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Generalized LOAM: LiDAR Odometry Estimation
with Trainable Local Geometric Features
Kohei Honda1, Kenji Koide2, Masashi Yokozuka2, Shuji Oishi2, and Atsuhiko Banno2

Abstract—This paper presents a LiDAR odometry estimation
framework called Generalized LOAM. Our proposed method is
generalized in that it can seamlessly fuse various local geometric
shapes around points to improve the position estimation accuracy
compared to the conventional LiDAR odometry and mapping
(LOAM) method. To utilize continuous geometric features for
LiDAR odometry estimation, we incorporate tiny neural net-
works into a generalized iterative closest point (GICP) algorithm.
These neural networks improve the data association metric
and the matching cost function using local geometric features.
Experiments with the KITTI benchmark demonstrate that our
proposed method reduces relative trajectory errors compared to
the other LiDAR odometry estimation methods.

Index Terms—SLAM, Localization, Mapping, Deep Learning
Methods, Computational Geometry.

I. INTRODUCTION

L IDAR odometry estimation with three-dimensional (3D)
point clouds is essential for mobility technologies, such

as autonomous mobile robots. To improve the accuracy and ef-
ficiency of the estimates, the use of surface geometric features
estimated from point clouds is a promising approach. Some
state-of-the-art LiDAR odometry estimation methods [1] em-
ploy feature-based registration derived from LiDAR odometry
and mapping (LOAM) [2]. LOAM classifies points into edges
and planes before registration. This approach enables efficient
and accurate odometry estimates using local geometric shapes.
However, LOAM has several downsides, such as the need for
sensor-specific processing, difficulty in adjusting the balance
between edges and planes, and degeneracy in environments
where features cannot be well extracted.

Generalized iterative closest point (GICP) [3] is another
popular method. GICP models the local surface at each point
as a normal distribution and incorporates normal distribution
comparison into the ICP matching cost. In the GICP frame-
work, the sum of the distribution-to-distribution distances
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between corresponding points is minimized instead of the
conventional point-to-point distance. Because a normal dis-
tribution can represent various local geometric shapes such as
spheres, lines, or planes depending on the covariance matrix,
GICP can be considered an ICP for a local-shape-to-local-
shape comparison. The GICP cost function encompasses the
edge and plane comparisons used in LOAM depending on
the covariance matrices, and it can handle them seamlessly
without explicitly separating the point cloud.

However, in the standard GICP, the normal distributions
representing local geometric shapes around points are reg-
ularized as planes, which turns GICP into a plane-to-plane
ICP [3]. This regularization is necessary to deal with rank
deficient of covariance matrices, regardless of the density of
the points or sensor noise. Unfortunately, this approximated
representation leads to inaccurate representations of the local
shapes and poorer registration performance. In addition, there
is also room for improvement not only in the cost function,
but also in the data association method, for example, in the
metric-based ICP approach [4].

In this work, we propose a method called Generalized
LOAM that fuses various local geometric shapes around points
to improve the position estimation accuracy. Our proposed
method is generalized in that it includes the line and plane
comparison used in LOAM and fuses various surface shape
features to assist in LiDAR odometry estimation. We reformu-
late a portion of the functions in the classical GICP method
with neural networks to be able to seamlessly handle geometric
features. First, we extract intermediate feature vectors using
neural networks, such as PointNet++ [5] and RandLA-Net
[6], which are trained for semantic segmentation. The feature
vectors contain rich information on the local geometric shapes
around points. Then, we improve the following two points in
the GICP algorithm with intermediate feature vectors:

1) Reducing incorrect data associations by considering the
features of points in addition to the Euclidean distance
for nearest neighbor search.

2) Estimating reasonable covariance matrices for points
with feature vectors. The covariance matrices represent
local geometric shapes in the GICP matching cost. By
improving the covariance estimation, we aim to make
point comparisons robust in environments where plane-
to-plane ICP estimation accuracy can deteriorate.

