
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2020 1

Interactive 3D Graph SLAM for Map Correction
Kenji Koide1, Jun Miura2, Masashi Yokozuka1, Shuji Oishi1, and Atsuhiko Banno1

Abstract—This paper presents an interactive graph SLAM
framework with a 3D LIDAR. This framework allows the user
to interactively correct a 3D environmental map generated by an
automatic SLAM system. By optimizing a pose graph consisting
of pose constraints created by the automatic SLAM and map
correction constraints, which are created by the user through a
graphical user interface, we obtain a large and globally consistent
3D environmental map. We propose semi-automatic loop closing
and plane-based map correction techniques for creating map
correction constraints. We also devise a pose constraint update
approach to refine the pose constraints given by the automatic
SLAM. The evaluation results demonstrate that the proposed
system enables us to improve the consistency of mapping results
and obtain a mapping accuracy that outperforms state-of-the-art
automatic SLAM frameworks with minimal human effort.

Index Terms—SLAM, Mapping

I. INTRODUCTION

ENVIRONMENTAL mapping is essential for many func-
tions in intelligent mobile systems, such as localization,

place recognition, and navigation. One way to create a three-
dimensional (3D) environmental map is so-called simultaneous
localization and mapping (SLAM) with a mobile 3D light
detection and ranging sensor (LIDAR). This approach requires
a relatively affordable sensor and is less time-consuming
compared with methods based on an aerial camera or static
high-definition LIDAR. Many SLAM frameworks have been
proposed, and some of them are publicly available as open
source codes [1], [2], [3]. However, large-scale consistent
mapping is still challenging, even for state-of-the-art SLAM
frameworks. They require careful tuning of hyper-parameters
depending on the sensor and environment properties, which is
difficult for, in particular, users who are not SLAM experts.
Without good hyper-parameter selection, we often face map-
ping failures that result in local and global inconsistency of
the map (e.g., doubled and bent walls and floors).

Global consistency of mapping results can be greatly im-
proved by introducing prior knowledge of the environment,
such as flat floor [4] or Manhattan world [5], [6] assumptions.

Manuscript received: June, 18, 2020; Revised September, 4, 2020; Accepted
September, 29, 2020.

This paper was recommended for publication by Sven Behnke upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported in part by JSPS KAKENHI (Grant Number
18K18072) and a project commissioned by the New Energy and Industrial
Technology Development Organization (NEDO).

1Kenji Koide, Masashi Yokozuka, Shuji Oishi, and Atuhiko Banno are with
the Department of Information Technology and Human Factors, the National
Institute of Advanced Industrial Science and Technology, Umezono 1-1-1,
Tsukuba, 3050061, Ibaraki, Japan, k.koide@aist.go.jp

2Jun Miura is with the Department of Computer Science and Engineering,
Toyohashi University of Technology, Hibarigaoka 1-1, Tempaku, Toyohashi,
Aichi, 4418580, Japan

Digital Object Identifier (DOI): see top of this page.

However, such assumptions make the system applicable to
only limited environments. Environment assumptions should
be carefully and selectively added to the mapping process to
retain generality.

In this paper, we propose a framework that allows us to
interactively correct mapping failures and add prior informa-
tion of the environment as necessary through a graphical user
interface (GUI). To create a consistent environmental map with
minimal human effort, the proposed framework optimizes a
pose graph with pose constraints CA, which are created by an
automatic SLAM, and map correction and prior knowledge
constraints CM created semi-automatically through the GUI.
For creating CM , we propose semi-automatic loop closing and
plane detection-based map correction techniques that enable
us to efficiently improve the local and global consistency of
mapping results. We also propose a pose constraint update
mechanism to refine the given pose constraints CA.

The contribution of this paper is three-fold. First, we
propose an interactive framework for map correction with
a complete GUI. Second, we propose pose edge refinement
and plane-based map correction techniques that enable us to
improve the local and global consistency of an environmental
map. Third, the source code for the proposed framework is
available on a public repository 1.

II. RELATED WORK

A. Loop detection and closing

Loop closing is an essential technique in SLAM to correct
odometry drift. By optimizing the sensor trajectory such that
observations obtained in a common place become identical
(i.e., closing the loop), we can correct accumulated odometry
errors.

