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Abstract— This study presents a framework, L-C*, for re-
silient and lightweight direct visual localization, employing
a loosely coupled fusion of visual and inertial data. Unlike
indirect methods, direct visual localization facilitates accurate
pose estimation on general color three-dimensional maps that
are not tailored for visual localization. However, it suffers from
temporal localization failures and high computational costs
for real-time applications. For long-term and real-time visual
localization, we developed an L-C* that incorporates direct
visual localization C* in a visual-inertial loose coupling. By
capturing ego-motion via visual-inertial odometry to interpolate
global pose estimates, the framework allows for a significant
reduction in the frequency of demanding global localization,
thereby facilitating lightweight but reliable visual localization.
In addition, forming a closed loop that feeds the latest pose
estimate to the visual localization component as an initial guess
for the next pose inference renders the system highly robust.
A quantitative evaluation of a simulation dataset demonstrated
the accuracy and efficiency of the proposed framework. Ex-
periments using smartphone sensors also demonstrated the
robustness and resiliency of L-C* in real-world situations.

I. INTRODUCTION

Visual localization (visual positioning system: VPS) is
increasingly used in various applications, such as vehicle
navigation for transportation and building inspection. Its easy
setup is attractive in terms of the sensor cost and payload,
resulting in application platforms ranging from autonomous
systems to gaming services on smartphones. The principal
algorithm infers an agile monocular camera pose in a given
three-dimensional (3D) map from the camera view and can
be divided into two types: indirect methods via feature point
matching and direct methods via appearance comparison.
Although recent methods of both types provide accurate
and robust pose estimates [1] [2], direct methods have a
significant advantage in terms of generality in that they
operate on general color 3D maps that are not tailored for
visual localization. Because city- or national-scale georef-
erenced 3D map data (point clouds and textured meshes)
are commonly distributed, for instance, 3DCityDB [3] and
CityGML 3.0 [4], direct methods play a central role in
flexible localization systems for consumer devices. Despite
its high demand, pure direct visual localization still suffers
from temporal failure and high computational costs for real-
time applications, which are serious problems in long-term
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Fig. 1. 6-DoF global localization using a camera and an IMU embedded
on a smartphone. Loose coupling of two types of pose estimates, low-rate
direct global visual localization (C* on server side) and high-rate local
ego-motion (ARCore on edge side), facilitates real-time and resilient long-
term visual localization. See https://youtu.be/1jdDb7_c1Ic the
attached video for more information.

localization.

The design of a multimodal localization framework that
fuses complementary sensor observations is a promising
solution for the ubiquitous system over usage and environ-
ments. This strategy is popular in state-of-the-art LiDAR
SLAMs for avoiding geometric degeneracy [5] [6], and
similar approaches can be used in visual localization for
stable camera positioning [7]. Aiming toward a lightweight
localization system, our interest here is the design of a
sensor fusion architecture that requires less computational
cost while retaining the localization quality, which facilitates
mobile VPS on small computers.

In this study, we propose a sensor fusion framework
for robust and lightweight visual localization. In a loose-
coupling manner, the framework complementarily combines
two pose factors: low-rate global poses and high-rate ego
motions. Specifically, occasional global localization by C*
[8] provides pose factors of accurate global pose estimates
while visual-inertial odometry factors by VINS-Mono [9] or



ARCore1 enable capturing of the local motions and track
the latest pose in real-time. This relieves us of the frequent
process of demanding visual localization, resulting in a
lightweight system that is executable on mid- to low-end
computers.

The main contributions of this study are as follows:
• A sensor fusion framework, L-C*, for lightweight visual

localization is proposed to enable 6-DoF full tracking
of camera pose in a given 3D color map. While the
complementary data fusion reduces the computational
cost, forming a closed loop that feeds the latest pose
estimate to the visual localization component as an
initial guess for the next pose inference significantly
makes the system robust.

• The architecture mainly comprises independent global
and local tracking modules, and thus is suitable for
edge-cloud computing, for instance, the case where ego-
motion is estimated on an edge device while global pose
is calculated on a server side.