For each of data association and covariance estimation, we
train tiny multi-layer perceptrons (MLPs) to transform the
intermediate feature vectors of semantic segmentation net-
works into features dedicated to the specific tasks. Finally,
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through evaluation on the KITTI dataset [7], we demonstrated
that the proposed framework improves the estimation accuracy
compared to baselines.

In summary, the key contributions of this work are threefold:
1) We present a LiDAR odometry estimation framework

called Generalized LOAM. This framework improves
data association and covariance matrix estimation in the
GICP method. We propose two tiny MLPs that convert
local geometric feature vectors to suitable values for data
association and matching cost evaluation with GICP.

2) We show that Generalized LOAM increases the accuracy
of the estimated pose compared to the other existing
methods. An ablation study confirmed the contribution
of the two modified functions, data association, and
covariance matrix estimation, to improve the estimation
performance.

II. RELATED WORK
A. Improvement of ICP-based Algorithm Based on Features

Because our proposed method is an extension of the GICP
algorithm [3], we describe improvements of the ICP-based
method based on local features in detail.

There have been several studies on improving data associa-
tion algorithms using local features. GF-ICP [8] improves the
cost function for data association and rejects incorrect corre-
spondences using the curvature, surface normal, and density
of points. Gressin et al. used similar low-level local geometric
features to find the optimal radius for the nearest neighbor
search [9]. Color-GICP [10] finds the nearest neighbors in the
extended dimensional space based on the L*a*b* color space.

Some studies proposed methods to estimate the normal
distributions of points to better represent local geometric
shapes. Surface-based GICP [11] estimates the surface normals
for shapes using polynomial function fitting and weighted
covariance matrices. To deal with the inhomogeneity of the
point cloud, Mesh-GICP [12] estimates the direction of normal
distributions from topological information with surface re-
construction. Multi-channel GICP [13] incorporates additional
information, such as color and intensity, into the nearest
neighbor search as kernel weights for estimating covariance
matrices. These methods assume that all points belong to
planes, which results in extracting low-dimensional local fea-
tures.

B. Semantic Registration

Semantic registration methods extract geometric features,
such as lines, planes, and spheres, from points, and efficiently
determine the correspondences. LOAM [2] is the first method
that divides point clouds into edge and plane points based on
local curvature in a LiDAR scan line. While this method en-
ables fast point cloud registration, its accuracy and robustness
depend significantly on accurate point type labeling.

To achieve a more accurate and robust estimation, several
modifications for semantic registration have been developed,
including taking into account the uncertainty of the labels
[14], [15], using multi-class semantic segmentation [16], [17],
[18], [19], and adaptively changing the matching costs for

the planar and line points [20]. However, these approaches
cannot take full advantage of the geometric features of a
shape because they classify points into discrete labels and
thus cannot seamlessly fuse the data into continuous geometric
features.

C. Learning-based Odometry Estimation Approach

Several works have applied recent machine learning ad-
vances to odometry estimation. One type of method involves
direct pose regression using end-to-end LiDAR odometry
estimation neural networks [21], [22], [23]. These approaches
do not require determining point-to-point correspondence,
unlike the ICP-based method, and thus enable fast registration.
However, their performance is typically limited to the dataset
used for training, and their explainability is low.

Several other methods reformulate a subset of functions in
the classical odometry estimation system with neural networks
to achieve robust and explainable estimation [24], [25], [26].
These methods incorporate trainable features into a conven-
tional optimization framework. Our proposed method also falls
into this category.

III. GENERALIZED LOAM

A. System Overview

We aim to improve the following two points in the GICP
algorithm with local geometric features:

1) Reducing incorrect point correspondences by consider-
ing local geometric features.

2) Providing reasonable point covariance matrices for ro-
bust point comparison in environments where plane-to-
plane ICP estimation accuracy deteriorates.

Figure 1 shows the configuration of the proposed system. We
first use a pre-trained neural network to estimate the local
geometric features of points. We then reduce the dimensions
of the features by principal component analysis (PCA) and
transform them into representations dedicated to data associ-
ation and covariance matrix regularization using tiny MLPs.
Then, the pose is estimated following the GICP registration
procedure.

