table V

indicates the results of error evaluation. LeGO-LOAM could
not close loops in this experiment for the large error.

VII. DISCUSSION

Table II shows that LiTAMIN is more accurate than
the other methods for most evaluation metrics, regardless
of whether loop closure detection is performed. LiTAMIN
applied with Eq. (2) is more accurate than the PCA method
applied with the GICP stabilization method of Eq. (1), except
for the wheelchair dataset. Especially, LiTAMIN indicates
stable accuracy, while the PCA method showed significant
accuracy reduction in the Segway dataset. We consider our
stabilization method to be more accurate and robust than
the GICP stabilization method because our method holds
the shape of normal distribution, in contrast with the GICP
method, which changes the shape by diag(1,1,ε) in Eq. (1).

In comparison with the feature-based methods LeGO-
LOAM and LOAM, ICP-based methods, including LiTA-
MIN, PCA, and hdl graph slam, were more accurate in
short segments measuring 1 m and 3 m. This result shows
that ICP-based methods have higher accuracy than feature-
based methods for local pose tracking. We expect ICP-based
methods to build clearer maps than feature-based methods
because the accuracy of local map geometry depends on the
local pose-tracking accuracy.

The reduced accuracy for the Segway dataset in Table
II indicates that its trajectory was the most difficult to
determine. The PCA method and LeGO-LOAM showed
worse accuracy in long segments for the Segway dataset.
However, these two methods did not have significantly worse
results in short segments in comparison with other methods.
These results stem from the fact that these two methods lost
pose tracking during part of the trajectory. We could evaluate
the accuracy of each method with fairness by employing not
only overall trajectory error but also short- and long-segment
errors.

LiTAMIN with loop closure can be seen to be improved
in comparison with LiTAMIN without loop closure for long
segments over 100 m; however, the improvement is not as
pronounced for short trajectories. This indicates that loop
closure detection can improve the consistency of a trajectory,
but it cannot improve the accuracy of local geometry. While
this trend can be seen in the PCA method and hdl graph slam
similarly, it indicates that local tracking accuracy should be
improved to improve the accuracy of local map geometry.
For LeGO-LOAM, trends can be seen in which the accuracy
becomes worse after loop closure for the cart and walking
datasets. Especially, LeGO-LOAM significantly improved
the 2D RMSE for the cart dataset; however, the height
RMSE was worse. We considered that LeGO-LOAM with
loop closure distorted the trajectory shape along the height
direction due to overly strong smoothing because constraints
along the height direction in outdoor scenes were few in
comparison with 2D constraints.

Table III shows that LiTAMIN, despite being an ICP-based
method, had comparable computational efficiency against
feature-based LeGO-LOAM. Moreover, LiTAMIN could

TABLE II: Accuracy evaluation for each SLAM method. The marks ✓and − mean with (✓) and without (−) loop closure, respectively, for each method.

Cart Loop Overall Height 2D RMSE RMSE RMSE RMSE RMSE RMSE RMSE
Method closure RMSE RMSE RMSE per 1 m per 3 m per 10 m per 30 m per 100 m per 300 m per 1 km

LiTAMIN − 1.462 1.154 0.897 0.016±0.004 0.018±0.007 0.021±0.015 0.031±0.033 0.120±0.043 0.331±0.072 1.303±0.180
LiTAMIN ✓ 1.238 1.189 0.344 0.016±0.006 0.018±0.011 0.022±0.018 0.033±0.030 0.118±0.034 0.315±0.066 1.144±0.157

PCA method − 1.697 1.467 0.854 0.017±0.005 0.019±0.010 0.023±0.019 0.034±0.033 0.129±0.041 0.352±0.071 1.492±0.202
PCA method ✓ 1.442 1.384 0.405 0.017±0.007 0.020±0.013 0.024±0.021 0.035±0.034 0.128±0.040 0.352±0.062 1.350±0.178

hdl graph slam − 5.304 4.306 3.096 0.020±0.049 0.027±0.083 0.042±0.012 0.078±0.274 0.320±0.483 1.277±2.434 2.998±0.844
hdl graph slam ✓ 2.613 1.595 2.071 0.020±0.049 0.027±0.083 0.042±0.012 0.078±0.274 0.317±0.482 1.139±2.465 2.275±0.560
LeGO-LOAM − 2.691 2.402 1.213 0.041±0.052 0.052±0.052 0.061±0.051 0.076±0.049 0.180±0.050 0.506±0.142 2.325±0.356
LeGO-LOAM ✓ 2.933 2.920 0.278 0.041±0.052 0.052±0.052 0.061±0.051 0.076±0.049 0.173±0.051 0.471±0.142 2.737±0.464