• Detailed performance evaluations on simulation and real
datasets are reported. The results reveal the advantages
of L-C*; it enables maintenance of the localization
accuracy even with low-rate global pose feeding while
improving the resiliency in temporal failure of visual
localization, resulting in stable and long-term visual
localization compared with pure monocular localization.

II. RELATED WORK

Visual odometry / Visual SLAM Visual odometry and
SLAM track the camera motion by simultaneously mapping
a scene and localizing its pose. The map points are recon-
structed via triangulation between pixels or feature points
in adjacent frames, and reprojection of the “landmarks”
allows estimation of the latest camera pose. By repeating this
alternate process, these methods allow us to determine the
SE(3) sensor motion in the coordinate system. Numerous
sophisticated techniques have been developed, e.g., ORB-
SLAM3 [1], OpenVINS [10], and DM-VIO [11], and apps
are available on small computers or smartphones, such as
ARCore and ARKit2.

Visual localization Given a query image, visual localiza-
tion infers a 6-DoF camera pose in a 3D map preconstructed
using a camera. This process is equivalent to the front end
of visual odometry / SLAM. Specifically, classical visual
localization frameworks [12] first construct a feature map
using visual SLAM or SfM with image descriptors. Next,
they extract the same image features from the query image
to perform 2D–3D association, and estimate the camera pose
by minimizing the sum of the reprojection errors on the
image plane. Although they provide lightweight visual local-
ization, they operate only on feature maps. Direct methods
facilitate the same function based on photometric errors and
potentially operate on any color 3D maps. However, direct
appearance comparison often suffers from lighting conditions

1https://developers.google.com/ar
2https://developer.apple.com/augmented-reality

or severe appearance changes. Some techniques have been
proposed to overcome this problem [13] [14], as well as C*
[8], which employs an information-theoretic metric for 6-
DoF global localization in general photorealistic 3D maps.
C* facilitates visual global localization that is highly accurate
and robust to intensity variations between varying sensor
properties and modalities. However, it requires relatively high
graphics processing unit (GPU) computational power and can
fail in ill-conditioned situations.

Visual-inertial fusion Sensor fusion is a promising ap-
proach for fail-safe systems. In the context of visual local-
ization, fusing complementary observations from the vision
sensor and IMU makes the system robust [7]. In this study,
assuming various system setups, for instance, a single com-
puter or an edge-cloud computing system, we developed a
visual-inertial global localization framework L-C* in a loose-
coupling manner, which allows module-wise system design,
as described later.

Pose regression Another attractive approach for monoc-
ular camera localization is pose regression. Deep learning
facilitates robust end-to-end pose estimation from camera
images, and various methods have been proposed [15].
However, as reported in [16], neural pose regression tends
to be less competitive than traditional visual localization
frameworks in terms of accuracy. Recently, another approach,
scene coordinate regression, has been extensively studied and
has achieved state-of-the-art localization [17]. Despite their
effectiveness, learning-based approaches require demanding
preprocessing to collect a set of image samples with ground
truth poses in the map, which may incur a causality dilemma.
For ubiquitous systems, an easier setup is preferred for real-
time and real-world applications.

III. PROPOSED METHOD

A. Notation

In the following description, a homogeneous transforma-
tion that transforms a 3D point from frame F to frame G
is denoted by TG

F ∈ SE(3). The frames of the camera, IMU,
and odometry at timestamp ti are denoted by Vi, Ii, and Oi
respectively, whereas the static world frame is denoted by W .
Notably, the extrinsic parameters of frames V , I, and O are
known via a calibration process and are assumed to be static.
In addition, we define a sensor body frame Bi to represent
all observations in a single coordinate system for simplicity.
Thus, the state xi to be estimated at timestamp ti is expressed
as follows:

xi = TBi
W = [Ri,vi] , (1)

