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Globally Consistent 3D LiDAR Mapping with
GPU-accelerated GICP Matching Cost Factors

Kenji Koide!, Masashi Yokozukal, Shuji Oishi!, and Atsuhiko Banno!

Fig. 1: Mapping result for the KITTI 00 sequence. (A) The global matching cost minimization approach enables constraint of
the relative pose between frames with a small overlap, and (B) the GPU-powered implementation allows creation of a massive
amount of factors and the construction of a densely connected factor graph. The factor graph contains over 4,500 matching cost
factors, and each factor involves the cost evaluation of approximately 20,000 points on average. The optimization converges

in a few seconds on a middle-class GPU.

Abstract—This paper presents a real-time 3D LiDAR map-
ping framework based on global matching cost minimization.
The proposed method constructs a factor graph that directly
minimizes matching costs between frames over the entire map,
unlike pose graph-based approaches that minimize errors in the
pose space. For real-time global matching cost minimization, we
use a voxel data association-based GICP matching cost factor
that is able to fully leverage GPU parallel processing. The
combination of the matching cost factor and GPU computation
enables constraint of the relative pose between frames with a
small overlap and creation of a densely connected factor graph.
The mapping process is managed based on a voxel-based overlap
metric that can quickly be evaluated on a GPU. We incorporate
the proposed method with an external loop detection method
in order to help the voxel-based matching cost factors to avoid
convergence in a local solution. The experimental result on the
KITTI dataset shows that the proposed approach improves the
estimation accuracy of long trajectories.
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I. INTRODUCTION

NVIRONMENTAL mapping is crucial for autonomous

systems, and SLAM has been a major research topic in
the robotics field. An important aspect of SLAM is global
consistency. It is desirable that a mapping system is able to
retain the consistency of every single part of a map after
running on a long trajectory and closing large loops.

One way to refine a trajectory estimation result and improve
the mapping consistency is pose graph optimization, which
minimizes the relative pose errors between frames in the pose
space [1]. This approach has been well established in the
literature and is widely used [2], [3]. Pose graph optimization
requires modeling each relative pose constraint in the form
of a Gaussian distribution (i.e., mean and covariance matrix).
However, representing a relative pose, which is typically a
result of scan matching, as a Gaussian distribution is obviously
too approximated. Scan matching solutions have many local
minima and thus cannot be accurately modeled in the form of a
unimodal distribution. Furthermore, estimating the uncertainty
(i.e., covariance matrix) of a scan matching result is difficult
in practice [4]. Most existing studies use only a constant
covariance matrix [2], a simple weighting scheme [5], or
Hessian-based closed-form covariance estimation [6], which
tends to be optimistic [4]. Inaccurate modeling of relative pose
constraints can lead to deteriorated estimation accuracy of a
long trajectory with large loops.
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Global matching cost minimization is another approach to
improve the consistency of a map. Early on, Lu and Milios
proposed a graph-based 2D mapping approach that minimized
the matching cost between frames over the entire map [7]. This
method was then extended to three dimensions by reducing the
number of global optimization executions by explicitly han-
dling loop closure events [8], [9]. These approaches ensured
that all the frames were aligned together and thereby retained
the local consistency of every part of the map (i.e., global
consistency) while closing loops. They evaluated the global
matching cost and updated each factor for every optimization
iteration; this can be interpreted as the SE3 relative pose factor
with variable mean and covariance. Furthermore, each factor
can represent a deficient constraint in this way. They thus
can more accurately model the constraint of the relative pose
between frames compared to pose graph-based approaches.
However, performing global matching cost minimization was
still computationally expensive, and application to large-scale
and real-time mapping was considered to be infeasible.

