
LiTAMIN2: Ultra Light LiDAR-based SLAM using
Geometric Approximation applied with KL-Divergence

Masashi Yokozuka1, Kenji Koide1, Shuji Oishi1 and Atsuhiko Banno1

Abstract— In this paper, a three-dimensional light detection
and ranging simultaneous localization and mapping (SLAM)
method is proposed that is available for tracking and mapping
with 500–1000 Hz processing. The proposed method signifi-
cantly reduces the number of points used for point cloud reg-
istration using a novel ICP metric to speed up the registration
process while maintaining accuracy. Point cloud registration
with ICP is less accurate when the number of points is reduced
because ICP basically minimizes the distance between points.
To avoid this problem, symmetric KL-divergence is introduced
to the ICP cost that reflects the difference between two prob-
abilistic distributions. The cost includes not only the distance
between points but also differences between distribution shapes.
The experimental results on the KITTI dataset indicate that the
proposed method has high computational efficiency, strongly
outperforms other methods, and has similar accuracy to the
state-of-the-art SLAM method.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a fun-
damental element of mobility technologies and services, such
as autonomous mobile robots. In particular, light detection
and ranging (LiDAR) and depth sensors have already been
commercialized and are being applied because of their stable
and accurate performance. In the near future, not only self-
driving cars, but all types of mobile devices will be equipped
with LiDAR or depth sensors. We anticipate a world in which
point cloud data captured via SLAM will be aggregated in
the cloud and shared to provide a variety of services.

There is a need to efficiently generate and update global
maps from the huge amount of point cloud data aggregated
in real time from devices around the world. Because the
number of servers used in this process is much smaller than
the number of devices, it is essential to use SLAM methods
that go beyond real-time performance. The performance of
current LiDAR-based SLAM is only slightly better than real-
time performance.

In addition to the server, speedup is also necessary to oper-
ate SLAM on edge devices, which are severely constrained
in terms of computational resources. The current LiDAR-
based SLAM method is based on the premise that real-time
performance is guaranteed using the CPU and GPU on a PC,
and it is necessary to improve the computational efficiency
of the SLAM method to ensure real-time performance on
edge devices.

1The authors are with the Human-Centered Mobility Research Center
(HCMRC), National Institute of Advanced Industrial Science and Technol-
ogy (AIST), Japan yokotsuka-masashi@aist.go.jp

This work was supported in part by the New Energy and Industrial
Development Organization (NEDO).

Fig. 1. Example mapping result for the KITTI sequence 00 data using
LiTAMIN2. The color of the bottom right figure indicates the normal direc-
tion given from normal distributions decomposed using principal component
analysis, i.e. the direction is the eigenvector of the minimum eigenvalue.

Although many studies have been conducted on SLAM
benchmarks [1] and methods that emphasize accuracy [2]–
[14], few studies have significantly improved the current
computational efficiency. In the future, to process a large
number of robots and devices intensively and efficiently, it
is expected that SLAM will emphasize high speed.

The aim of this paper is to establish a method that is
as accurate as the state-of-the-art method, while signifi-
cantly exceeding real-time performance. In this paper, a
three-dimensional (3D) LiDAR-based SLAM is discussed,
which significantly improves the computational efficiency of
LiDAR-based SLAMs, running at 500–1000 Hz and provid-
ing the same level of accuracy as state-of-the-art methods.
The proposed method significantly reduces the number of
points used for point cloud registration using a novel ICP
metric while maintaining accuracy. Point cloud registration

ar
X

iv
:2

10
3.

00
78

4v
1

 [
cs

.R
O

]
 1

 M
ar

 2
02

1

with ICP is less accurate when the number of points is
reduced. To avoid this problem, symmetric KL-divergence
is introduced to the ICP cost. The experimental results (Fig.
1) on the KITTI dataset indicate that the proposed method
has high computational efficiency, strongly outperforms other
methods, and has similar accuracy to the state-of-the-art
SLAM method.

II. RELATED WORK

LiDAR SLAM methods can be divided into two cate-
gories: ICP-based methods [2]–[8] and feature-based meth-
ods [9]–[14].

For ICP-based methods, voxelization is a simple but
effective approach to speed it up. By dividing the point
clouds into small groups and approximating each sub-point
cloud with a normal distribution, the number of points can be
significantly reduced while preserving the shape, to a certain
extent. Normal distribution transformation (NDT) [15]–[17]
and generalized-ICP (GICP) [18] are the most common ICP
methods for performing voxel approximation, but there are
some differences between them. NDT approximates only
the target points with normal distributions and determines
the voxel-wise correspondences, whereas GICP performs the
normal distribution approximation on both the target and
source point clouds and finds the correspondences using
exact nearest neighbor search with a kd-tree. NDT tends to
be more computationally efficient and GICP tends to be more
accurate.

Feature-based methods extract geometric features, such
as a line segment, plane, and point, from the input range
data, and efficiently determine the correspondences. LOAM
[9] was the first feature-based method to perform fast and
accurate odometry calculations using LiDAR. It significantly
reduces the number of points required in the localization
phase using feature matching. LeGO-LOAM [11] further
speeds up LOAM by relying only on good features to
perform feature selection, and is one of the fastest methods
currently available [2].