The most common way to find loops is to compare nearby
keyframes and test if they satisfy a loop detection criterion
(e.g., low matching error). While many SLAM frameworks
employ this simple yet general approach [2], [4], [7], it be-
comes unfeasible when the trajectory deteriorates significantly
as a result of the drift in the odometry data, making it difficult
to extract relevant loop candidates.

Many loop detection methods to find loop candidates un-
der deteriorated odometry data have been proposed. Many
traditional studies proposed point cloud descriptors, such as
distance [8] and local surface feature [9] histograms, to
calculate the similarity between point clouds. ScanContext
[10] is a recent point cloud descriptor that encodes the point
height information in the polar grid coordinate. This represen-
tation enables quick loop candidate extraction with the ring

1https://github.com/koide3/interactive slam



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2020

key comparison technique and robust similarity calculation
between point clouds. LiDAR-Iris proposed by Wang et al.
[11] calculates a discriminative binary feature map from a
ScanContext image using LoG-Gabor filters, and it uses a
Fourier transform-based comparison method to avoid brute-
force rotation evaluation. Although these methods have shown
high loop detection accuracy in open and feature-rich places
like outdoor urban environments, their accuracy can deteriorate
significantly in featureless and smaller environments.

Recently, several deep convolutional neural network-based
loop detectors have been proposed. They typically project
point clouds into a 2D image form (e.g., spherical image [12],
[13], histogram image[14], and ScanContext image [15]) and
apply convolutional filters to extract discriminative features.
Then, the following comparison network takes two point cloud
features and outputs some metrics (e.g., relative pose [12]
and overlap [13] between point clouds) to judge if they are
a correct loop pair. While they show impressive performance
in the environment and with the sensor that the network was
trained on, they often require costly data collection and re-
training to adapt the network to new environments and sensors.

Generality is still an open problem for hand-crafted and
deep CNN-based loop detection methods, and it remains
difficult to fully automatically find loops across different
environments.

B. Manual correction for SLAM

The human-in-the-loop (HitL) SLAM proposed by Nashed
and Biswas [16] allows the user to interactively add 2D
line (wall) constraints (collocation, colinear, and parallel) to
the 2D pose graph generated by an automatic episodic non-
Markov localization SLAM [17]. HitL SLAM provides a GUI
to draw lines on a 2D map, and it associates the drawn
lines with corresponding map points using an expectation and
maximization algorithm. By optimizing the pose graph con-
sisting of the constraints created automatically and manually,
HitL SLAM constructs a large and consistent map. Milijas
et al. proposed another pose graph-based interactive SLAM
approach for 2D mapping [18]. Through a GUI, they manually
inserted pose constraints in a pose graph created using Google
Cartographer [3] and performed pose graph optimization to
obtain a consistent mapping result. There are also a few
2D mapping frameworks that allow the user to manually
manipulate submap nodes to correct mapping failures [19].

While these frameworks work well for 2D mapping, it is
difficult for several reasons to efficiently correct 3D maps by
directly extending them to 3D. First, the complexity of the
problem significantly increases in 3D mapping. Although these
frameworks provide basic map correction features (e.g., line
and pose constraints), we need much more effort to correct
6 DoF trajectories using only these features. To effectively
correct 3D mapping failures, it is important to have the
assistance of semi-automatic features guided by a few manual
user operations. Second, their problem formulation allows
only for inserting new constraints but not for refining existing
constraints. In 3D SLAM, odometry errors can be larger than
in 2D SLAM, and such errors can have a negative effect

Automatic SLAM
(hdl_graph_slam, LeGO-LOAM, etc.)

Manual Loop Closing

Automatic Loop Closing

Pose Edge Refinement

Plane-based Correction

Interactive SLAM

3D Environmental Map

3D LIDAR Data

Pose graph or 
Odometry

Fig. 1: Workflow of the proposed framework.

(a) Before correction (LeGO-LOAM)

(b) After correction

Fig. 2: 3D environmental maps generated before and after map
correction. Point color encodes the altitude. The corridor is
approximately 450 m in length.

on the final mapping result. It is thus necessary to eliminate
measurement and estimation errors existing in the automatic
mapping result by refining the existing constraints.

There are also several studies that takes the help of manual
operations to efficiently perform map segmentation and seman-
tic mapping [20], [21], [22], [23]. They assume consistency in
annotating the 2D map and do not consider correcting mapping
failures.