In this work, we revisit the global matching cost mini-
mization approach with modern GPU computation techniques
and propose a real-time and globally consistent 3D LiDAR
mapping framework. The core of the proposed framework
is the multi-scan registration algorithm, which minimizes the
errors of Generalized ICP (GICP) matching cost factors with
voxel-based data association [10], [11] over the entire map
by fully leveraging GPU parallel processing. This approach
has several advantages. First, this enables constraint of the
relative pose between frames with a very small overlap,
where it is difficult to explicitly estimate the relative pose
through scan matching (Fig. 1(A)). Second, the GPU-powered
implementation enables the creation of a massive amount of
factors (Fig. 1(B)). Although we create a matching cost factor
between every frame pair with an overlap rate larger than
a small threshold (e.g., 2.5%), the global map optimization
converges in a few seconds on a middle-class GPU.

The proposed framework consists of local and global map-
ping modules, which perform matching cost minimization
locally and globally, respectively (see Fig. 2). Both of the
mapping modules are managed based on a voxel-based overlap
metric that can quickly be evaluated on a GPU. In order to
prevent the voxel-based matching cost factors from becoming
stuck at a local minimum, we explicitly detect a few loops
with an external loop detector (e.g., ScanContext [12]) and add
these loops to the factor graph as SE3 relative pose constraints.
Through evaluation on the KITTI dataset [13], we show that
the proposed approach improves the estimation accuracy of
long trajectories with large loops.

The key contributions of this work are as follows:

1) We present a globally consistent 3D mapping framework
based on the GPU-accelerated matching cost factor and
show that the matching cost minimization over the entire
map is feasible in real-time. To the best of our knowl-
edge, this is the first real-time method that performs scan
matching at a global scale.

2) We propose a mapping management mechanism based
on an overlap metric that can quickly be evaluated on

a GPU and enables the design of a general mapping
process.

3) We show that the global matching cost minimization
approach enables retention of the global consistency of
large maps and increases the mapping quality.

II. RELATED WORK

Since the main contribution of this work is a method by
which to retain the global consistency of a map, we focus in
this section on global map optimization approaches.

A. Pose Graph Optimization

While many frontend methods for 3D LiDAR SLAM have
been proposed [2], [5], [14], [15], most of these systems rely
on pose graph-based maximum a posteriori estimation [1] as
the backend in order to refine trajectory estimation results
and improve the mapping consistency. Pose graph-based ap-
proaches construct a factor graph with relative pose (SE3)
constraints and estimate the sensor trajectory that minimizes
the errors in the pose space. This approach has been well
established and has become the gold standard for the 3D
LiDAR SLAM backend.

In pose graph optimization, relative pose constraints are
modeled as a Gaussian distribution. However, the Gaussian
distribution form is a too-approximated representation for scan
matching results. A scan matching solution inherently has
many local minima and thus cannot be accurately modeled
in the unimodal distribution form, and this approximated
representation would affect the optimization result once the
scan matching converges to a local solution.

Furthermore, estimation of the covariance matrix of a scan
matching result is difficult in practice [4]. Although closed-
form uncertainty estimation methods based on the Hessian
matrix of the cost function have been commonly used [16],
[6], it is known that closed-form methods tend to be optimistic
because these methods are not able to take into account the
cost function deviation caused by data association changes [4].
On the other hand, Monte-Carlo-based covariance estimation
methods can more accurately estimate the uncertainty of scan
matching results [17]. These Monte-Carlo-based methods,
however, are computationally expensive. Although data-driven
covariance estimation approaches [4] have been proposed in
order to balance the real-time performance and estimation
accuracy, most existing SLAM frameworks use only a constant
covariance matrix [2], a simple weighting scheme [5], [14], or
Hessian-based closed form covariance estimation [6].

B. Deformation Graph

Map deformation is another approach to retain the surface
consistency of mapping results including loops [18]. This ap-
proach constructs a graph that deforms the mapping result such
that the local consistency is preserved. Deformation graph-
based map-centric mapping approaches without estimation of
the full sensor trajectory have been proposed [19] . These
methods, however, do not accurately take all available infor-
mation into account and may disrupt the global consistency of
the map.
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Fig. 2: Overview of the proposed framework.