LOAM − 2.893 2.732 0.953 0.034±0.012 0.049±0.016 0.061±0.023 0.076±0.044 0.181±0.076 0.426±0.129 2.158±0.443

Walking Loop Overall Height 2D RMSE RMSE RMSE RMSE RMSE RMSE RMSE
Method closure RMSE RMSE RMSE per 1 m per 3 m per 10 m per 30 m per 100 m per 300 m per 1 km

LiTAMIN − 0.411 0.319 0.238 0.055±0.173 0.067±0.223 0.075±0.015 0.087±0.337 0.125±0.325 0.288±0.198 0.350±0.053
LiTAMIN ✓ 0.395 0.302 0.238 0.055±0.176 0.066±0.226 0.074±0.018 0.085±0.337 0.123±0.326 0.299±0.200 0.338±0.053

PCA method − 0.442 0.345 0.248 0.056±0.175 0.069±0.226 0.079±0.019 0.091±0.339 0.129±0.324 0.284±0.204 0.364±0.069
PCA method ✓ 0.474 0.392 0.239 0.056±0.175 0.068±0.227 0.076±0.021 0.088±0.339 0.124±0.324 0.296±0.204 0.410±0.066

hdl graph slam − 3.609 3.310 1.434 0.047±0.200 0.065±0.257 0.084±0.012 0.122±0.472 0.394±0.525 0.976±0.600 2.956±0.471
hdl graph slam ✓ 1.815 1.263 1.263 0.046±0.202 0.062±0.254 0.077±0.012 0.108±0.452 0.280±0.497 1.016±0.418 1.496±0.396
LeGO-LOAM − 0.595 0.493 0.285 0.073±0.178 0.097±0.222 0.110±0.051 0.126±0.336 0.151±0.321 0.342±0.210 0.479±0.089
LeGO-LOAM ✓ 0.576 0.418 0.363 0.073±0.178 0.097±0.222 0.110±0.051 0.126±0.336 0.107±0.279 0.313±0.193 0.446±0.075

LOAM − 0.431 0.316 0.272 0.059±0.173 0.090±0.222 0.113±0.023 0.136±0.341 0.172±0.333 0.341±0.193 0.385±0.058

Wheelchair Loop Overall Height 2D RMSE RMSE RMSE RMSE RMSE RMSE RMSE
Method closure RMSE RMSE RMSE per 1 m per 3 m per 10 m per 30 m per 100 m per 300 m per 1 km

LiTAMIN − 0.980 0.958 0.207 0.024±0.013 0.030±0.016 0.038±0.022 0.053±0.030 0.106±0.053 0.258±0.115 0.738±0.194
LiTAMIN ✓ 0.701 0.661 0.235 0.025±0.013 0.030±0.016 0.039±0.022 0.054±0.030 0.102±0.043 0.215±0.106 0.519±0.111

PCA method − 0.802 0.770 0.224 0.023±0.011 0.029±0.014 0.038±0.020 0.051±0.030 0.104±0.053 0.250±0.114 0.593±0.158
PCA method ✓ 0.678 0.626 0.260 0.023±0.011 0.029±0.014 0.038±0.020 0.053±0.028 0.104±0.046 0.215±0.110 0.481±0.132

hdl graph slam − 7.318 4.380 5.863 0.021±0.037 0.028±0.057 0.052±0.102 0.113±0.232 0.756±0.265 1.429±0.276 5.819±0.456
hdl graph slam ✓ 1.012 0.762 0.642 0.020±0.012 0.026±0.016 0.038±0.024 0.069±0.045 0.169±0.117 0.449±0.173 0.758±0.214
LeGO-LOAM − 1.150 1.129 0.215 0.042±0.025 0.054±0.025 0.063±0.026 0.078±0.034 0.123±0.055 0.282±0.119 0.757±0.258
LeGO-LOAM ✓ 1.237 1.210 0.254 0.042±0.025 0.054±0.025 0.063±0.026 0.078±0.034 0.116±0.061 0.380±0.176 0.863±0.271