where Ri ∈ SO(3) denotes the rotation matrix of the body
frame in world coordinates and vi ∈ R3 denotes the trans-
lation. As explained later, we rely on an external module
of visual-inertial odometry to extract the ego-motion factors.
Thus, the biases of the accelerometer bacci and gyroscope
bωi of the IMU are not estimated explicitly in this frame-
work. Notably, IMU preintegration [18] can be used as an
alternative to odometry, which constrains the relative motion
using only IMU data. In this case, the biases bacci , bωi , and
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Fig. 2. Architecture of L-C*: Visual-inertial odometry module computes
ego-motions based on incoming IMU and camera data, while the direct
visual localization module localizes the global pose by comparing the view
and the appearance of the given 3D map. Finally, the loose-coupling module
fuses both estimates managing a factor graph and publishes a 6-DoF fused
pose. Higher-rate control output is computed via short-term visual-inertial
odometry for real-time applications and the pose feedback as the next initial
guess of visual localization.
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Fig. 3. Factor graph of our visual-inertial loose coupling for direct visual
localization: Starting from the given initial pose, the graph incorporates
global pose factors when provided by the direct visual localization. The
relation between two global pose factors is determined by extracting ego-
motion via visual-inertial odometry as a relative pose factor.

velocity ei ∈R3 should be included in the state xi for explicit
optimization.

B. Factor graph

Fig. 2 illustrates an overview of the proposed fusion
framework. Given an initial pose in a prior 3D map, the
direct visual localization component begins to infer the
current vision pose TVi

W by comparing the appearance of
the 3D prior map with a scene image St . Simultaneously,
the visual-inertial odometry component captures the local
movement TVi

Vi−1
at a higher rate. Generally, the odometry

accumulates estimation errors over time, which incurs pose
drift; however, the momentary motion estimate is assumed to
be accurate. Because L-C* employs a sectional ego-motion
estimate to bridge two global poses, it inherently enables
drift-free global localization.

The flow of L-C* is expressed as a factor graph, as
shown in Fig.3. To maintain and optimize the nonlinear
factor graph, we use GTSAM library [19]. Specifically, the
proposed framework relies on incremental smoothing and
mapping (iSAM2) and variable elimination [20] for fixed-
lag smoothing to ensure real-time processing. The details of
the factors provided by the key blocks in Fig.2 are explained
in the following subsections:

C. Direct visual localization for global pose estimation
Given a current image St , the direct visual localization

block provides a prior factor for the global pose of the
monocular camera in the 3D map. To perform localization in
general photorealistic 3D maps that are not tailored to visual
localization similar to feature maps in indirect methods, we
employed our previous study C* [8], a direct localization
method that evaluates the appearance similarity between the
current camera view and 3D map. This facilitates highly
accurate visual localization and is robust against changes in
appearance / illumination.

Specifically, C* estimates the camera pose TVi
W using

SE(3) local tracking against a synthetic key frame Sk ren-
dered from a known viewpoint TK

W for efficient localization.
Because the keyframe comprises a color image Sk and depth
map Dk, it can be regarded as a submap of the provided 3D
map, and a color 3D point iPk is reconstructed from each
pixel iu=(iu,i v)∈ Sk. Given the relative pose TVi

K , iPK can be
reprojected to the current image plane as iu′ = π(TVi

K · iPK),
where π : R3 7→ R2 denotes the camera projection model
with the known intrinsic parameters. This process enables us
to find the pixel-wise correspondences between the current
image St and keyframe image Sk, and the optimal relative
pose T̂Vi

K is obtained by minimizing the sum of the per-
pixel differences. For a robust appearance comparison, C*
leverages the normalized information distance (NID) [21],
and the cost function to be minimized is defined as follows:

T̂Vi
K = argmin

TVi
K

δ INID

(
St ,Sk,T

Vi
K

)
, (2)
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(
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Vi
K

)
≡
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(
TVi

K

)
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(
TVi

K

)
Ht,k

(
TVi

K

) . (3)

where Ht,k and It,k denote the joint entropy and mutual
information, respectively, and are calculated based on the
color co-occurrence between St and Sk as follows:

H(St) = −
n

∑
x=1

pt(x) log(pt(x)) , (4)

H(St ,Sk) = −
n

∑
x=1

n

∑
y=1

pt,k(x,y) log
(

pt,k(x,y)
)
, (5)

I(St ;Sk) = H(St)+H(Sk)−H(St ,Sk), (6)

where pt,k denotes the joint probability of an n × n-
dimensional histogram, and the marginal probabilities pt and
pk are derived from pt,k.