C. Bundle Adjustment

Bundle adjustment (BA) that simultaneously optimizes sen-
sor poses and environmental parameters over frames has been
important in the visual SLAM field [20]. It has been shown that
BA-based methods show good trajectory and reconstruction
accuracy while it is known to be computationally expensive.
For real-time performance, BA is typically carried out at two
different scale levels (real-time local BA and low frequency
global BA) with a limited number of feature points [20].
Notably, Schops et al. recently showed that direct BA-based
visual odometry at a global level is feasible in real-time with
GPU processing [21]. In the context of 3D LiDAR SLAM,
however, it is rare to see BA-based approaches due to the
difficulty of feature tracking on sparse LiDAR data, and few
studies on BA-based approaches have been proposed [22],
[23].

D. Global Matching Cost Minimization

Lu and Milios formulated the mapping problem as mini-
mization of the matching cost of frames over a factor graph
[7], and their method was extended to three dimensions by
several studies by explicitly handling loop detection events
[8], [9], their method was still considered to be infeasible in
real-time because it needs to re-evaluate the matching cost of
every frame pair at every optimization iteration.

Recently, Reijgwart et al. proposed a volumetric mapping
method that takes into account registration errors between
local submaps [3]. They used an efficient registration error
metric based on Euclidean Signed Distance Field (ESDF)
representation in order to avoid the costly correspondence
search. The cost evaluation was, however, still computationally
expensive, and optimization was carried out with only a
random subset of residuals and with the support of SE3 relative
pose constraints.

E. GPU-based SLAM

The GPU has been commonly used for almost every com-
ponent of dense visual and RGB-D SLAM (from frontend
[21] to backend [18]). In contrast, in the context of LiDAR
SLAM, the use of GPU was mostly limited to accelerating
scan matching in the frontend [2], [24]. While there have
been also proposed deep learning-based frontend [25] and loop
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Fig. 3: Factor graph of the proposed framework. For local
mapping, a fully connected matching cost factor graph is
constructed. For global mapping, matching cost factors are
created between every submap pair with an overlap rate larger
than a threshold. In order to prevent the matching cost factors
from becoming trapped at a local solution, explicit SE3 loop
constraints are inserted into the graph.

Adjacent constraints
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detection methods [26] with GPU processing, in most of the
works, pose graph optimization performed on a CPU is in
charge of global optimization.

III. METHODOLOGY

Figure 2 shows an overview of the proposed system. We first
remove dynamic objects (e.g., cars and pedestrians) from input
point clouds using RandLA-Net [27] and run an odometry
estimation algorithm (e.g., MULLS [15]) to obtain an initial
guess for the latest sensor pose. Meanwhile, we estimate the
covariance matrix of each point from its k-neighboring points.
Note that the costly nearest neighbor search is used only in
this preprocessing step, which is performed once for every
input point cloud.

The preprocessed point cloud and the sensor pose initial
guess are fed to the local mapping module that merges approx-
imately 10 to 20 frames into one submap, and the submaps
are then merged into one global map in the following global
mapping module. The core of the local and global mapping
modules is the multi-scan registration algorithm that constructs
a factor graph with voxelized GICP matching cost factors
(see Fig. 3). This optimizes the sensor poses such that all
neighboring frames are aligned together. In the local mapping
module, we construct a fully-connected factor graph. In the
global mapping module, we create constraints between the
latest submap and every past submap that has a certain overlap
with the latest submap. As a result, all of the submaps are
aligned with not only adjacent submaps on the graph but also
every revisited submap that results in closing loops implicitly.
We obtain the final mapping result by concatenating submap
point clouds based on the optimized trajectory.

A. Voxelized GICP Matching Cost Factor

We estimate a set of sensor poses 7 = {Tp,---,T;} by
minimizing the matching cost over a set of point cloud pairs
FM _ The objective function to be minimized is defined as:

fM(JT:M7T): Z eAi(Pi7Pj71}aTj)7 (1)

(i.5)eF™M
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where P; and P; are a point cloud pair, T; and T are their
poses, and e is a matching cost function.