To achieve faster registration, some methods leverage GPU
computation power, including SuMa [4], Elastic-Fusion [6],
Elastic-LiDAR Fusion [5], and Droeschel et al.’s method
[8]. They approximate the shape of the range data as a set
of small disks called a Surfel [19]. A Surfel is a point-
based rendering method [20], which is designed to render
3D shapes with a point cloud instead of a polygon mesh,
and is suitable for GPU processing. It thus allows the
performance of fast point-to-plane ICP [21] via the projective
data association using hardware support.

Deep neural network-based approaches to LiDAR odome-
try [22]–[24] have also come into fashion. LO-Net [22] is an
end-to-end LiDAR-odometry method. Although there is less
variation in the data used for training and testing, it demon-
strates accuracy similar to that of conventional approaches
on a limited dataset. The main computation in LO-Net is
the convolutional tensor operation, which makes it easy to
parallelize point-by-point processing, and is also scalable for
the future evolution of GPUs. However, whether end-to-end

odometry estimation works on unlearned environments and
motion has not been investigated sufficiently, and further
research is needed.

Current LiDAR SLAM methods require roughly O(N)
or O(Nlog(N)) for N points, and theoretically, different
approaches should be introduced to improve the algorithm.
The claim in the present study is simple and straightforward:
The number of points required for ICP-based methods should
be small. Generally, the accuracy of ICP-based methods
degrades as the number of points is reduced; hence, an
approach should be found to solve the trade-off problem
between speed and accuracy.

III. METHOD

In this section, we describe the differences between the
proposed method and the conventional method, LiTAMIN
[2]; the differences are the method used to reduce the number
of points and the cost function used for the ICP.

A. Reduction of the number of points

As shown in Figure 2, LiTAMIN voted a group of input
points into the voxel grids, aligned them using the means
of the voting points, and integrated the point clouds into
the voxel map. The proposed method performs SLAM in
a similar manner, but the difference is that it uses covari-
ance, not just the mean, for the voting results of the input
point groups. Whereas LiTAMIN was a point-to-normal
distribution mapping, the proposed method extends it to
normal distribution-to-normal distribution mapping. This is
intended to improve accuracy by considering the spread of
the distributions. The proposed method increases each voxel
size and reduces the number of points, which significantly
reduces the computational cost. Moreover, it avoids the loss
of accuracy by considering the shape of the distribution
instead of the points.

B. ICP cost function applied with symmetric KL-divergence

Table I shows the cost functions of ICP for existing
methods and the proposed method. The difference between
the proposed method and other methods is that the cost takes
into account not only the distance between the points but
also the shapes of the distributions. Although other methods,
such as NDT [15], GICP [18], and LiTAMIN [2], that take
covariance into account have been proposed, in practice, they
only evaluate the distance by weighting the inverse of the
covariance. The proposed method simultaneously evaluates
the weighted distance in the first term and the difference
in distribution shape in the second term. For example, if
the distances between points are small but the shape of the
distribution does not match, the cost is designed to be large.
This cost was derived from the KL-divergence DKL(p‖q) of
two Gaussian distributions p and q [25], [26]:

DKL(p‖q) =
∫

p(x) log
p(x)
q(x)

dx ∝

(µq−µp)
TC−1

q (µq−µp)+Tr(C−1
q Cp)−d + log

|Cq|
|Cp|

.

(1)

Fig. 2. Overview of our method. The color of the figure on the right shows the normal direction given from normal distributions decomposed using
principal component analysis; the color is similar to that in Figure 1.

TABLE I: Comparison of the ICP cost functions for local approximation with a cluster of normal distributions.

Method ICP cost function per point-assosiation

Standard ICP (q− (Rp+ t))T (q− (Rp+ t))

NDT (q− (Rp+ t))T C−1 (q− (Rp+ t))

Generalized ICP (q− (Rp+ t))T (Cq +RCpRT)−1 (q− (Rp+ t))

LiTAMIN (q− (Rp+ t))T w(C+λ I)−1

‖(C+λ I)−1‖F
(q− (Rp+ t))

LiTAMIN2 (proposed method) wICP

[
(q− (Rp+ t))T (Cq +RCpRT +λ I)−1

‖(Cq +RCpRT +λ I)−1‖F
(q− (Rp+ t))

]
+wCov

[
Tr(RC−1

p RTCq)+Tr(C−1
q RCpRT)−6

]

where µp and µq are means, Cp and Cq are covariance
matrices, Tr(·) is the matrix trace, and d is the dimension of
x. KL-divergence is a measure of the difference between dis-
tributions, which represents not only the difference between
the mean values but also the difference between the shapes
of the distributions. The aim of KL-divergence is to make a
robust registration that takes into account the shape of the
distribution.