LOAM − 1.294 1.262 0.277 0.034±0.015 0.053±0.019 0.071±0.024 0.088±0.029 0.139±0.047 0.276±0.114 0.746±0.300

Segway Loop Overall Height 2D RMSE RMSE RMSE RMSE RMSE RMSE RMSE
Method closure RMSE RMSE RMSE per 1 m per 3 m per 10 m per 30 m per 100 m per 300 m per 1 km

LiTAMIN − 0.934 0.327 0.860 0.029±0.180 0.039±0.016 0.050±0.285 0.075±0.325 0.114±0.267 0.321±0.131 0.494±0.100
LiTAMIN ✓ 0.522 0.406 0.314 0.030±0.179 0.040±0.016 0.053±0.283 0.077±0.325 0.127±0.262 0.302±0.126 0.449±0.048

PCA method − 91.41 2.052 91.37 0.031±1.040 0.043±1.449 0.058±2.162 0.084±3.293 0.140±4.490 1.026±9.148 35.86±19.68
PCA method ✓ 91.12 2.123 91.08 0.031±1.042 0.043±1.449 0.058±2.160 0.085±3.291 0.138±4.488 1.023±9.149 35.87±19.67

hdl graph slam − 14.11 12.34 6.848 0.038±0.196 0.059±0.057 0.107±0.491 0.396±0.776 2.210±0.865 3.444±0.768 6.180±1.953
hdl graph slam ✓ 2.608 2.223 1.323 0.035±0.178 0.049±0.016 0.069±0.325 0.137±0.369 0.474±0.293 1.036±0.283 1.589±0.333
LeGO-LOAM − 50.92 28.65 33.14 0.089±0.186 0.115±0.025 0.142±0.351 0.261±0.612 0.984±2.385 3.857±10.42 18.24±18.56
LeGO-LOAM ✓ 65.47 25.48 58.68 0.089±0.186 0.115±0.025 0.142±0.351 0.261±0.612 0.615±3.125 4.230±11.48 26.80±18.22

LOAM − 0.614 0.377 0.464 0.048±0.191 0.080±0.019 0.119±0.309 0.152±0.353 0.226±0.318 0.303±0.238 0.614±0.111

-200

-150

-100

-50

0

50

100

-200 -150 -100 -50 0 50 100 150

y
[m

]

x[m]

-150

-100

-50

0

50

100

-150 -100 -50 0 50 100

x[m]

-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150

x[m]

-200

-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150 200

x[m]

GT hdl graph slam with LC
hdl graph slam w/o LC

LeGO-LOAM with LC
LeGO-LOAM w/o LC

LOAM

Cart Walking Wheelchair Segway

LiTAMIN with LC
LiTAMIN w/o LC

PCA method with LC
PCA method w/o LC

Fig. 4. Comparison of trajectories between ground truth data and each method (LC = loop closure).

Fig. 5. Mapping results by LiTAMIN. The dataset used for each map from the left is cart, walking, and wheelchair. The Segway map is shown in Fig. 1.

TABLE III: Total computation time (sec) to build a map using all
VLP-16 data frames without frame drops and thread sleep.

Loop Wheel-
Method closure Cart Walking chair Segway

LiTAMIN ✓ 634 584 572 481
PCA method ✓ 1,181 1,081 1,072 883

hdl graph slam ✓ 4,800 4,353 4,306 3,567
LeGO-LOAM ✓ 302 468 328 315

LOAM − 993 880 866 861
Actual travel time 1,440 1,306 1,292 1,070

TABLE IV: Average computation time for each function of
LiTAMIN.

Average Execution
Function time (ms) unit Implementation

Tracking 21±10 Per scan Single thread
Local mapping 5±5 Per scan Single thread
Accumulation 2±3 Per scan Single thread

Storage 98±25 Per key-frame Single thread
Graph optimization 190±176 Per key-frame insertion Single thread

Loop detection 34±25 Per key-frame Single thread

-500

0

500

1000

-500 0 500

y[m]
GT

Our method with LC
Our method w/o LC

LeGO-LOAM w/o LC
LOAM

x[m]

X-Y plane
z[m]

-500 0 500

GT
Our method with LC
Our method w/o LC

LeGO-LOAM w/o LC
LOAM

100

-20

0

20

40

60

80

x[m]

X-Z plane

Fig. 6. Comparison of trajectories between GT data and each method for the big
loop case.