As the matching cost function, we choose the voxelized
GICP (VGICP) cost [10] that is as accurate as GICP and
suitable for GPU processing. The VGICP cost is based on the
GICP distribution-to-distribution error that is the most accurate
among the ICP variants [11]. The GICP error between a point
with covariance pr = (g, C) and its corresponding point
p), = (u},, C},) on a transformation T is defined as:

e%P(py, T) = d¥ (C), + TC,TT) 1dy,, 2)

where dj, = pj, — Ty, is the residual between gy, and p).
In the original GICP algorithm, corresponding points are
given by a nearest neighbor search, e.g., by a KD tree. How-
ever, the use of a KD tree is not suitable for a GPU because
the KD tree uses a number of conditional branches, which
affects the performance of the GPU. In order to maximize the
processing speed, VGICP uses a voxel-based data association
approach. It discretizes each input point cloud into voxels at
resolution r and calculates the mean and covariance of each
voxel based on the points that fall within the voxel. VGICP
aggregates point distributions into one voxel distribution, un-
like Normal Distributions Transform (NDT)-based algorithms
that compute a voxel distribution from a set of points [28].
This approach enables a valid distribution on a voxel to be
obtained with only a few points and results in robustness to
voxel resolution changes and more accuracy than NDT [10].
Then, the matching cost between a point cloud P; =

{po,--- ,pn} and another point cloud P; is defined as:
MPLP,TLT) = > ¥Cpe, Ty), G
PLEP;

where T;; = T, '} is the relative pose estimate between P
and P;. The corresponding points p) are given by looking up
the voxel map of P;. From the derivatives of Eq. 3, we obtain
a Hessian factor to constrain T; and T that is composed of
Hessian matrices H;;, H;;, and H;; and coefficient vectors
b; and b;:

8ek aek
A = — = — 4
F=om BT on “)
N N
Hy =Y A{QuA;, Hyj =) A[QB,
k k
N
Hj;; =) BB, (5)
k
N N
bi=> AlQer, b= Bl Qey, (6)
k k
where e, = pj — T;jpu, and Q, = Cj + E-jCkTg-.
Note that we re-evaluate the matching cost function e every

optimization iteration, and thus H, and b, are also updated
at the current linearization point.

B. Local Mapping

The local mapping module aggregates a number of con-
secutive frames into one local submap in order to reduce the

number of pose variables optimized in the following global
mapping module.

In order to manage the mapping process, we use criteria
based on a simple fine-grained voxel-based overlap metric.
We define the overlap rate between two point clouds P; and
P; as the fraction of points p;, € P; that fall within a voxel
of P;:

1 if py fell in a voxel of P;
JP) = 7
5(Pr: P;) {O otherwise M
N
overlap(P;, P;) = M (8)

N

Equation 8 can quickly be evaluated on a GPU, and evaluation
takes less than 0.1 ms for a point cloud pair with approxi-
mately 50,000 points for each. This voxel-based overlap metric
enables the design of a general mapping process compared
to metrics based on time interval [5] or sensor displacement
[15] that require careful tuning of parameters depending on
the environment, while more accurately detecting overlapping
frames as compared to bounding box-based overlap metrics
[3].

If the overlap between the current frame and the last frame
in the submap is larger than a threshold th,LW (e.g., 95%), then
the sensor is considered not to have made a move, and we skip
that frame. Otherwise, we create its voxel map with resolution
of 7% and insert the pair of the current frame and the voxel
map into the submap factor graph. We create matching cost
factors between the inserted frame and all the other frames in
the submap, and thus a fully connected factor graph is created
for local mapping. Whenever the overlap between the very first
and last frames in the submap becomes smaller than threshold
th. (e.g., 10%) or the number of frames in the factor graph
becomes larger than threshold N  we perform factor graph
optimization and merge all of the frames into one submap
based on the optimized sensor poses. A voxel map with a
resolution of ¢ is created from the submap and then fed to
the following global mapping module. We assume that the
estimation drift in the short time span of the submap window
is negligible and fix the relative poses between frames in the
submap in the global mapping.