KL-divergence is, however, not symmetric with
DKL(p‖q) 6= DKL(q‖p): it is generally considered not to be
a distance. Because ICP is a distance-minimizing algorithm
and requires a more appropriate metric, DSymKL(p‖q) is
used, which introduces the following symmetry in this
study:

DSymKL(p‖q) = (µq−µp)
T (Cq +Cp)

−1(µq−µp)+

Tr(C−1
q Cp)+Tr(C−1

p Cq)−2d.
(2)

Our cost function is derived by applying Frobenius nor-
malization to DSymKL(p‖q) and introducing a rigid body
transformation R and t. To further address the outliers, the
ICP error EICP and distribution shape error ECov are set as
follows:

EICP = (q− (Rp+ t))T Cqp (q− (Rp+ t)) (3)

ECov = (Tr(RC−1
p RTCq)+Tr(C−1

q RCpRT)−6)2, (4)

where

Cqp =
(Cq +RCpRT +λ I)−1

‖(Cq +RCpRT +λ I)−1‖F
.

Additionally, the weights are as follows:

wICP = 1− EICP

EICP +σ2
ICP

, (5)

wCov = 1− ECov

ECov +σ2
Cov

. (6)

Note that ‖·‖F is the Frobenius norm, R and t are estimates
of the rigid body transformation, and σICP and σCov are
acceptable error values. wICP and wCov approach 1 if the
error is less than or equal to an acceptable value, and 0 if it
is greater than or equal to an acceptable value.

In Table I, the first term of the proposed method can be
regarded as the ICP cost considering the covariance of the
two distributions at LiTAMIN. The major difference from
LiTAMIN is the second term that represents the difference
in distribution shape. In this study, this term is introduced
so that accuracy does not decrease, even if the number of
points is greatly reduced because of the large voxel size.
It is possible to calculate only the first term, that is, ICP
cost. Hence, the difference between the case of the first term
alone, and the case of the first and second terms combined
in experiments is investigated.

C. Implementation and parameters

In this study, the Newtonian method was used to optimize
the cost function of the proposed method. Because the second
term of the cost function is not a squared error, it needs
to be found up to the Hessian, and Newtonian optimization
was used rather than the Gaussian–Newtonian method. The
damping factor of the Levenberg–Marquardt method [27]

was not used in this study because the calculations were
stable without it.

The acceptable values of σICP and σCov were empirically
set to 0.5 and 3, respectively. sigmaICP corresponds to the
Mahalanobis distance to Cqp, which means that correspon-
dence points below 0.5 are trusted. σCov corresponds to ECov;
if Cq and RCpRT are identical, ECov =Tr(I)+Tr(I)−6 should
be 0. In DSymKL(p‖q), −2d is a term to make the minimum
value 0 of DSymKL. σCov = 3 was set to allow for about half
the error that would be allowed in the absence of this term.
The parameter lambda of Frobenius normalization was set
to 10−6, as in LiTAMIN.

LiTAMIN used the occupancy probability [28] for weight
w, whereas the proposed method used wICP and wCov instead.
For loop closure, the proposed ICP cost was used; the same
parameters and implementations as in LiTAMIN were used
for the other elements. The corresponding points for ICP
were searched using a kd-tree in addition to LiTAMIN.
Regarding the map representation, voxel maps were used in
addition to LiTAMIN. Voxel maps were used to reduce the
number of normal distributions that make up the map.

LiTAMIN implemented tracking and mapping in separate
threads, but the proposed method combined them in a sin-
gle thread. This is because it had sufficient computational
efficiency, and to reduce the overhead of communication
between threads. Loop closure and the graph optimizer were
implemented similarly to LiTAMIN.

IV. EXPERIMENTS

A. Comparison

Several state-of-the-art methods were selected as the com-
petitors that used different speeding up algorithms, specifi-
cally, LiTAMIN, SuMa, LeGO-LOAM, LOAM, hdl-graph-
slam [3], LO-Net and DeepLO. A detailed evaluation is
provided on the SuMa project page, thus this was referred to
in the study, whereas the computation time was acquired by
the researchers running the open source. The open sources of
LeGO-LOAM, LOAM, and hdl-graph-slam were also used
to obtain the trajectories and to measure the computation
speeds in the following experiments. Regarding LO-Net, the
results in the original paper were used.

Each experiment was conducted using a desktop PC with
an Intel Core i9-9900K with 32 GB RAM and an NVIDIA
GeForce RTX 2080 Ti.

B. Evaluation benchmark and criteria

The KITTI Vision Benchmark was used in the exper-
iments, which contains point clouds captured by an on-
board Velodyne HDL-64E S2 in several environments. It
thus allows the evaluation of the trajectories obtained by any
SLAM methods. The provided point clouds were already
deskewed, thus they were fed directly into the proposed
method and the competitors.

The performance of each method was evaluated based on
the following three criteria:

1) KITTI stats: The KITTI Vision Benchmark [1]
statistics, that is, KITTI stats, were used in the accuracy

evaluation. These criteria enable the evaluation of the
quality of the estimated trajectory using the relative
relations against the ground truth. In this study, the
translation and rotation errors were calculated in that
manner for different lengths, specifically, every 100
m up to 800 m, and the average of the errors was
computed. Code provided by the benchmark was used
to calculate the KITTI stats.