Fig. 7. Mapping result by LiTAMIN for the big loop case.
The background aerial photograph is referred to Google Map.

TABLE V: Accuracy evalutation for the big loop case. The mark ✓and − mean with(✓) or without(−) loop closure for each method.

big loop Loop Overall Height 2D RMSE RMSE RMSE RMSE RMSE RMSE RMSE
Method closure RMSE RMSE RMSE per 1 m per 3 m per 10 m per 30 m per 100 m per 300 m per 1 km

LiTAMIN − 9.084 8.451 3.331 0.020±0.032 0.029±0.056 0.042±0.106 0.072±0.184 0.202±0.290 0.525±0.363 1.210±0.358
LiTAMIN ✓ 1.347 1.100 0.769 0.020±0.033 0.026±0.049 0.034±0.073 0.049±0.102 0.097±0.164 0.215±0.182 0.599±0.243

LeGO-LOAM − 875.2 64.04 872.8 0.060±0.063 0.096±0.114 0.143±0.282 0.254±0.681 0.820±1.478 2.344±4.220 5.751±20.157
LOAM − 168.8 9.027 168.5 0.036±0.053 0.062±0.094 0.097±0.271 0.175±0.532 0.768±0.879 1.977±1.344 4.301±7.920

build maps in half the time compared with the PCA method
employing Eq. (1). We consider the computational efficiency
of LiTAMIN to come from our stabilization method using
Eq. (2) and local map building with 1-m voxels. Although the
point correspondence computation of LiTAMIN was based
on a k-d tree, we consider that the computational efficiency
of LiTAMIN comes from building a k-d tree for each unit
of a local map. Moreover, we consider that the voxel size
of 1 m improves the accuracy and computational efficiency
at the same time because this size is sufficient for accuracy
and it reduces the size of the tree.

Table V shows that LiTAMIN could close the big loops
while LeGO-LOAM and LOAM could not close the loops
for the large error. This result is come from that odometry
computation of LiTAMIN by our ICP method was accurate
enough to close the big loops. The short segment errors in
LeGO-LOAM and LOAM are not significantly worse results
than that in LiTAMIN. This indicates that LeGO-LOAM and
LOAM failed in pose tracking at some specific places. We
consider the fine results by LiTAMIN were come from not
only the accuracy but also the stability of our ICP method.

VIII. CONCLUSIONS

This paper describes a SLAM system with improved
accuracy, robustness, and computational efficiency. The main
contributions of LiTAMIN are a more stable ICP due to
approximation of local geometry by normal distributions
and robust loop closure detection with simple and intu-
itive weighting. The experimental results indicated that our
method is more accurate than other state-of-the-art SLAM
methods and was stable for some datasets, while other
methods experiencing pose tracking failures. Moreover, our
method, despite being an ICP-based system, has computa-
tional efficiency comparable to that of LeGO-LOAM, which
is the fastest feature-based method. Future work will be
the introduction of the tight coupling method with inertial
measurement unit sensing, such as visual inertial odometry,
to our ICP-based SLAM method.

REFERENCES

[1] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in
2D LIDAR SLAM,” in Proc. of International Conference on Robotics
and Automation (ICRA), 2016.

[2] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional
LIDAR-based system for long-term and wide-area people behavior
measurement,” International Journal of Advanced Robotic Systems,
2019.

[3] C. Park, P. Moghadam, S. Kim, A. Elfes, C. Fookes, and S. Srid-
haran, “Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time
SLAM,” in Proc. of International Conference on Robotics and Au-
tomation (ICRA), 2017.

[4] J. Behley and C. Stachniss, “Efficient Surfel-Based SLAM using 3D
Laser Range Data in Urban Environments,” in Proc. of Robotics:
Science and Systems (RSS), 2018.

[5] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in
Real-time,” in Proc. of Robotics: Science and Systems (RSS), 2014.

[6] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and Ground-
Optimized Lidar Odometry and Mapping on Variable Terrain,” in Proc.
of International Conference on Intelligent Robots and Systems (IROS),
2018.

[7] H. Ye, Y. Chen, and M. Liu, “Tightly Coupled 3D Lidar Inertial
Odometry and Mapping,” in Proc. of International Conference on
Robotics and Automation (ICRA), 2019.