The Broyden–Fletcher–Goldfarb–Shannon (BFGS) algo-
rithm was employed to determine the optimal relative pose
TVi

K . Starting from a given initial guess or a previous estimate,
BFGS iteratively solves Eq.2 using the Jacobian of the NID.

(i+1)TVi
K = (i)TVi

K −αB−1
k

dδ INID

d(i)TVi
K

,

dδ INID

dTVi
K

=

(
dHt,k

dTVi
K

− dIt,k
dTVi

K

)
Ht,k −

(
Ht,k − It;k

) dHt,k

dTVi
K

H2
t,k

.

(7)



Based on the optimal relative pose T̂Vi
K , we obtain the global

pose of the vision as TVi
W = T̂Vi

K ◦ TK
W and feed it to the

nonlinear factor graph as a new SE(3) global pose factor.

D. Visual-inertial odometry for ego-motion extraction

To extract the factor of local motion bridging camera
poses at two time points, we employ visual-inertial odometry
estimation. Visual odometry / visual SLAM allows us to
track camera motion by simultaneously reconstructing an
environmental map and localizing its pose via scene cloud
reprojection. Because it only provides Sim3 pose of the
sensor with an undetermined scale, we used visual–inertial
odometry / SLAM to obtain the motion TOi

W ∈ SE(3). Specif-
ically, in the evaluation and experiments described in Section
IV, we employed VINS-Mono [9] and AR core for odometry
measurements.

To bridge successive global poses, the framework extracts
relative motion during the time span between poses using
odometry. Visual-inertial odometry provides sequential poses
in the odometry coordinate system at a higher rate. When
the global pose factors arrive at timestamps ti−1 and ti, the
relative transformation factor between states xi−1 and xi can
be extracted as follows:

TBi
Bi−1

= TBi
Oi
∗TOi

W ∗TW
Oi−1

∗TOi−1
Bi−1

. (8)

Note that the transformation from body frame to odometry
frame TBi

Oi
is assumed to be static in our impelentation.

E. Control output and closed loop

The proposed framework provides fused pose outputs at
the maximum rate of visual localization. The frequency of
visual localization can be significantly low (several hertz);
however, depending on the application, higher-rate outputs
are required, for instance, real-time robot control. To obtain
the control output, we estimated the latest camera pose by
calculating the short-term visual-inertial odometry starting
from the last fused pose, as shown in Fig.2. As mentioned in
III-A, IMU dynamics-based motion prediction is also useful
for capturing momentary motion at much higher IMU rates,
for instance, several hundred Hertz.

This pose “prediction” significantly stabilizes the visual
localization component. C* [8] localizes a monocular camera
by repeating keyframe-based local tracking, and every itera-
tion of the pose update begins from the last estimate. Because
the NID metric used in the algorithm has an extremely
small convergence basin, a poor initial guess that is far
from the optimal value often leads to localization failure.
Thus, to maintain the health of the localizer, the frequency
should be maintained at the maximum, which results in
accurate but demanding visual localization. However, reliable
pose prediction can overcome the drawback by forming a
closed loop (Fig.2) that feeds the predicted pose into C* as
the initial guess of the next optimization. This significantly
stabilizes the visual localization even in low-rates, which
further makes the entire system resilient to temporal failure
of visual localization and prevents an loss of the localizer.

IV. EXPERIMENTS

In this section, the performance of the proposed framework
is examined from several perspectives. First, we conducted
tryouts on the simulation data to quantitatively evaluate
the performance of L-C*. For comparison, the localization
results from our previous study C* [8] were also evaluated,
which revealed the accuracy, robustness, and efficiency of the
loose coupling of different observations against monocular
camera localization. We also demonstrated the capability
of localization in real situations, revealing its usability and
applicability.

A. Setup

Dataset: For quantitative evaluation, we used the Replica
Dataset [22] that provides a set of photorealistic color 3D
models of different rooms. We defined random trajectories
in 3D models and generated sequences of monocular camera
images for localization. IMU data were synthesized simul-
taneously by referring to the spec of ADIS16448 (Isensor
Co., Ltd.) used in EuRoC dataset to calculate visual-inertial
odometry.