III. PROPOSED FRAMEWORK

A. System overview

To obtain a consistent 3D environmental map, we optimize
a parameter set X that includes sensor poses under constraints
CA =

{
zAi |i=1,··· ,N

}
and CM =

{
zMi |i=1,··· ,M

}
created by,



KOIDE et al.: INTERACTIVE 3D GRAPH SLAM FOR MAP CORRECTION 3

O
d
om

et
ry

(L
eg

o-
LO

A
M

)

Top

Side

M
an

u
al

Lo
op

 C
lo

si
n
g

A
u
to

m
at

ic
Lo

op
 C

lo
si

n
g

Po
se

 E
d
g
e

C
or

re
ct

io
n

Pl
an

e 
C
on

st
ra

in
ts

Top

Side

Top

Side

Top

Side

Top

Side

(a
)

(b
)

(c
)

(d
)

(e
)

Loop edge

Fig. 3: Pose graph correction process (top to bottom).

respectively, an automatic SLAM and the proposed framework
for map refinement. The objective function is defined as
follows:

F (X ) = E(CA) + E(CM ), (1)

E(C) =
∑
zk∈C

ek (xk, zk)
T

Ωkek(xk, zk), (2)

where xk, ek, and Ωk are the parameter block, error func-
tion, and information matrix, respectively, corresponding to a
constraint zk. We can efficiently optimize the parameter set
X such that Eq. (1) is minimized by using the pose graph
optimization approach [24].

Fig. 1 shows the workflow of the proposed framework. In
this workflow, the user creates map correction constraints CM
and refines given constraints CA using several automatic and
semi-automatic functions on a GUI until they are satisfied with
the mapping results. To improve local and global mapping con-
sistency, we propose the following map correction functions:

1) Automatic/semi-automatic loop closing
2) Automatic pose constraint refinement
3) Semi-automatic plane-based constraints

Every time a correction is made by the user, the pose graph is
optimized by the Levenberg-Marquardt optimizer [25] in g2o
[24], a hyper-graph optimization library, and the updated map
with the latest correction is displayed to the user immediately.

The proposed framework is built on top of the Robot
Operating System (ROS) ecosystem, and it uses mapping data

generated by any ROS SLAM framework as an initial pose
graph. If the ROS package can output a pose graph, our
framework directly uses that pose graph as an initial graph.
Otherwise, it extracts keyframes at certain intervals from the
odometry estimated by the SLAM and creates a strip of
pose vertices as an initial graph by connecting consecutive
keyframes.

Fig. 2 shows an example of maps generated before and after
the map correction process. We used an odometry sequence
generated by LeGO-LOAM [2] for this example. Although
the initial map is largely bent and corrupted because of
odometry errors, we can see that the map becomes flat and
globally consistent after map correction. Fig. 3 shows the pose
graph correction process. The red points and green planes
respectively indicate pose and plane vertices, and the lines
between the vertices represent relative pose constraint edges.
In the following subsections, we explain the correction process
in detail.

B. Loop closing

We create loop constraints by letting the user explicitly
select loop candidate keyframes through the GUI. Once the
user selects two keyframes to be the beginning and end of
a loop, we perform relative pose estimation using fast point
feature histograms (FPFH) [8] to obtain an initial guess of
the transformation between them. The GUI allows the user to
inspect and fine-tune the initial guess, and then scan matching



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2020

is applied to the keyframes for fine registration. The estimated
relative pose is added to the pose graph as a loop constraint
edge. In the proposed framework, ICP [26], NDT [27], and
GICP [28] can be used for fine registration, and we use GICP
in this paper. In Fig. 3 (b), we can see that a manually added
loop constraint greatly improves the global consistency of the
map.

Once the sensor trajectory is roughly corrected by the
manual loop closing, we can perform scan matching-based
automatic loop closing. The automatic loop closing process
is similar to that in [4]. We find a keyframe pair (ki, kj) that
satisfies the following conditions, and we add a loop constraint
between them:

‖ki.p− kj .p‖ < thdist, (3)
‖path(ki, kj)‖ > thpath, (4)

matching score(ki, kj) < thscore, (5)

where ki.p is the estimated position of the i-th keyframe, path
is the minimum graph path length between the keyframes,
matching score is a metric to evaluate the scan matching result
(e.g., sum of the distances between the corresponding points),
and th∗ are threshold values. The first condition extracts
neighboring keyframes, while the second condition prevents
loop constraints being created between consecutive frames and
too many constraints being created in a small section. We
apply a Huber robust kernel to each loop constraint to filter
out wrong loop constraints.