2) Absolute Trajectory Error (ATE): To evaluate the
loop closing performance of each method, the ATE
[29] was also calculated. ATE is an indicator of the
absolute position and attitude error against the ground
truth. The KITTI stats are calculated as an average
of errors in sub-trajectories, which may underrate the
effect of loop closing; however, the ATE allows a
comparison of the entire shape of trajectories modified
by loop closing based on the absolute error evaluation.

3) Total time and frame rate: As an index of the com-
putational efficiency, the total time taken to process all
sequences of the KITTI Vision Benchmark including
the loop closing was calculated. The frame rate of the
odometry was also presented to evaluate the speed of
the position estimation, which may be important for
some real-time applications.

C. Ablation study

The proposed method approximates the sub-point cloud
voted in each voxel to a normal distribution. Because the
voxel size significantly affects performance, the proposed
method was thoroughly evaluated for different voxel sizes, as
shown in Table II. Additionally, Table II shows the average
reduction percentage from the original scan points using
voxelization.

From the KITTI stats, it is not always the case that the finer
the voxel, the better the accuracy. Note that the voxel size
was fixed at 3 meters in the following experiments because
the best performance was achieved with this value.

D. Comparison study

Table III shows a comparison of KITTI stats. For SuMa,
the trajectory datasets, frame-to-frame, frame-to-model, and
frame-to-model with loop closure, obtained from the au-
thors’ project page were compared. For LeGO-LOAM and
hdl graph slam, loop closure was implemented, but because
loop detection did not occur in our experiments, the results
were not listed in Table III. For LOAM, the results of
measurements using open sources in their paper and the
results of the original paper were considered. The statistics
of the individual sequences were listed in the original paper,
but the final resultant KITTI stats were not listed in Table III
because they were not listed in the original paper. LO-Net
was not listed in Table III because statistics for individual
sequences were provided in [22], but the average of all final
error values was not provided.

Table IV represents a comparison of ATEs. The results
for SuMa were evaluated for trajectories taken from the
authors’ project page, in addition to Table II. For LOAM,

-100

0

100

200

300

400

500

-300 -200 -100 0 100 200 300

x[m]

-300 -200 -100 0 100 200 300

x[m]

0

200

400

600

800

1000

-200 0 200 400 600

x[m]

-200 0 200 400 600 800

x[m]

Ground truth LiTAMIN2 (ICP) LiTAMIN2 (ICP+Cov) SuMa (Frame-to-Model) LeGO-LOAM hdl_graph_slam LOAM
y[m]y[m]

KITTI seq.00 w/o loop closure KITTI seq.00 with loop closure KITTI seq.02 w/o loop closure KITTI seq.02 with loop closure

Fig. 3. Comparison of trajectories between GT data and each method.

the results for the open source software are shown. LO-Net
was excluded in Table IV because the results of ATE were
not included in the original paper.

Table V shows the processing time taken to create the map
using each sequence of KITTI and the average frame rate
of the odometry process. The proposed method, LiTAMIN,
and SuMa show the processing time including loop closing
because loop closing in these methods was successful for all
sequences. The SuMa results were obtained on the computer
used in this study using open source because the computer
specification in SuMa’s original paper was different.

Figure 3 shows the comparison of trajectories for each
method. The second and forth figures from the left show the
loop closure results for the proposed method and SuMa, but
not other methods that could not detect loops.

V. DISCUSSION

From the results in Table II, the proposed method was
most accurate when the voxel size was 3 m and ICP+Cov was
used as the cost function. The frame rate of odometry at that
time was 510 fps for the ICP cost alone and 239 fps for the
ICP+Cov cost, which was much faster than the conventional
methods in Table V. This could simply be because the
number of points used for registration was greatly reduced by
voxel voting. Moreover, the proposed method was as accurate
as the most accurate method, SuMa, as can be seen from
Table III, despite the significant decrease in the number of
points. We believe that this is the result of the original design
intention, and the result of taking the shape of the distribution
into account using symmetric KL-divergence.

According to the odometry frame rates in Table II, a
comparison of the case with ICP costs alone and the case
with ICP+Cov costs confirms that the accuracy of the rotation
using Cov costs was slightly higher than the results using
ICP alone. The reason could be that the shape of the normal
distribution was more rotationally constrained. Tr(C−1

q Cp) in
Table I is a cost whose value decreased as the main axes of
the normal distribution coincided, and we believe that this
is also the result of our intention. However, as shown in
the results of the odometry frame rates, the processing time
was about twice as long in terms of calculation cost, so the
ICP cost alone is sufficient if accuracy is not important. The
choice of which cost to use depends on the application.

If the same accuracy as that of LiTAMIN by the conven-
tional method is sufficient, then Table II confirms that the
proposed method could achieve the same level of accuracy
as LiTAMIN, even for voxels with a roughness of about 6 m.
The frame rate of the proposed method exceeded 1000 fps
for the ICP cost only, which is the fastest ever achieved. The
results are applicable to the scale of the KITTI Vision Bench-
mark environment, which is similar to driving on a roadway
outdoors. In indoor and more confined environments, the size
of the voxels should be chosen appropriately.