B. GICP Registration

Because our proposed method is an extension of the GICP
algorithm [3], we first introduce the details of this algorithm.
We consider the estimation of a pose transformation T, which
aligns a set of points A = {a1, . . .aNA} (source point cloud)
to another set of points B = {b1, . . .bNB} (target point cloud).
Following the conventional ICP scheme, GICP estimates the
transformation between point clouds by repeating a two-step
process: 1) estimating data association and 2) pose optimiza-
tion by minimizing a cost function.

In the 1) data association step, the correspondences between
source A and target B point clouds are estimated by the nearest
neighbor search:

{(ai,bi) | bi = argmin
j∈{1,··· ,NB}

‖pa
i −pb

i ‖2}, ∀i ∈ {1, · · · ,NA}, (1)
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Fig. 1. Configuration of the proposed system. The proposed system estimates 6DoF poses on the GICP framework. We improve Data Association and
Covariance Matrix Estimation using local geometric features extracted from the pre-trained backbone neural network.

where p∗ are the Euclidean coordinates of points.
The GICP algorithm models the local surface around a point

as a Gaussian distribution: ai ∼ N(âi,CA
i ), bi ∼ N(b̂i,CB

i );
CA

i and CB
i are the covariance matrices for points ai and bi,

respectively. We assume that the transformation error becomes
zero under the correct transformation; d̂i = b̂i−Tâi = 0. Then,
the distribution of di is given by the reproductive property of
the Gaussian distribution as

di ∼N(b̂i−Tâi,CB
i +TCA

i TT ) =N(0,CB
i +TCA

i TT ). (2)

In the 2) transformation optimization step, the pose trans-
formation T̂ is updated such that the log-likelihood of (2) is
maximized:

T̂ = argmax
T

∑
i

log(p(di)) (3)

= argmin
T

∑
i

dT
i (C

B
i +TCA

i TT )−1di. (4)

This cost function is the sum of the Mahalanobis distances
between corresponding points. It can be regarded as the
weighting of the distances between the points by the covari-
ance matrices CA

i and CB
i . The covariance matrix for each point

is typically estimated from its k neighbors and represents the
local shape around the point.

For example, suppose the eigenvalues of the covariance ma-
trix are (a,ε,ε), (a,b,ε), and (a,b,c) where ε is a sufficiently
small value. In this case, they represent a line, a plane, and a
sphere, respectively. Thus, GICP can be considered as an ICP
for local-shape-to-local-shape comparison.

However, in the original work on GICP [3], the covariance
matrices are regularized by replacing their eigenvalues with
(1,1,ε). This regularization turns GICP into a plane-to-plane
ICP. This approximation can lead to incorrect or inadequate
constraints, which cause pose estimation accuracy to deterio-
rate.

C. Estimation of Local Geometric Features

We estimate local geometric features using a pre-trained
neural network for 3D point clouds. This work uses and
compares Pointnet++ [5] and RandLA-Net [6], which are
designed and trained for semantic segmentation. Because the
outputs of these networks are the semantic labels of points,
we expect their intermediate feature representations to contain
rich information on the local geometric shapes around points.
We extract the intermediate feature vectors from the 4th layer
of PointNet++ and the 12th layer of RandLA-Net. The sizes of
the PointNet++ and RandLA-Net feature vectors are (N,128)
and (N,32), respectively, where N is the number of points.

      : Picked Point

(a) Coloring of same semantic labels

      : Picked Point

(b) Coloring of the close norm of feature vectors

Fig. 2. Semantic labels (a) and feature vectors (b) obtained from RandLA-Net
[6]. For each picked point (red circles), we find the 500 closest neighboring
points in the feature space and visualize them in the same color. In (b), the
colored points surrounding the selected ones have the same labels or are
similar in shape and are near in the distance. This result shows that the feature
vectors contain information about local geometric shapes and spatial distances.