Scan matching-based loop detection is inherently sensitive
to the initial guess. In the context of interactive SLAM, how-
ever, keyframes are roughly aligned by the preceded manual
loop closing, and we can expect a good initial guess for scan
matching. Thus, this simple yet general loop closing approach
works well in most cases.

In Fig. 3 (c), loop constraints between neighboring
keyframes are added by the automatic loop closing process.
We can see that the distance between the outward and inward
trajectories becomes consistent, and this result implies that
local consistency is improved.

C. Pose constraint refinement

Scan matching odometry can be inaccurate when the sensor
moves quickly or there are fewer features in the environment.
We correct such errors in odometry by updating the pose con-
straints. We first extract a pose constraint that is inconsistent
with its neighboring constraints. The inconsistency of a pose
constraint is defined as the χ2 distance:

ei,j = manifold(P−1i PjR
−1
i,j ), (6)

errori,j = eTi,jΩi,jei,j , (7)

where Pi and Pj are the estimated poses of the keyframes i
and j, respectively; Ri,j and Ωi,j are the relative pose con-
straint and the information matrix assigned to the keyframes,
respectively; and manifold is a function to convert an SE3
pose into a six dimensional parameter vector. We use the χ2

distances as sampling weights and randomly sample a pose
constraint for refinement.

We apply scan matching between the keyframes, which
are connected by the sampled constraint, with the relative
pose estimated by the graph optimization P−1i Pj as an initial
guess. The estimated relative pose would be close to the true
relative pose because it is optimized with loop closing and
other constraints. We can, thus, expect that the scan matching
converges to a good estimate. If the new estimated relative
pose improves the matching score between the keyframes,
we update the relative pose assigned to the constraint. Then,
we perform pose graph optimization and repeat this pose
refinement process.

In Fig. 3 (c), the map is significantly bent as a result
of odometry errors, and a large altitude error is observed.
After the pose constraint refinement, the odometry errors are
corrected, and the map becomes flat (see Fig. 3 (d)). In this
example, the χ2 distance (the sum of the weighted constraint
errors) of the pose graph decreased from 0.447 to 0.061 during
the refinement process. This indicates that the consistency of
the pose graph is improved.

D. Plane-based semi-global constraints

Although the loop closing and the pose constraint refine-
ment improve the local consistency of a map, the global
inconsistency, such as odometry bias, is difficult to correct.
To improve global consistency, we exploit plane constraints. In
environments where buildings can be observed, we can easily
find parallel and perpendicular planes in the distance. We use
the relationship between such distant planes as semi-global
constraints to correct global inconsistencies in a map.

To insert a plane vertex into the pose graph, the user needs to
pick a point on the plane using the GUI. We extract points with
normals similar to the selected one using region growing [29],
and we estimate the plane coefficients using a random sample
consensus (RANSAC) plane detector [30]. Then, a new vertex
representing the detected plane is added to the pose graph.
Following the method in [31], we use a tuple of the azimuth
angle φ, elevation angle ψ, and distance from the origin d as
a compact representation of a plane π = [nx, ny, nz, d]T =
[n, d]T for optimization.

τ(π) = [φ, ψ, d] =

[
tan−1

(
ny
nx

)
, tan−1

(
nz
‖n‖

)
, d

]
. (8)

Through the GUI, the user can choose two planes π0 and
π1 among the detected ones and add an identity, parallel, or
perpendicular constraint between them. The error functions of
the plane constraints are defined as follows:

identity error(π0, π1) = π0 − π1, (9)
parallel error(π0, π1) = nπ0

− nπ1
, (10)

perpendicular error(π0, π1) = nπ0
· nπ1

. (11)

If nπ0
·nπ1

is less than 0, this indicates that the directions of
the plane normals are not matched, and we use a flipped plane
π′1 = −π1 for error calculation. We consider that the manually
created plane constraints are a reliable information source and
set a large information matrix (e.g., 103I) so that the pose
graph optimization puts emphasis on these constraints.