C. Global Mapping

The global mapping module takes the optimized submaps as
input and optimizes their poses such that they are all aligned
together. Every time a new submap is created, we compare
the overlap between that submap and all past submaps, and
create a matching cost factor between every submap pair
with an overlap rate larger than a small threshold thf,fm (e.g.,
2.5%). This results in a densely connected factor graph, as
shown in Fig. 1. The proposed approach aggressively creates
matching cost factors between submaps with a very small
overlap, where scan matching would fail to align the submaps,
and thus obtaining an accurate SE3 relative pose constraint
is difficult (see Fig. 4). Although the matching cost factors
over such submaps would represent deficient constraints, they
do not disrupt the optimization because the entire system is
well constrained by other factors. This approach helps in not



KOIDE et al.: GLOBALLY CONSISTENT 3D LIDAR MAPPING WITH GPU-ACCELERATED GICP MATCHING COST FACTORS 5

i

(A) Matching cost factor

(B) Scan matching result

Fig. 4: Matching cost factor enables constraint of the relative
pose between frames with a small overlap where scan match-
ing can be deteriorated. The orange line in (A) indicates a
matching cost factor between two frames, and (B) shows a
corrupted scan matching result between these frames.
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Fig. 5: Voxel-based matching cost factors can be trapped at
a local solution (the region surrounded by the orange oval in
(A) has inconsistency). A few loop constraints detected by an
external loop detector help the matching cost factors to avoid
convergence in a local solution and steer the optimization
toward a better solution (B).

only implicitly closing loops but also improving the odometry
estimation accuracy because every submap is connected to all
of the submaps in sight of that submap.

Since the matching cost factor uses voxel-based data associ-
ation, it can be trapped at a local solution when the estimation
drift is large, as shown in Fig. 5(A). In order to overcome
this problem, we explicitly detect loops with an external loop
detector and add detected loops to the factor graph as SE3
relative pose constraints to help the matching cost factors
to escape from local minima. The objective function for the
global mapping is thus defined as follows:

FOT) = fMFYT) + FHUEET), ©)
FEFRTY = 3 o (Nes(T T T)I2) . (10)
(¢,j)eFE

where F2 is the set of overlapping submap pairs, F5 is the
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Fig. 6: Shifted Tukey’s biweight function.

set of loop constraints, T;; is the relative pose measurement,
log is the logarithmic map, and p is a robust kernel. In this
work, we obtain explicit loop measurements by applying the
conventional GICP to a loop candidate frame pair with initial
heading estimate given by ScanContext [12].

Although we want the explicit loop constraints to steer
the optimization toward a better solution, we want to avoid
hindering the matching cost factors when the current estimate
sufficiently satisfies the detected loop constraint. For this
purpose, we apply Tukey’s robust kernel shifted with an offset
to each relative pose constraint. The shifted Tukey robust
kernel is defined as:

tukey(x, w) = max(0, (1 — 22 /w)?),
shifted_tukey(x, w, offset) = tukey(||x — offset||, w),

(1)
12)

where w is the kernel width, and offset is the amount of shift.
As shown in Fig. 6, this robust kernel forces the optimization
in order to satisfy the loop constraint while avoiding disrupting
matching cost factors when the relative pose error is small. The
kernel also removes loop constraints with errors that are too
large as outliers.

With explicit SE3 loop constraints, we aim to steer the
optimization toward a better solution but not to correct the
trajectory consistency directly, and we need only a few loop
detections. We thus use strict loop detection threshold values
to avoid false positive loop detections. To build SE3 loop
constraints, we simply use a constant covariance matrix. They,
however, will not affect the final optimization result because
the robust kernel will eliminate them once the current estimate
satisfies them. In Fig. 5(B), we can see that the optimization
converged in a better solution after adding a few explicit loop
constraints.