These features are used in a later process after they are com-
pressed down to six-dimensional feature vectors F = {f1 . . . fN}
with PCA-based on singular value decomposition implemented
in [27]. The reason for the compressioin is that the extracted
raw feature vectors are sparse and the trained parameters need
to be reduced, as described in section V. In our experiments on
the KITTI dataset [7], the compressed features of PointNet++
and RandLA-Net have cumulative contribution rates of over
80% and 90%, respectively.

Figure 2 shows the semantic labels and feature vectors
obtained from RandLA-Net. We find 500 nearest neighbor
points in the feature space for each selected point (red circles)
and visualize them in the same color. In Fig. 2, we can see
that the colored points around the picked ones have the same
labels or are similar in shape and are close in the distance. This
result suggests that the feature vectors contain local geometric
shapes and spatial distance information.

D. Data Association Using Local Geometric Features

Equation (1) in the standard GICP method states that
the correspondences between source and target points are
estimated by a nearest neighbor search based on the spatial
distance of points. This metric is simple, and thus significant
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(A) Raw covariance matrices

(B) Plane covariance matrices (GICP)

(C) Covariance matrices replace eigenvalues
estimated by feature vectors (GeneralizedLOAM) 

Wrong estimation due to sparse point cloud

Approximations are different from original shapes

Fig. 3. Example of estimated covariance matrix shapes. (A) shows the raw covariance matrices estimated using only the positions of points. We can see that
some points have degenerate distributions caused by the sparsity of pole and road surface points. The raw covariance matrices are regularized as planes in the
standard GICP method. (B) shows the plane covariance matrices used in the standard GICP method. While this approach avoids degenerate distributions, the
distributions of some points do not sufficiently represent the original surface shape. On the other hand, as shown in (C), the shapes of covariance matrices
estimated by the proposed regularization algorithm better represent the surface shapes (planes, spheres, and lines) while avoiding the degeneracy of the
distributions.

initial transformation errors and sensor noise can lead to
incorrect associations and sub-optimal local solutions.

To reduce incorrect associations under transformation noise,
we concatenate the local geometric features and the Euclidean
coordinates of each point and find the nearest neighbors in
the extended dimensional space. This is a similar approach to
[10]. We use the L2 norm to measure the distance between
feature vectors so that an efficient kd-tree algorithm [28] can
be used for the nearest neighbor search:

{(ai,bi) | bi = argmin
j∈{1,··· ,NB}

(‖pa
i −pb

i ‖2 +‖f̄a
i − f̄b

i ‖2)}, (5)

f̄i = FeatureConversionMLP(fi), ∀i ∈ {1, . . .NA}, (6)

where p∗ is the 3D coordinate of the point and f∗ ∈ F is the
estimated local geometric feature vector described in Section
III-C. Note that positions and features are different physical
quantities, and the 6-dimensional feature vector f ∈ F should
not be used as-is. In [10], these scales are adjusted using
weight parameters, but a trial-and-error adjustment is required.
Instead of introducing weight parameters, we add a feature
encoder (Feature Conversion MLP) before the data association,
as shown in Fig. 1. This encoder is trained to convert the
feature vector f ∈ F to an appropriate vector f̄ ∈ F̄ for the
data association in Eq. (5). The encoder is a three-layer MLP
consisting of six, four, and three nodes in the input, middle,
and output layers, respectively. The ReLU activation function
is used. The number of dimensions for output feature vector
f̄ ∈ F̄ used in Eq. (5) is three. The training procedure for the
Feature Conversion MLP will be described in section III-F.