KOIDE et al.: INTERACTIVE 3D GRAPH SLAM FOR MAP CORRECTION 5

3D LIDAR

Rangefinder

Electric cart

Omni camera

GNSS antenna

MMS range
sensor

Side camera

Fig. 4: Mobile Mapping System.

In Fig. 3 (e), several plane constraints placed between the
floor plane and distant walls effectively correct the global error
of the map.

IV. EVALUATION

A. Mapping in an outdoor environment

To demonstrate that the proposed framework allows us to
create a large consistent environmental map, we evaluated it on
a real LIDAR dataset 2. For this evaluation, we recorded a 3D
LIDAR data sequence with the Mobile Measurement System
developed by the PASCO Corporation shown in Fig. 4. The
measurement system consists of several static total stations
placed in the environment and a mobile platform equipped
with a 3D LIDAR, rangefinders, global navigation satellite
system (GNSS), and cameras. It enables the measurement of
the 3D LIDAR position to an accuracy of a few millimeters.
We used the measured 3D LIDAR trajectory as the ground
truth and evaluated the accuracy of the mapping results by
comparing the estimated sensor trajectory with the ground
truth. As evaluation metrics, we calculated absolute and rela-
tive trajectory errors (ATE and RTE) [32]. Note that, because
the ground truth provides only the sensor translation but not
orientation, we used a modified RTE calculation routine that
aligns the sub-trajectory in an evaluation window and then
calculates the errors between it and the ground truth.

To show that large-scale environmental mapping is difficult
even for state-of-the-art automatic SLAM frameworks, we
ran LOAM [1] 3, A-LOAM 4, LeGO-LOAM [2], SuMa [7],
ethzasl icp mapping [33], and hdl graph slam [4] on this
dataset.

We extracted keyframes from the odometry sequence es-
timated by LOAM to generate an initial pose graph for
the proposed framework. The keyframe interval was set to
5 m. Because the result of LOAM was already accurate,
we manually added only one new loop constraint and then
performed automatic loop closing. To further improve the
global mapping accuracy, we applied edge refinement and then
added 15 planes to the pose graph. The map correction process
took approximately 15 minutes in total to correct the trajectory
of the 20-minute dataset. Fig. 5 shows the pose graph and 3D

2The dataset is available at https://github.com/SMRT-AIST
3https://github.com/laboshinl/loam velodyne
4https://github.com/HKUST-Aerial-Robotics/A-LOAM

(a) Pose graph.

(b) Environmental map. The color encodes the altitude.

Fig. 5: Generated pose graph and 3D environmental map. The
environment is approximately 200 m × 400 m.

(a) Without loop closing (b) With loop closing

Fig. 6: Top and side view of the mapping results of LeGO-
LOAM. Top view is cropped for the best view. While local
consistency has improved with loop closing (top view), the
global altitude error has increased.

map created with the proposed framework. We can see that a
highly accurate and globally consistent map was obtained.

Table I shows the trajectory errors for the proposed frame-
work and the automatic SLAM frameworks. While the RTEs
of the automatic SLAM frameworks are small, they show
large ATEs (1.731 – 3.074 m). It is worth mentioning that the
ATE of LeGO-LOAM deteriorated after loop closing. Fig. 6
shows the mapping results of LeGO-LOAM with and without
loop closing. From the top view, we can see that loop closing
improved the local consistency of the map. However, the side
view shows that the added loops slightly bent the map and
increased the error in the altitude direction, resulting in the



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2020

TABLE I: Trajectory errors

Method Loop ATE [m] RTE(5m) [m] RTE(50m) [m] RTE(500m) [m]
ethzasl icp mapping [33] 5.248 ± 5.313 0.038 ± 0.094 0.433 ± 1.279 2.168 ± 2.113

LOAM [1] 1.731 ± 1.015 0.045 ± 0.021 0.092 ± 0.060 0.701 ± 0.172
A-LOAM 2.168 ± 1.284 0.043 ± 0.024 0.094 ± 0.051 0.820 ± 0.276

1.846 ± 1.112 0.027 ± 0.029 0.105 ± 0.141 0.680 ± 0.194LeGO-LOAM [2]
X 2.418 ± 1.490 0.028 ± 0.027 0.103 ± 0.143 0.859 ± 0.326

4.352 ± 1.927 0.022 ± 0.016 0.155 ± 0.097 2.533 ± 0.549SuMa [7]
X 3.074 ± 1.637 0.021 ± 0.016 0.123 ± 0.085 1.321 ± 0.239