Next, 3D mesh maps were constructed for real-world
demonstrations. To construct 3D mesh models of real en-
vironments, Focus3D (FARO Technologies, Inc.), which
enables the capture of highly-dense colored 3D points,
was used. The spherical scan also allowed us to generate
triangular meshes by simply connecting adjacent points with
a certain threshold length. Camera and IMU data sequences
were captured using a Zenfone 8 (ASUSTek Computer, Inc.)
while moving dynamically.

Computation The visual localization component (C*)
relies heavily on GPU processing; thus, we used a laptop PC
with an NVIDIA GeForce RTX 2070 Super for subsequent
evaluations and experiments. Notably, although C* requires
relatively high GPU power, it runs faster than 30 Hz against
the VGA video stream on the graphics card. L-C* further
reduces the entire computational cost of visual localization,
which enables various system setups including edge clouds,
remote processing, and stand-alone computing, depending on
the machine specs (Fig.4). Specifically, quantitative evalua-
tion was performed using a laptop (Fig.4(c)) while we used a
Zenfone 8 and the laptop for edge- and server-side computing
(Fig.4(a)) in the live demonstration.

B. Quantitative evaluation in the Replica Dataset

To evaluate the performance of L-C* quantitatively, we
used two photorealistic 3D models from the Replica Dataset
[22] (Fig.5). Specifically, we selected “apartment 0” and
“frl apartment 1” that are the largest models in the dataset
for longer trajectory generation including both translational
and rotational motions. As explained in IV-A, the test image
sequences were synthesized along predefined trajectories in
the corresponding 3D models. To further test the resiliency
in temporal localization failure, we prepared a test image
sequence in “frl apartment 2”, where pieces of the furniture
were rearranged from frl apartment 1, and performed the



TABLE I
LOCALIZATION RESULTS ON REPLICA DATASET: ABSOLUTE TRAJECTORY ERRORS [M] AND RELATIVE TRAJECTORY ERRORS [M] (PER 10 M) ARE

SHOWN.

Map Image Hz C* [8] L-C* /wo loop L-C* /w loop (proposed)
ATE [m] RTE [m] ATE [m] RTE [m] ATE [m] RTE [m]

30 0.0030±0.0015 0.0072±0.0032 0.0034±0.0016 0.0080±0.0041 0.0034±0.0016 0.0080±0.0041
apartment 0 10 0.0039±0.0027 0.0092±0.0058 0.0061±0.0033 0.011±0.0052 0.0060±0.0033 0.011±0.0051

3 1.8±0.92 2.5±1.6 1.8±0.90 2.2±1.4 0.016±0.0097 0.024±0.012
1 2.2±0.75 3.8±1.6 2.1±0.65 3.8±1.5 0.044±0.029 0.10±0.081

30 0.87±0.63 1.7±1.4 0.87±0.62 1.8±1.4 0.084±0.065 0.13±0.096
frl apartment 1† 10 2.4±1.2 4.7±1.8 2.4±1.2 4.1±1.2 0.055±0.038 0.09±0.059

3 2.3±0.90 4.2±1.5 2.3±0.93 4.3±1.3 0.074±0.048 0.11±0.071
1 2.4±1.1 - 2.3±1.1 3.4±0.93 0.14±0.074 0.25±0.14

†: The image sequence is captured in frl apartment 2 where pieces of the furniture are rearranged from frl apartment 1 to examine the robustness against
appearance changes.

TABLE II
LOCALIZATION SUCCESS RATE ON REPLICA DATASET (THE VALID

TRACKING DURATION UNTIL ATE EXCEEDS 1.0 [M]) [%] .

Image Success rate [%]
Map Hz C* [8] L-C* /wo loop L-C* /w loop

(proposed)
30 100 100 100

apartment 0 10 100 100 100
3 3.00 20.6 100
1 0 0 100
30 60.5 58.2 100

frl apartment 1 10 0 0 100
3 0 0 100
1 0 0 100
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Map renderer
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(a) Edge-cloud

Map renderer
(Keyframe server)

Visual-inertial
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Direct visual localization

(c) Stand-alone computing

Visual-inertial
odometry (VINS-Mono)

Direct visual localization

(b) Remote processing 

Fig. 4. Different system setup: Lightweight visual localization by L-C*
enables a variety of computing styles, e.g., edge-cloud, remote processing,
and stand-alone computing.

localization tryout in frl apartment 1 to examine the robust-
ness against appearance changes. Starting from an initial
guess manually provided via our OpenGL viewer, the camera
pose of each test image was estimated using the proposed
method L-C*. We also tested C* [8] and L-C* without a
feedback loop as competitors to demonstrate the validity of
the proposed framework.