E. Covariance Matrix Estimation Using Local Geometric Fea-
tures

The covariance matrices in Eq. (4) represent the local shapes
around points (line, plane, and sphere); their eigenvectors and
eigenvalues respectively represent the basis vector directions

Algorithm 1 Covariance Matrix Estimation

Input: Point coordinates pi ∈P, Point features fi ∈ F̄, Number
of neighbors k, Eigenvalue threshold ε

Output: Estimated covariance matrix Ci
1: Mi = KNN(k,pi,P) . K-nearest neighbor search

2: µi =
∑p j∈Mi p j

k

3: Ci =
∑p j∈Mi p jpT

j
k −µiµ

T
i

4: QiΛiQ−1
i = Ci . Eigenvalue decomposition

5: ei = EigenvalueEstimationMLP(fi)
6: e′i = (Sort ei elements in ascending order)
7: for e ∈ e′i = {e1,e2,e3} :
8: if e≤ ε :
9: e = ε . To prevent rank drop

10: e′′i = e′i/‖e′i‖2 . Scaling eigenvalues
11: C′i = Qidiag(e′′i )Q

−1
i . Replacing eigenvalues

12: return C′i

and lengths for point distributions. As described in section
III-B, the standard GICP method replaces eigenvalues with
(1,1,ε); All local shapes are approximated as planar with the
same spread.

The approximation enables robust estimation of the ge-
ometric shapes regardless of the density of the points or
sensor noise. However, the approximation can degrade the
registration performance due to inaccurate representation of
the local shapes.

Here, we propose a covariance regularization method with
a tiny MLP to keep the expressive capability of covariance
matrices while avoiding rank deficiency. Algorithm 1 describes
the proposed covariance regularization method.

There are two key points in this algorithm:

1) Estimating principal component directions (i.e., eigen-
vectors) for a distribution based on the positions of the
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nearest neighboring points.
2) Estimating eigenvalues that control the shape of the

distribution with feature vectors F.
The eigenvalues are estimated by an encoder called Eigenvalue
Estimation MLP, as shown in Fig. 1. This encoder is a three-
layer MLP consisting of six, four, and three nodes in the input,
middle, and output layers. The ReLU activation function is
used to inject non-linearity.

Because the extracted local geometric features are trained
to be rotation-invariant in Euclidean space [29] and do not
contain directional information for the local shape, we estimate
the eigenvectors with the standard PCA procedure and let the
MLP estimate only the eigenvalues.

Figure 3 shows a visualization of an example of estimated
covariance matrix shapes. Figure 3(A) shows the raw covari-
ance matrices are estimated using only positions of points
(line 3 in the Algorithm 1). We can see that some points have
degenerate distributions caused by the sparsity of pole and road
surface points. The raw covariance matrices are regularized
as planes in the standard GICP method. Figure 3(B) shows
the plane covariance matrices used in the standard GICP
method. While this approach avoids degenerate distributions,
the distributions of some points do not sufficiently represent
the original surface shape. On the other hand, as shown in
Fig. 3(C), the shapes of covariance matrices estimated by the
proposed regularization algorithm better represent the surface
shapes (not only planes but also spheres and lines) while
avoiding degeneracy of the distributions.

F. Training Feature Conversion and Eigenvalue Estimation
MLPs

We train the Feature Conversion MLP and Eigenvalue
Estimation MLP using the KITTI dataset [7]. Figure 4 shows
the pipeline for training the MLPs. Inspired by [24], we take a
closed-loop training approach. We use the translational relative
trajectory error (RTE) [31] between the estimated and ground-
truth trajectories as the loss function L:

L=
1
N ∑

s
∑
s∈T
‖δ tg

s −δ t̂s‖2, (7)

where s represents a sub-trajectory with a fixed length
cut from the trajectory T . δ tg

s and δ t̂s are relative trans-
lational poses from the start point to the endpoint of
each sub-trajectory, which are divided from the ground
truth and estimated trajectories, respectively. N is the
number sub-trajectory length settings and is used N =
8; (length of s) ∈ {100,200,300,400,500,600,700,800} [m]
following the KITTI official evaluation code (Development
kit).