4.018 ± 2.078 0.044 ± 0.034 0.389 ± 0.306 3.012 ± 0.782

B
as

el
in

e

hdl graph slam [4]
X 1.797 ± 0.992 0.034 ± 0.044 0.206 ± 0.178 1.337 ± 0.443

Base (LOAM) 1.731 ± 1.015 0.045 ± 0.021 0.092 ± 0.060 0.701 ± 0.172
Loop closing X 1.683 ± 1.027 0.045 ± 0.022 0.091 ± 0.058 0.693 ± 0.174

Edge refinement X 1.340 ± 0.826 0.044 ± 0.017 0.082 ± 0.043 0.590 ± 0.155

Pr
op

os
ed

Plane constraints X 0.517 ± 0.151 0.044 ± 0.017 0.081 ± 0.043 0.379 ± 0.034

(a) Stencil (b) SuMa (corrupted)

(c) GICP scan matching (d) Corrected GICP

Fig. 7: Estimated trajectories in the indoor and outdoor envi-
ronment.

ATE deteriorating. This result suggests that loop closing is
not always effective in correcting global errors in a trajectory,
and we need global constraints such as plane constraints and
gravity vector [3] constraints to improve the global accuracy
of a map.

The proposed map correction functions effectively improved
the global consistency of the base trajectory estimated by
LOAM while retaining its good local consistency. After ap-
plying the loop closing, the ATE was decreased from 1.731 m
to 1.683 m, and then the edge refinement process improved the
ATE to 1.340 m. The best ATE we obtained after adding plane
constraints outperforms the results of the automatic SLAM
frameworks (0.517 m).

(a) Generated environmental map (b) Staircase

Fig. 8: Mapping result in the indoor and outdoor environment.

B. Mapping across indoor and outdoor environments

To emphasize the necessity of the mechanism to correct
online mapping failures, we recorded another LIDAR sequence
across indoor and outdoor environments. Such a situation, in
which the sensor moves across very different environments, is
extremely difficult for both the SLAM frontend and backend.
The length of the sequence is approximately 20 minutes.
We used Kaarta Stencil, a state-of-the-art commercial Visual-
LIDAR-IMU mapping system, to record the dataset.

1) Frontend: Fig. 7 (a) shows the trajectory estimated by
Stencil. While the estimated trajectory in the outdoor envi-
ronment is accurate, the trajectory estimation often became
corrupted in the indoor environment. Even for the commer-
cial SLAM system, it is still difficult to create a consistent
map across different environments that require very different
parameter settings for environment scale and structuredness
changes.

We also ran the SLAM frameworks used in Sec. IV-A;
however, all the methods yielded corrupted trajectories with
large drift. In particular, the LOAM-variants (Stencil, LOAM,
A-LOAM, LeGO-LOAM) tend to get corrupted at corners
and staircases. Because their odometry estimation rely on
the matching of plane and edge features, they can be un-
stable in featureless indoor environments. Once a wrong
data association is made when turning a corner or climbing



KOIDE et al.: INTERACTIVE 3D GRAPH SLAM FOR MAP CORRECTION 7

False Positive Rate

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

(a) Outdoor

False Positive Rate

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

(b) Indoor

Fig. 9: ROC curves of loop detection methods in indoor and
outdoor environments.

stairs, the odometry estimation becomes corrupted. SuMa,
ethzasl icp mapping, and hdl graph slam take ICP-based ap-
proaches that use many points to estimate the odometry and
thus are more robust for featureless indoor environments.
However, the frame-to-model matching approach of SuMa
and ethzasl icp mapping makes the estimation become totally
corrupted (Fig. 7 (b)) once the map model gets broken.
Furthermore, they suffer from large drift because, in the indoor
environment, the common view between frames is small, and
estimation errors rapidly accumulate.

2) Backend: To see how loop detection methods deteriorate
in indoor environments, we excluded outdoor frames from the
dataset and evaluated several loop detection methods (distance
histogram-based method [9], ScanContext [10], LiDAR-Iris
[11], and OverlapNet [13]) on the dataset. We also evaluated
them on the outdoor dataset used in Sec. IV-A. The total num-
ber of frames were 332 and 519 in the indoor and the outdoor
environments, respectively. For each frame combination, we
calculated the overlap rate using the final mapping result, and a
frame pair with an overlap rate larger than 30% was considered
as loop beginning and end. To apply OverlapNet to the 16-
line LIDAR data, we interpolated point cloud data on both the
horizontal and vertical axes to generate 64-line LIDAR-like
range images. Although the network may not show the best
performance without re-training, we can see how its accuracy
deteriorates in a new environment.