Table IV is the result of evaluating the consistency of
the entire trajectory. The proposed method achieved better
accuracy than SuMa after loop closing, and the effect of the
loop closing correction was significant. We can confirm that
the proposed method had a relatively large decrease in the
error in the results before and after loop closing for SuMa.
This is because the loop closing method of LiTAMIN, the
predecessor of the proposed method, worked properly, and
the proposed ICP cost used for the detection of the loop
constraint worked properly. This can be confirmed by the
large error reduction in the average of all frames of the
proposed method in comparison with LiTAMIN.

VI. CONCLUSION

In this study, an ICP method using symmetric KL-
divergence was proposed to improve the speed of LiDAR-
based SLAM significantly, and it was compared with
other state-of-the-art SLAM methods. The proposed method
achieved a computational speed of 500 fps to 1000 fps in
the odometry frame rate, with the same level of accuracy as
the other methods, which confirms that the proposed method
is a great step forward from conventional methods. This is
because the number of points used for registration was signif-
icantly reduced by voting the point cloud from LiDAR into
each voxel grid and approximating the voted sub-point cloud
into a single normal distribution. Although the proposed
method reduced the number of points significantly, the ICP
cost of the proposed symmetric KL-divergence allowed the
data to be processed without reducing accuracy. These results
were based on the KITTI Vision Benchmark dataset, and we
believe that we need to investigate how to determine the
appropriate voxel size when the usage environment changes.

TABLE II: Performance table for LiTAMIN2 with loop closure.

Voxel size [m] ICP cost 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10

Total time for all seq. [sec] 3063 566 222 121 80 58 48 41 41 39 39 43 37 38 33 37 34 37 35 35
Odometry frame rate [FPS] LiTMIN2 7.9 45 118 225 363 510 664 814 992 1122 1255 1364 1387 1432 1420 1355 1302 1251 1122 1074
KITTI stats: rotation [deg/100m] ICP 1.51 0.42 0.35 0.37 0.38 0.38 0.40 0.48 0.54 0.61 0.73 0.77 0.90 1.08 1.11 1.34 1.58 1.60 1.80 2.16
KITTI stats: translation [%] 6.01 1.42 1.11 1.00 0.92 0.89 0.88 0.99 1.09 1.36 1.57 1.67 1.88 2.32 2.49 3.26 4.76 4.37 5.52 5.77
Total time for all seq. [sec] 4656 1058 453 251 161 119 94 81 70 65 63 64 69 64 66 68 68 71 80 88
Odometry frame rate [FPS] LiTMIN2 5.3 25 60 110 173 239 308 369 428 470 490 500 498 504 468 449 400 375 327 301
KITTI stats: rotation [deg/100m] ICP+Cov 1.46 0.56 0.38 0.36 0.37 0.33 0.36 0.44 0.50 0.58 0.77 0.85 0.97 1.35 1.36 1.71 1.89 1.94 2.41 2.44
KITTI stats: translation [%] 5.85 1.84 1.24 0.96 0.98 0.85 0.91 0.97 1.11 1.34 1.58 1.75 2.06 2.79 2.87 3.74 4.87 4.84 6.99 7.02
Pointcloud reduction ratio [%] 5.67 2.35 1.37 0.89 0.64 0.50 0.41 0.34 0.29 0.25 0.23 0.20 0.18 0.16 0.15 0.14 0.13 0.12 0.11 0.10

Total time for all seq. is the total processing time against all frames of all sequences. Odometry frame rate is the average frame rate for odometry processing for all frames. KITTI stats is the evaluation value of the KITTI Vision Benchmark

against each voxel size. Point cloud reduction ratio is the ratio from the number of points from original raw scans.

TABLE III: KITTI stats for each SLAM method.

Method Loop Seq. 00 Seq. 01 Seq. 02 Seq. 03 Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 08 Seq. 09 Seq. 10 KITTI stats
(Num. of frames) closure (4541) (1101) (4661) (801) (271) (2761) (1101) (1101) (4071) (1591) (1201) [deg/100m] / [%]

LiTAMIN2 (ICP+Cov) − 0.36/0.78 0.46/2.10 0.37/0.95 0.48/0.96 0.52/1.05 0.31/0.55 0.33/0.55 0.49/0.48 0.35/1.01 0.40/0.69 0.47/0.80 0.38 / 0.88
LiTAMIN2 (ICP+Cov) X 0.28/0.70 0.46/2.10 0.32/0.98 0.48/0.96 0.52/1.05 0.25/0.45 0.34/0.59 0.32/0.44 0.29/0.95 0.40/0.69 0.47/0.80 0.33 / 0.85

LiTAMIN2 (ICP) − 0.42/0.75 0.40/1.88 0.45/0.99 0.43/0.84 0.41/0.90 0.32/0.74 0.23/0.45 0.57/0.55 0.55/1.25 0.32/0.74 0.59/1.36 0.45 / 0.95
LiTAMIN2 (ICP) X 0.33/0.70 0.40/1.88 0.37/0.92 0.43/0.84 0.41/0.90 0.28/0.50 0.31/0.50 0.34/0.43 0.48/1.16 0.27/0.81 0.59/1.36 0.38 / 0.89