Because the GICP registration module in the proposed sys-
tem is non-differentiable, we apply a black-box optimization
method based on the tree-structured Parzen estimator [32]
for optimizing the weights of the MLPs. The implementation
is performed in Optuna [33], and the number of weights
for each MLP to be optimized is 46. The backbones of the
Features Extraction Network (Pointnet++ and RandLA-Net)
are pretrained on the SemanticKITTI dataset [30].

Figure 5 shows how the shapes of the estimated covariance
matrix changed during the training process. Before the training
(0 epochs), the MLPs with random weights represent a few
planar shapes. As the training progresses from 10 epochs to
200 epochs, the estimated covariances start to better represent
the surface as the loss decreases, but there is a large hole
near the LiDAR. After training the MLPs for 500 epochs, the
hole is filled, but the shapes of estimated covariance matrices
tend to be “thorny” due to the sparsity of points and do not
represent the actual local geometric shapes well. However,
after 1000 epochs of training, they better represent local
surface shapes while avoiding rank deficiency. The training
changes the shapes significantly from the unlearning phase.
This result suggests that minimization of the relative pose
errors enables the MLP to represent local geometric shapes.
In other words, it implies that the covariance matrices in the
cost function (4) can improve the accuracy of the GICP by
correctly approximating the local geometric shapes.

IV. EXPERIMENT

A. Implementation Details

We trained and evaluated the proposed Generalized LOAM
method on the KITTI dataset. We trained the MLPs for 1000
epochs using five sequences (01, 03, 05, 07, 09) out of the
11 sequences of the KITTI dataset and used the rest as a
validation set. Optimization of the GICP registration module
was performed using the Levenberg-Marquardt optimizer in
GTSAM1.

B. Evaluation

We calculated the RTE averaged over 100 to 800 m trajec-
tories with the KITTI official evaluation code (Development
kit). We used an Intel Core i9-10900 (16 threads) to run the
proposed framework.

1) Comparison with Baseline Methods: We compared the
proposed method with four LiDAR odometry estimation al-
gorithms: LOAM [2], LeGO-LOAM [1], plane-to-plane GICP
[3], and SuMa [35]. We implemented both LOAM and GICP,
and they share common processes (e.g., preprocessing and
pose optimization) and parameters for a fair comparison. The
LeGO-LOAM and SuMa results were obtained with parame-
ters tuned by Optuna [33] in [34]. Note that all algorithms are
compared using only the front-end part (loop closure is dis-
abled). All quantitative evaluation results including rotational
RTEs are available on a supplementary website 2.

Table I shows the translational RTEs. The proposed method
using RandLA-Net gives the lowest RTEs (1.23% for the
training set and 0.97% for the test set). The proposed method
with PointNet++ presents the second-lowest and third-lowest
RTEs (1.34% and 1.09%, respectively, for the training and test
sets). This result suggests that the proposed method improves
the accuracy of GICP due to high-quality local geometric
feature representation. However, while the proposed method
ranks first and second in the training dataset, SuMa gives

1https://github.com/borglab/gtsam
2See the project page for details: https://kohonda.github.io/proj-gloam/

https://github.com/borglab/gtsam
https://kohonda.github.io/proj-gloam/
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relative trajectory error (RTE) between the estimated and ground-truth trajectories. The backbones of the Features Extraction Network (Pointnet++ [5] and
RandLA-Net [6]) are pre-trained on the SemanticKITTI dataset [30].

10 epochs (Loss: 14.2)0 epochs (Loss: 48.0) 100 epochs (Loss: 4.8)

200 epochs (Loss: 3.2)500 epochs (Loss: 1.38)1000 epochs (Loss: 1.25)

Fig. 5. Shapes of the estimated covariance matrix during the training process. In the early stages of training, the shapes of the estimated covariance matrices
have many holes and thorns. As the learning progresses, they represent the actual local geometric shapes more closely as the loss decreases. This result
suggests that the minimization of the relative pose errors enables the Eigenvalue Estimation MLP to represent local geometric shapes.