Fig 9 shows ROC curves of the loop detection algorithms in
the outdoor and indoor environments. We can see that, while
they show high detection accuracy in the outdoor environment,
all the algorithms are significantly degraded in the indoor

Sector

R
in
g

Height

(a) Outdoor

Sector

R
in
g

Height

(b) Indoor

Fig. 10: ScanContext images in indoor and outdoor environ-
ments.

Fig. 11: Example of repeated environment structure in the
indoor environment. Red: loop beginning, Green: correct loop
end, Blue: wrong loop end at another floor.

environment.
There are two points that make loop detection difficult

in indoor environments. First, the scale and structure of
the indoor environment is significantly different from the
outdoor environment. Fig. 10 shows ScanContext images in
the outdoor and indoor environments. While the valid pixels
are widely distributed in the ScanContext of the outdoor
environment, in the indoor environment, most of the points fall
in the inner rings of the ScanContext, and most of the pixels
have no height information. This makes the ScanContext less
discriminative in the indoor environment. Second, we often see
highly repeated structures in indoor environments. In Fig. 11,
red and green points respectively show correct loop beginning
and end at a corner, and blue points show a wrong loop end
at another floor. In this case, [9] shows very similar distances
for the correct loop pair (red vs green: 6.89× 10−3) and the
wrong loop pair (red vs blue: 6.83 × 10−3). It is inherently
difficult, if not impossible, to correctly find loops without
accurate odometry in such environments.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2020

3) Proposed framework: We estimated the sensor odometry
using GICP scan matching with conservative parameter set-
tings (frame-by-frame matching and a larger matching distance
threshold) and extracted keyframes for every 3 m of the
trajectory. To correct the estimated trajectory, we manually
added 19 loops and 17 planes to the pose graph and then
performed automatic loop closing and pose edge refinement.
The correction process took approximately 20 minutes. Fig. 8
(a) and (b) respectively show the estimated trajectories before
and after the correction. Fig. 7 (d) and (f) show the generated
environmental map with the proposed framework and the point
cloud of a staircase in the environment, respectively. We can
see that the generated map is consistent across multi-floor
indoor and outdoor environments.

V. CONCLUSION

This paper proposed an interactive SLAM framework that
allows the user to correct mapping failures of an automatic
SLAM semi-automatically and improve the quality of a 3D
environmental map. To correct a mapping result, the proposed
framework optimizes a pose graph consisting of constraints
created by the automatic SLAM and additional map cor-
rection constraints. We proposed loop closing and plane-
based constraints to semi-automatically create map correction
constraints. We also proposed an approach to refine the initial
pose constraints. The evaluation results demonstrate that the
proposed method enabled us to achieve a mapping quality that
outperformed state-of-the-art automatic SLAM methods with
minimal human effort.

REFERENCES

[1] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time,” in Robotics: Science and Systems. Robotics: Science and Systems
Foundation, July 2014.

[2] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, Oct.
2018.

[3] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in
2d LIDAR SLAM,” in IEEE International Conference on Robotics and
Automation. IEEE, May 2016.

[4] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional
LIDAR-based system for long-term and wide-area people behavior
measurement,” International Journal of Advanced Robotic Systems,
vol. 16, no. 2, Mar. 2019.

[5] P. Kim, B. Coltin, and H. J. Kim, “Linear RGB-d SLAM for planar
environments,” in European Conference on Computer Vision. Springer,
Aug. 2018, pp. 350–366.

[6] H. Li, J. Yao, J.-C. Bazin, X. Lu, Y. Xing, and K. Liu, “A monocular
SLAM system leveraging structural regularity in manhattan world,” in
IEEE International Conference on Robotics and Automation. IEEE,
May 2018.

[7] J. Behley and C. Stachniss, “Efficient surfel-based SLAM using 3d laser
range data in urban environments,” in Robotics: Science and Systems.
Robotics: Science and Systems Foundation, jun 2018.