LiTAMIN − 0.46/0.91 0.45/11.3 0.46/1.30 0.56/1.17 0.47/18.7 0.39/0.75 0.29/0.59 0.34/0.48 0.42/1.04 0.45/0.99 0.90/3.78 0.46 / 1.60
LiTAMIN X 0.41/0.95 0.45/11.3 0.45/1.25 0.56/1.17 0.47/18.7 0.35/0.70 0.32/0.63 0.33/0.45 0.37/1.03 0.43/1.06 0.90/3.78 0.43 / 1.59

SuMa (Frame-to-Frame) − 0.92/2.11 1.21/4.31 0.78/2.32 0.73/1.63 1.05/11.9 0.76/1.46 0.57/0.89 1.09/1.87 0.95/2.56 0.76/1.99 0.94/2.15 0.88 / 2.19
SuMa (Frame-to-Model) − 0.30/0.72 0.47/1.77 0.39/1.06 0.46/0.57 0.27/0.39 0.23/0.50 0.14/0.39 0.33/0.37 0.35/1.01 0.25/0.47 0.27/0.69 0.33 / 0.84
SuMa (Frame-to-Model) X 0.22/0.64 0.47/1.77 0.41/1.23 0.46/0.57 0.27/0.39 0.20/0.42 0.28/0.51 0.52/0.65 0.35/1.15 0.20/0.57 0.27/0.69 0.32 / 0.89

LeGO-LOAM − 1.05/2.17 1.02/13.4 1.01/2.17 1.18/2.34 1.01/1.27 0.74/1.28 0.63/1.06 0.81/1.12 0.94/1.99 0.98/1.97 0.92/2.21 1.00 / 2.49
hdl graph slam − 1.00/3.92 7.62/93.5 1.84/11.2 0.92/1.71 1.21/96.0 0.69/1.41 0.94/11.1 1.10/1.28 0.99/2.17 0.93/4.32 0.75/2.36 1.49 / 9.57

LOAM − 0.91/1.92 0.71/2.69 1.49/4.05 0.63/1.38 0.66/1.21 0.59/1.17 0.36/0.82 0.62/0.91 0.62/1.43 0.57/1.21 0.61/1.53 0.90 / 2.13
LOAM (from [10]) − - /0.78 - /1.43 - /0.92 - /0.86 - /0.71 - /0.57 - /0.65 - /0.63 - /1.12 - /0.77 - /0.79 - / -

LO-Net (Frame-to-Frame) − 0.72/1.47 0.47/1.36 0.71/1.52 0.66/1.03 0.65/0.51 0.69/1.04 0.50/0.71 0.89/1.70 0.77/2.12 0.58/1.37 0.93/1.80 - / -
LO-Net (Frame-to-Model) − 0.42/0.78 0.40/1.42 0.45/1.01 0.59/0.73 0.54/0.56 0.35/0.62 0.33/0.55 0.45/0.56 0.43/1.08 0.38/0.77 0.41/0.92 - / -

DeepLO (from [23]) − - / - - / - - / - - / - - / - - / - - / - - / - - / - 1.95/4.87 1.83/5.02 - / -

For LiTAMIN2, the size of the voxel was 3 m from the best accuracy result in Table II. The marks Xand − represent with (X) and without (−) loop closure, respectively, for each method.

TABLE IV: Absolute trajectory error for each SLAM method.

Method Loop Seq. 00 Seq. 01 Seq. 02 Seq. 03 Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 08 Seq. 09 Seq. 10 Avg. of all frames
(Num. of frames) closure (4541) (1101) (4661) (801) (271) (2761) (1101) (1101) (4071) (1591) (1201) [deg] / [m]

LiTAMIN2 (ICP+Cov) − 1.6/5.8 3.5/15.9 2.7/10.7 2.6/0.8 2.3/0.7 1.1/2.4 1.1/0.9 1.0/0.6 1.3/2.5 1.7/2.1 1.2/1.0 1.8 / 5.1
LiTAMIN2 (ICP+Cov) X 0.8/1.3 3.5/15.9 1.3/3.2 2.6/0.8 2.3/0.7 0.7/0.6 0.8/0.8 0.6/0.5 0.9/2.1 1.7/2.1 1.2/1.0 1.2 / 2.4

LiTAMIN2 (ICP) − 1.8/5.4 3.1/13.8 3.4/12.1 2.4/0.7 1.9/0.6 1.4/3.6 0.7/0.7 1.3/0.9 3.0/5.9 1.9/2.8 1.5/1.8 2.3 / 6.0
LiTAMIN2 (ICP) X 0.8/1.2 3.1/13.8 1.3/3.0 2.4/0.7 1.9/0.6 0.7/0.7 0.8/0.6 0.6/0.4 2.2/4.5 0.8/1.3 1.5/1.8 1.3 / 2.6