TABLE I
AVERAGE TRANSLATIONAL RTES [%] FOR THE KITTI DATASET [7]

Training dataset Test datasetSeq. ID 01 03 05 07 09 Avg. 00 02 04 06 08 10 Avg.
LOAM 2.33 4.18 5.34 2.02 7.35 4.24 3.51 10.8 3.40 1.19 4.66 4.08 4.61

LeGO-LOAM 3.07 1.63 1.02 1.02 1.29 1.61 1.87 1.83 1.33 1.09 1.76 1.83 1.62
GICP 3.18 1.06 0.90 0.57 1.26 1.40 1.11 1.54 1.07 0.72 1.15 1.40 1.17
SuMa 5.59 1.14 0.87 0.66 0.86 1.82 0.84 1.27 0.56 0.60 1.43 1.73 1.07

Generalized LOAM (PN++) 3.16 1.04 0.82 0.53 1.15 1.34 1.04 1.45 1.01 0.68 1.10 1.24 1.09
Generalized LOAM (RN) 2.91 0.95 0.76 0.53 1.00 1.23 0.94 1.33 0.87 0.64 1.06 0.99 0.97

Red and blue respectively indicate the first and second best results. PN++ and RN mean PointNet++ and RandLA-Net, respectively.
LOAM and GICP are implemented by ourselves. LeGO-LOAM and SuMa show the results with parameters tuned by Optuna in [34].

the second-lowest average and lowest RTEs in Seqs. 00, 02,
04, and 06 of the test dataset. This result indicates that the
proposed methods are slightly over-trained. We expect that
the generalization performance can be improved by training
on various data other than the KITTI dataset and enhancing
the data efficiency of training described in section V.

2) Processing Time: We compared the processing times
for each process for all the methods, and the results are
shown in Fig. 6. Note that the computation time of LOAM is
only for the front-end part. Because feature extraction using
PointNet++ takes an average of 261 ms and is not suitable for
real-time execution, only the proposed method using RandLA-
Net is shown in Fig. 6. The proposed method using RandLA-
Net takes roughly 30 ms for processing a frame with multi-
threading and thus is sufficiently faster than the real-time
requirement (100 ms per frame). The processing times are,

however, slightly increased compared to the baseline methods.
This is because the number of dimensions is increased from
3 to 6, which affects the efficiency of the nearest neighbor
search for data association.

3) Ablation Study: Our proposed method (Generalized
LOAM) improves two functions of GICP using local geomet-
ric features; data association and covariance matrix estimation.
We compared the RTEs for GICP with four settings: the
conventional GICP, GICP with the proposed data association,
GICP with the proposed covariance matrix estimation, and
Generalized LOAM to confirm that both functions contribute
to the improvement in accuracy. We show the results of these
ablation studies using the test dataset (Seq. (00, 02, 04, 06,
08, 10)) in Table II. GICP with two functions (=Generalized
LOAM) shows the best result with Pointnet++ and RandLA-
Net for all the sequences. GICP with either function improves
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TABLE II
ABLATION STUDY ON KITTI DATASET [7]

00 02 04 06 08 10 mean
Method/Seq. tRTE

1 rRTE
1 tRTE rRTE tRTE rRTE tRTE rRTE tRTE rRTE tRTE rRTE tRTE rRTE

GICP (Baseline) 1.11 0.52 1.54 0.55 1.07 0.67 0.72 0.36 1.15 0.47 1.40 0.61 1.27 0.52
PN++ 3 1.06 0.50 1.48 0.53 1.03 0.64 0.70 0.35 1.14 0.45 1.32 0.57 1.24 0.50

GICP+DA 2
RN 3 1.07 0.50 1.49 0.53 1.02 0.64 0.68 0.35 1.12 0.45 1.28 0.55 1.22 0.50

PN++ 1.08 0.51 1.52 0.54 1.06 0.65 0.70 0.35 1.12 0.45 1.31 0.58 1.24 0.51
GICP+CE 2

RN 1.00 0.47 1.40 0.48 0.93 0.57 0.68 0.34 1.08 0.42 1.12 0.51 1.15 0.46
PN++ 1.04 0.49 1.45 0.52 1.01 0.62 0.68 0.35 1.10 0.43 1.24 0.54 1.20 0.48GICP+DA+CE