[8] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” Proc. of International Conference on 3-D Digital Imaging and
Modeling (3DIM), 2001.

[9] A. Segal, D. Hähnel, and S. Thrun, “Generalized-ICP,” in Proc. of
Robotics: Science and Systems (RSS), 2009.

[10] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transac-
tions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[11] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The Trimmed
Iterative Closest Point algorithm,” in Proc. of International Conference
on Pattern Recognition (ICPR), 2002.

[12] S. Kaneko, T. Kondo, and A. Miyamoto, “Robust matching of 3D
contours using iterative closest point algorithm improved by M-
estimation,” Pattern Recognition, 2003.

[13] T. Zinsser, J. Schmidt, and H. Niemann, “A refined ICP algorithm
for robust 3-D correspondence estimation,” in Proc. of International
Conference on Image Processing (ICIP), 2003.

[14] S. Granger and X. Pennec, “Multi-scale EM-ICP: A Fast and Robust
Approach for Surface Registration,” in Proc. of European Conference
on Computer Vision (ECCV), 2002.

[15] S. Bouaziz, A. Tagliasacchi, and M. Pauly, “Sparse Iterative Closest
Point,” in Proc. of Eurographics/ACMSIGGRAPH Symposium on
Geometry Processing, 2013.

[16] J. Yang, H. Li, D. Campbell, and Y. Jia, “Go-ICP: A Globally Optimal
Solution to 3D ICP Point-Set Registration,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 2016.

[17] P. Biber and W. Strasser, “The normal distributions transform: a new
approach to laser scan matching,” in Proc. of International Conference
on Intelligent Robots and Systems (IROS), 2003.

[18] E. Takeuchi and T. Tsubouchi, “A 3-D Scan Matching using Improved
3-D Normal Distributions Transform for Mobile Robotic Mapping,” in
Proc. of International Conference on Intelligent Robots and Systems
(IROS), 2006.

[19] M. Magnusson, A. Lilienthal, and T. Duckett, “Scan Registration
for Autonomous Mining Vehicles Using 3D-NDT,” Journal of Field
Robotics, 2007.

[20] M. Magnusson, A. Nuchter, C. Lorken, A. J. Lilienthal, and
J. Hertzberg, “Evaluation of 3d registration reliability and speed - a
comparison of icp and ndt,” in Proc. of International Conference on
Robotics and Automation (ICRA), 2009.

[21] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT Press,
2005.

[22] N. Sünderhauf and P. Protzel, “Switchable Constraints for Robust Pose
Graph SLAM,” in Proc. of International Conference on Intelligent
Robots and Systems (IROS), 2012.

[23] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard,
“Robust map optimization using dynamic covariance scaling,” in Proc.
of International Conference on Robotics and Automation (ICRA),
2013.

[24] G. H. Lee, F. Fraundorfer, and M. Pollefeys, “Robust pose-graph loop-
closures with expectation-maximization,” in Proc. of International
Conference on Intelligent Robots and Systems (IROS), 2013.

[25] M. C. Graham, J. P. How, and D. E. Gustafson, “Robust incremental
SLAM with consistency-checking,” in Proc. of International Confer-
ence on Intelligent Robots and Systems (IROS), 2015.

[26] Y. Latif, C. Cadena, and J. Neira, “Robust loop closing over time for
pose graph SLAM,” The International Journal of Robotics Research,
2013.

[27] E. Olson and P. Agarwal, “Inference on networks of mixtures for
robust robot mapping,” International Journal of Robotics Research
(IJRR), 2013.

[28] J. J. Casafranca, L. M. Paz, and P. Piniés, “A back-end L1 norm based
solution for factor graph SLAM,” in Proc. of International Conference
on Intelligent Robots and Systems (IROS), 2013.

[29] L. Carlone and G. Calafiore, “Convex Relaxations for Pose Graph
Optimization with Outliers,” IEEE Robotics and Automation Letters
(RA-L), 2018.

[30] P.-Y. Lajoie, S. Hu, G. Beltrame, and L. Carlone, “Modeling Perceptual
Aliasing in SLAM via Discrete-Continuous Graphical Models,” IEEE
Robotics and Automation Letters (RA-L), 2019.

[31] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2018.