LiTAMIN − 2.0/4.7 3.0/84.3 2.4/9.7 3.4/0.8 1.4/21.3 1.4/2.3 0.7/0.9 0.7/0.5 1.9/3.5 1.4/1.6 1.7/1.7 1.9 / 8.3
LiTAMIN X 1.1/1.5 3.0/84.3 1.8/3.7 3.4/0.8 1.4/21.3 0.9/1.0 0.8/0.8 0.6/0.3 1.6/2.8 1.3/1.4 1.7/1.7 1.5 / 6.2

SuMa (Frame-to-Frame) − 6.4/19.7 8.2/34.9 5.4/21.3 4.1/1.2 3.4/13.4 2.9/5.1 1.5/2.0 2.1/2.9 6.2/15.9 2.4/5.0 2.4/3.4 4.8 / 14.1
SuMa (Frame-to-Model) − 1.0/2.9 3.2/13.8 2.2/8.4 1.5/0.9 1.8/0.4 0.7/1.2 0.4/0.4 0.7/0.5 1.5/2.8 1.1/2.9 0.8/1.3 1.4 / 3.9
SuMa (Frame-to-Model) X 0.7/1.0 3.2/13.8 1.7/7.1 1.5/0.9 1.8/0.4 0.5/0.6 0.7/0.6 1.1/1.0 1.2/3.4 0.8/1.1 0.8/1.3 1.1 / 3.2

LeGO-LOAM − 2.8/6.3 3.8/119.4 4.1/14.7 4.1/0.9 3.3/0.8 1.9/2.8 1.4/0.8 1.5/0.7 2.5/3.5 2.2/2.1 1.9/1.8 2.8 / 11.1
hdl graph slam − 5.4/41.8 34.0/635.8 22.3/153.0 2.3/1.0 3.4/93.4 2.5/5.7 3.3/43.0 2.2/1.6 6.2/13.8 4.6/15.9 1.8/3.5 9.3 / 76.7

LOAM − 5.8/19.4 6.1/21.0 21.7/111.6 3.3/1.0 2.2/0.5 2.2/4.6 0.9/1.1 1.2/1.3 3.0/6.7 1.9/5.3 1.5/1.9 7.0 / 29.7

For LiTAMIN2, the size of the voxel was 3 m from the best accuracy result in Table II. The marks Xand − represent with (X) and without (−) loop closure, respectively, for each method.

TABLE V: Computation time for building a map, and the odometry frame rate.

Method Loop Seq. 00 Seq. 01 Seq. 02 Seq. 03 Seq. 04 Seq. 05 Seq. 06 Seq. 07 Seq. 08 Seq. 09 Seq. 10 Total time / Avg. rate
(Num. of frames) closure (4541) (1101) (4661) (801) (271) (2761) (1101) (1101) (4071) (1591) (1201) [sec] / [FPS]

LiTAMIN2 (ICP) X 8.4/597 6.1/189 13.3/545 2.1/434 1.2/282 4.9/610 3.4/370 2.2/625 9.9/431 4.2/432 2.0/599 58 / 508.9
LiTAMIN2 (ICP+Cov) X 15.9/299 15.9/70.1 24.2/243 4.4/193 2.6/109 9.4/305 7.3/159 3.8/323 21.7/191 9.4/181 4.4/294 119 / 238.8

LiTAMIN X 87.9/53.0 70.4/15.8 108.1/44.0 18.9/43.4 10.1/27.3 53.3/53.0 32.7/34.4 20.2/56.2 97.4/42.9 43.3/37.5 23.5/52.5 566 / 45.2
SuMa (Frame-to-Model) X 90.1/55.1 20.2/57.1 77.6/65.7 12.5/65.6 5.4/51.9 57.2/54.6 21.4/55.4 18.7/65.7 74.9/58.0 31.4/52.5 22.4/55.2 432 / 58.4

LeGO-LOAM − 78.4/69.9 27.5/69.4 91.8/64.5 16.5/62.8 5.4/64.9 50.1/67.7 24.7/64.9 17.5/73.4 80.1/65.9 32.7/63.2 21.1/66.8 445 / 66.1
hdl graph slam − 800/5.7 197/5.6 1107/4.2 163/4.9 53.1/5.1 596/4.6 293/3.8 209/5.3 819/5.0 440/3.6 252/4.8 4929 / 4.8

LOAM − 414/11.0 83.2/13.5 448/10.4 75.2/10.4 24.6/10.2 266/10.3 102/10.6 97.6/11.1 383/10.6 151/10.4 114/10.4 2156 / 10.7

For LiTAMIN2, the size of the voxel was 3 m from the best accuracy result in Table II. The marks Xand − represent with (X) and without (−) loop closure, respectively, for each method.

REFERENCES

[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

[2] M. Yokozuka, K. Koide, S. Oishi, and A. Banno, “LiTAMIN: Li-
DAR Based Tracking and MappINg by Stabilized ICP for Geometry
Approximation with Normal Distributions,” in Proc. of International
Conference on Intelligent Robots and Systems (IROS), 2020.