(Generalized LOAM) RN 0.94 0.43 1.33 0.46 0.87 0.53 0.64 0.33 1.06 0.40 0.99 0.45 1.09 0.43
1 tRTE and rRTE are the translation [%] and rotation [°/m] RTEs.
2 DA and CE mean data association and covariance matrix estimation using features, which are described in Section III-D and III-E, respectively.
3 PN++ and RN mean PointNet++ and RandLA-Net, respectively.

Processing time [ms]

GICP

LOAM

Generalized 
LOAM (RN)

0 10 20 30

Edge Plane Extraction Feature Extraction
Covariance Matrix Estimation Feature Conversion Pose optimization

Fig. 6. Average processing time per scan. Processing is parallelized with 16
threads. RN means RandLA-Net. Generalized LOAM takes roughly 30 ms to
process a frame with multi-threading and thus is sufficiently faster than the
real-time requirement (100 ms per frame).

the RTEs compared to the baseline GICP (PN++: −0.07%,
−0.04°/m; RN: −0.18%, −0.09°/m). For RandLA-Net, the
improvement of the mean RTEs with covariance matrix esti-
mation (−0.12% and −0.06°/m) is more significant than that
with data association (−0.05% and −0.02°/m). This could be
the reason that the backbones (PontNet++ and RandLA-Net)
are trained for the semantic segmentation task and that the
extracted features are better suited for approximating local
geometric shapes than data association. We expect that the
data association could be further improved by re-training the
backbone with data association.

C. Real Data Experiment

The Generalized LOAM illustrated in Fig.1 uses local
geometric features extracted from PointNet++ or RandLA-
Net as a backbone. Because the two neural networks are pre-
trained with the KITTI dataset, the technical characteristics
of the LiDAR model (Velodyne HDL-64E3) may influence
the features. To verify the generalization performance of the
proposed method, we tested our system on another dataset
acquired with a different LiDAR model.

We measured point cloud data (4142 frames) in an outdoor
environment using an Ouster OS0-64 model4. Although the
number of scan lines in the OS0-64 model is the same as
that in Velodyne HDL-64E, the scan angle and range differ.

3https://velodynelidar.com/products/
4https://ouster.com/jp/products/scanning-lidar/os0-sensor/

Figure 7 shows a point cloud map and estimated covariance
matrices generated by Generalized LOAM with RandLA-
Net. This result shows that the proposed system works well
without significant corruption and estimates high-quality local
geometric shapes as covariance matrices.

We also compared the pose estimation errors at the start
and end frames with the plane-to-plane GICP. The error
was 2.56m / 0.023rad for GICP and 1.86m / 0.007rad for
Generalized LOAM using RandLA-Net. This result suggests
that the proposed method will perform well when generalized
to other LiDAR models.

V. CONCLUSION AND FUTURE WORK

This paper presents a point cloud registration method that
improves data association and covariance matrix estimation
in the GICP method using local geometric features. We
propose two MLPs: the feature conversion MLP converts local
geometric features to scaled values for the metric for nearest
neighbor search, and the eigenvalues estimation MLP estimates
eigenvalues of the covariance matrices to avoid rank deficient
covariance matrices while keeping their expressive capability.
These two MLPs are trained with closed-loop pose estimation
and an error evaluation pipeline.

In the current implementation, the proposed system involves
non-differentiable processes that limit the number of trainable
parameters in the system because efficient differentiation-
based optimization is not applicable. Additionally, although
the current loss function in Eq. (7) is a typical and direct
evaluation metric for odometry estimation, its results are too
sparse to provide teaching data for training; we can obtain
only one error for each continuous sequence on the KITTI
dataset, which is inefficient for training. In future work, we
plan to further improve registration accuracy by making the
entire process differentiable and improving the loss function.
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