Table I lists the results of the quantitative evaluation. The
estimated trajectories were evaluated as absolute trajectory
error (ATE) [m] and relative trajectory error (RTE) [m] per
10m. All the methods successfully estimated accurate camera
poses in apartment 0 when the image stream was fed at
high rates (30 and 10 Hz). However, when the frequency

TABLE III
LOCALIZATION SUCCESS RATE ON REAL DATASET (THE DURATION OF

VALID TRACKING) [%] .

Image Success rate [%]
Map Hz C* [8] L-C* /wo loop L-C* /w loop

(proposed)
30 58.8 65.4 100

indoor 10 14.5 18.2 100
3 14.2 17.3 100
1 13.3 13.3 100

30 9.71 10.0 100
outdoor 10 6.69 8.53 100

3 5.35 6.02 100
1 6.02 7.70 100

decreased, only L-C* could track the agile camera while
maintaining high accuracy against the ground truth. As
summarized in Table II, the other methods were immediately
lost owing to a lack of camera observations.

The results for frl apartment agree with those for apart-
ment 0. In this evaluation, severe appearance changes wors-
ened the localization performance, and pure C* and L-C*
without the feedback loop failed in all trials. L-C*, however,
accurately localized the monocular camera, even in cases of
appearance changes, by employing loose coupling, thereby
outperforming its competitors.

C. Demonstration in the real world

To demonstrate the effectiveness of the proposed frame-
work in the real world, we present the results on a dataset
captured using Focus3D for 3D maps and Zenfone 8 for
sequential camera and IMU data. Fig. 6 shows the image
sequences and 3D maps. As depicted in Fig. 4(a), odometry
estimation operates on the smartphone, and visual localiza-
tion against camera images runs on a laptop with a GeForce
RTX2070 Super, which simulates edge-cloud computing.

The localization success rate and duration of valid local-
ization determined manually are listed in Table III. Owing
to dynamic motion or 3D map sparsity, competitors could
not track the agile camera completely. Moreover, as the
frequency of the camera stream decreases, the localization
success rate decreases significantly. Even in severe situations,
L-C* robustly estimated the camera pose and accomplished
all trials, demonstrating the effectiveness of loose coupling
of direct visual localization and visual-inertial odometry.
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Fig. 5. Quantitative evaluation on Replica dataset (Orange: Groud truth, Green: C*, Blue: L-C* in the case of 3 Hz image feeding): The image and IMU
data sequences were captured along pre-defined trajectories.
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Fig. 6. Demonstration on dataset captured in the real world (Green: 3 Hz global localization, Blue: Fused pose (control output)).

V. CONCLUSIONS

We propose a sensor fusion framework for a lightweight
visual localization system. The loose coupling of different
pose factors, occasional global pose estimates and frequent
local ego-motions, makes the entire system resilient to
temporal absence and failure of visual localization. The
evaluations demonstrated that the framework achieved re-
liable and robust visual localization while reducing the
high computational cost of frequent global pose estimation.
This architectural advantage inherently allows us to run a
localization module on a mid- to low-end computer that
simultaneously boosts distributed systems.

As demonstrated in Section IV, L-C* allows 6-DoF full

tracking with a minimum frequency for demanding global
localization. Because this significantly reduces the com-
putational cost of direct visual localization, we intend to
implement the entire system on a small PC without GPU
cards or smartphone to facilitate easy localization on a
lightweight consumer device. We also used the framework
in various applications, such as autonomous navigation of
personal mobility vehicles, egocentric action recognition, and
human—robot interaction. We are also interested in adapta-
tion to each situation, and other factors, such as the wheel
encoder or human intention, may be useful information to
further constrain the camera pose [23]. Thus, we believe
that the adaptive extension of the factor graph would be an
interesting topic.
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