D. Implementation Details

For factor graph optimization, we used the Levenberg-
Marquardt optimizer in GTSAM!. In order to fully leverage
GPU acceleration, we used a customized NonlinearFactor-
Graph class that first issues all of the cost evaluation tasks
on a GPU, performs GPU synchronization, and then collects
the calculated results to build a linearized system. Note that
we used an efficient reduction technique to compute the
summation of Eqgs. 3, 5, and 6 on a GPU without atomic
operations.

Thttps://github.com/borglab/gtsam
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Fig. 7: Factor graphs for sequences 02, 05, 07, and 08
generated by the proposed method.

IV. EVALUATION

We evaluated the proposed framework on the KITTI odom-
etry dataset [13]. We calculated the relative trajectory errors
(RTEs) averaged over 100 to 800 m trajectories with the KITTI
official evaluation code (Development kit). We used an Intel
Core i7-8700 (12 threads) with an NVIDIA GeForce GTX
1660 Ti to run the proposed framework. The parameters for
the proposed framework used in the evaluation appear on the
project page?.

Comparison with State-of-the-art Methods: We com-
pared the proposed framework with state-of-the-art real-time
3D LiDAR SLAM methods (LOAM [32], MULLS [15], ELO
[24], IMLS-SLAM [30], SuMa [2], SuMa++ [31], LITAMIN2
[14]), and a deep-learning-based method (LO-Net [25]).

We ran the proposed framework with two settings: 1)
without implicit and explicit loop closure (i.e., every submap
is connected to only other submaps in a sliding window) and
2) with both implicit and explicit loop closure. Similar to
[15], [24], [30], we applied an intrinsic vertical scan angle
correction to compensate for the point cloud distortion in the
KITTI dataset for all the settings.

Tables I and II show the average rotational and translational
RTEs, respectively, of the proposed method and the state-
of-the-art methods. We noticed that while the KITTI official
benchmark uses the average of sub-trajectory errors to summa-
rize errors, several works report the mean of sequence errors
that would overemphasize the errors of short sequences. For a
fair comparison, we report both the metrics in Tables I and II
(Means ST: mean of sub-trajectory errors, Mean S: mean of
sequence errors).

The proposed method shows the best RTEs (0.14 / 0.13°
and 0.52 / 0.48 m) without loop closing among the state-of-
the-art methods for the sequence 00 to 10. In particular, the
proposed method shows good accuracy on long trajectories
(Sequences 00, 02, 05, and 08). For Sequence 11 to 21,
the proposed method shows the RTEs that are ranked at the

2See the project page for details: https:/staff.aist.go.jp/k koide/projects/
ral2021/index.html

(B) Proposed (MME=0.12)

.

(A) SuMa (MME=0.27)

Fig. 8: The color indicates per-point entropy (magnitude of
inconsistency). SuMa exhibits inconsistent mapping results on
the ground and walls due to inaccurate pose graph-based loop
closing.

second place among LiDAR-based methods on the KITTI
online leaderboard at the time of submission (0.15° and 0.59
m)3. With loop closing, although the rotational RTEs of the
proposed method are largely improved, the translational RTEs
are slightly deteriorated (0.11 / 0.11° and 0.56 / 0.52 m).
Similar trends are reported in several works [2], [15], and we
infer point cloud distortion in the KITTI dataset affected the
translational RTEs when loop closing is enabled.

To assess the mapping quality, we created a local map
for every 10 frames by aggregating frames within 10 m and
evaluated its mean map entropy (MME) [33]. For the sequence
00, the proposed method showed a small MME (0.14 + 0.20)
while a pose graph-based method, SuMa [2], exhibited a larger
MME (0.19 £ 0.20)>. Figure 8 shows local map MME of
the proposed method and SuMa at a junction where a large
loop closure happened. We can see points with large entropy
(large inconsistency) on the ground and walls of the local
map of SuMa, while the proposed method showed significantly
smaller entropy (better consistency). This result suggests that
the inaccurate modeling of relative pose constraints in the
traditional pose graph optimization can result in inconsistent
mapping results while the global matching cost minimization
approach can accurately retain the map consistency.