[3] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional
LIDAR-based system for long-term and wide-area people behavior
measurement,” International Journal of Advanced Robotic Systems,
2019.

[4] J. Behley and C. Stachniss, “Efficient Surfel-Based SLAM using 3D
Laser Range Data in Urban Environments,” in Proc. of Robotics:
Science and Systems (RSS), 2018.

[5] C. Park, P. Moghadam, S. Kim, A. Elfes, C. Fookes, and S. Srid-
haran, “Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time
SLAM,” in Proc. of International Conference on Robotics and Au-
tomation (ICRA), 2017.

[6] T. Whelan, S. Leutenegger, R. Moreno, B. Glocker, and A. Davison,
“ElasticFusion: Dense SLAM Without A Pose Graph,” in Proc. of
Robotics: Science and Systems (RSS), 2015.

[7] F. Moosmann and C. Stiller, “Velodyne SLAM,” in Proc. of the IEEE
Intelligent Vehicles Symposium (IV), 2011.

[8] D. Droeschel and S. Behnke, “Efficient Continuous-time SLAM for
3D Lidar-based Online Mapping,” in Proc. of International Conference
on Robotics and Automation (ICRA), 2018.

[9] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in
Real-time,” in Proc. of Robotics: Science and Systems (RSS), 2014.

[10] J. Zhang and S. Singh, “Low-drift and Real-time Lidar Odometry and
Mapping,” Autonomous Robots, vol. 41, no. 2, p. 401–416, February
2017.

[11] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and Ground-
Optimized Lidar Odometry and Mapping on Variable Terrain,” in Proc.
of International Conference on Intelligent Robots and Systems (IROS),
2018.

[12] H. Ye, Y. Chen, and M. Liu, “Tightly Coupled 3D Lidar Inertial
Odometry and Mapping,” in Proc. of International Conference on
Robotics and Automation (ICRA), 2019.

[13] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and R. Daniela,
“LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing
and Mapping,” in Proc. of International Conference on Intelligent
Robots and Systems (IROS), 2020.

[14] C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu, “LINS:
A Lidar-Inertial State Estimator for Robust and Efficient Navigation,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020.

[15] P. Biber and W. Strasser, “The normal distributions transform: a new
approach to laser scan matching,” in Proc. of International Conference
on Intelligent Robots and Systems (IROS), 2003.

[16] E. Takeuchi and T. Tsubouchi, “A 3-D Scan Matching using Improved
3-D Normal Distributions Transform for Mobile Robotic Mapping,” in
Proc. of International Conference on Intelligent Robots and Systems
(IROS), 2006.

[17] M. Magnusson, A. Nuchter, C. Lorken, A. J. Lilienthal, and
J. Hertzberg, “Evaluation of 3D registration reliability and speed -
A comparison of ICP and NDT,” in Proc. of International Conference
on Robotics and Automation (ICRA), 2009.

[18] A. Segal, D. Hähnel, and S. Thrun, “Generalized-ICP,” in Proc. of
Robotics: Science and Systems (RSS), 2009.

[19] H. Pfister, M. Zwickery, J. van Baar, and M. Grossy, “Surfels: Surface
Elements as Rendering Primitives,” in ACM Transactions on Graphics
(Proc. ACM SIGGRAPH), 2000.

[20] M. Botsch and L. P. Kobbelt, “High-quality point-based rendering on
modern GPUs,” in 11th Pacific Conference onComputer Graphics and
Applications, 2003. Proceedings., 2003.

[21] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” Proc. of International Conference on 3-D Digital Imaging and
Modeling (3DIM), 2001.

[22] Q. Li, S. Chen, C. Wang, X. Li, C. Wen, M. Cheng, and J. Li, “LO-Net:
Deep Real-time Lidar Odometry,” in Proc. of International Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[23] Y. Cho, G. Kim, and A. Kim, “Unsupervised Geometry-Aware Deep
LiDAR Odometry,” in Proc. of International Conference on Robotics
and Automation (ICRA), 2020.

[24] Y. Cho, G. Kim, and A. Kim, “DeepLO: Geometry-Aware Deep
LiDAR Odometry,” in arXiv preprint arXiv:1902.10562, 2019.

[25] C. M. Bishop, Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag,
2006.

[26] J. Goldberger, S. Gordon, and H. Greenspan, “An efficient image
similarity measure based on approximations of KL-divergence be-
tween two gaussian mixtures,” in Proc. of International Conference
on Computer Vision (ICCV), 2003.

[27] M. I. Lourakis and A. A. Argyros, “SBA: A Software Package
for Generic Sparse Bundle Adjustment,” ACM Trans. Math.Software,
2009.

[28] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT Press,
2005.

[29] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2018.

	I Introduction
	II Related work
	III Method
	III-A Reduction of the number of points
	III-B ICP cost function applied with symmetric KL-divergence
	III-C Implementation and parameters

	IV Experiments
	IV-A Comparison
	IV-B Evaluation benchmark and criteria
	IV-C Ablation study
	IV-D Comparison study

	V Discussion
	VI Conclusion
	References