[8] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3d registration,” in IEEE International Conference on
Robotics and Automation. IEEE, May 2009.

[9] T. Rohling, J. Mack, and D. Schulz, “A fast histogram-based similarity
measure for detecting loop closures in 3-d LIDAR data,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
Sept. 2015.

[10] G. Kim and A. Kim, “Scan context: Egocentric spatial descriptor for
place recognition within 3d point cloud map,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, Oct. 2018.

[11] Y. Wang, Z. Sun, C.-Z. Xu, S. Sarma, J. Yang, and H. Kong, “Lidar
iris for loop-closure detection,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, Oct. 2020.

[12] L. Schaupp, M. Burki, R. Dube, R. Siegwart, and C. Cadena, “OREOS:
Oriented recognition of 3d point clouds in outdoor scenarios,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, Nov. 2019.

[13] X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag,
J. Behley, and C. Stachniss, “OverlapNet: Loop closing for LiDAR-
based SLAM,” in Robotics: Science and Systems. Robotics: Science
and Systems Foundation, July 2020.

[14] H. Yin, L. Tang, X. Ding, Y. Wang, and R. Xiong, “LocNet: Global
localization in 3d point clouds for mobile vehicles,” in IEEE Intelligent
Vehicles Symposium. IEEE, June 2018.

[15] G. Kim, B. Park, and A. Kim, “1-day learning, 1-year localization: Long-
term LiDAR localization using scan context image,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 1948–1955, Apr. 2019.

[16] S. B. Nashed and J. Biswas, “Human-in-the-loop slam,” in AAAI
Conference on Artificial Intelligence, Apr. 2018.

[17] J. Biswas and M. M. Veloso, “Episodic non-markov localization,”
Robotics and Autonomous Systems, vol. 87, Jan. 2017.

[18] R. Milijas, J. Orsulic, and S. Bogdan, “When measurements fail:
using an interactive SLAM solution to fight bad odometry,” in IEEE
International Instrumentation and Measurement Technology Conference.
IEEE, May 2020.

[19] S. Macenski, “On use of the slam toolbox: A fresh(er) look at mapping
and localization for the dynamic world,” ROSCon 2019, Oct. 2019.

[20] A. Diosi, G. Taylor, and L. Kleeman, “Interactive SLAM using laser
and advanced sonar,” in IEEE International Conference on Robotics
and Automation. IEEE, May 2005.

[21] C. Nieto-Granda, J. G. Rogers, A. J. B. Trevor, and H. I. Christensen,
“Semantic map partitioning in indoor environments using regional
analysis,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, Oct. 2010.

[22] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and reason-
ing with heterogeneous modalities,” in IEEE International Conference
on Robotics and Automation. IEEE, May 2012.

[23] A. Sidaoui, M. K. Zein, I. H. Elhajj, and D. Asmar, “A-SLAM: Human
in-the-loop augmented SLAM,” in IEEE International Conference on
Robotics and Automation. IEEE, May 2019.

[24] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in IEEE Interna-
tional Conference on Robotics and Automation. IEEE, May 2011.

[25] K. Levenberg, “A method for the solution of certain non-linear problems
in least squares,” Quarterly of Applied Mathematics, vol. 2, no. 2, pp.
164–168, July 1944.

[26] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed
iterative closest point algorithm,” in Object recognition supported by
user interaction for service robots. IEEE, Aug. 2002.

[27] P. Biber and W. Strasser, “The normal distributions transform: a new
approach to laser scan matching,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, Jan.

[28] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics:
Science and Systems. Robotics: Science and Systems Foundation, June
2009.

[29] G. V. T. Rabbani, F.A. van den Heuvel, “Segmentation of point clouds
using smoothness constraints,” in ISPRS commision V symposium, Sept.
2006.

[30] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
June 1981.

[31] L. Ma, C. Kerl, J. Stuckler, and D. Cremers, “CPA-SLAM: Consistent
plane-model alignment for direct RGB-d SLAM,” in IEEE International
Conference on Robotics and Automation. IEEE, May 2016.

[32] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, Oct. 2018.

[33] F. Pomerleau, P. Krusi, F. Colas, P. Furgale, and R. Siegwart, “Long-term
3d map maintenance in dynamic environments,” in IEEE International
Conference on Robotics and Automation. IEEE, May 2014.