Ablation Study: In order to show that the matching cost
minimization enables accurate trajectory estimation in compar-
ison with pose graph optimization, we replaced every matching
cost factor with an SE3 relative pose constraint estimated
by GICP scan matching [11]. The initial guess for the scan
matching is given based on the optimization result with the
matching cost factors. The information matrix of each relative
pose factor is calculated based on the Hessian matrix for the
GICP scan matching result [16]. Considering that the scan
matching would fail on small overlapping frames, we applied
Huber’s robust kernel to each relative pose factor.

From Tables I and II, we can see that the accuracy of the
proposed method strongly deteriorated with the relative pose
factors, although the graph structure (submap connectivity)
had not changed. Figure 9 shows a factor graph with SE3

3The method GLIM on http://www.cvlibs.net/datasets/kitti/eval_odometry.
php
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TABLE I: Average rotational relative trajectory errors (RTEs) [°/100m] on the KITTI dataset

Sequence Num. Loop 00 01 02 03 04 05 06 07 08 09 10 00-10 11-21
Num. of Frames closure | 4541 1101 4661 801 271 2761 1101 1101 4071 1591 1201 Mean (ST/S)  Mean (ST)
Proposed (matching cost) 0.16 0.10 0.12 0.19 0.10 0.10 0.07 0.11 0.18 0.11 0.15 0.14 / 0.13 0.15
Proposed (matching cost) v 0.12 0.09 0.10 019 0.10 0.06 0.08 0.10 0.14 0.08 0.15 0.11/ 0.11 -
Proposed (SE3) v 0.18 0.15 0.17 0.33  0.17 0.21 0.10 0.17 0.50 0.17 0.31 0.24 / 0.22 -
LOAM [29] - - - - - - - - - - - = = 0.13
MULLS [15] 0.18 0.09 0.17 022  0.08 0.17 0.11 0.18 0.25 0.15 0.19 - /016 0.19
MULLS [15] v 0.13 0.09 0.13 022 0.08 0.07 0.08 0.11 0.17 0.12 0.19 - /013 -
ELO [24] 0.20 0.13 0.18 0.27  0.15 0.17 0.13 0.16 0.21 0.14 0.19 - /018 0.21
IMLS-SLAM [30] - - - - - - - - - - - = ] = 0.18
SuMa [2] v 0.23 0.54 0.48 0.50 0.27 0.20 0.30 0.54 0.38 0.22 0.32 0.36 / 0.36 0.34
SuMa-++ [31] v 0.22 0.46 0.37 046 026 0.20 0.21 0.19 0.35 0.23 0.28 0.29 / 0.29 0.34
LiTAMIN? [14] v 0.28 0.46 0.32 048 052 0.25 0.34 0.32 0.29 0.40 0.47 0.33/0.38 -
LO-Net [25] 0.42 0.40 0.45 059 054 035 0.33 0.45 0.43 0.38 0.41 - 1043 -
Red and blue respectively indicate the first and second best results.
Mean ST and S respectively indicate the means of sub-trajectory and sequence errors.
TABLE II: Average translational relative trajectory errors (RTEs) [m/100m] on the KITTI dataset
Sequence Num. Loop 00 01 02 03 04 05 06 07 08 09 10 00-10 11-21
Num. of Frames closure 4541 1101 4661 801 271 2761 1101 1101 4071 1591 1201 Mean (ST/S) Mean (ST)
Proposed (matching cost) 0.49 0.65 0.50 0.62 0.41 0.24 0.29 0.30 0.80 0.46 0.54 0.52 /048 0.59
Proposed (matching cost) v 0.56 0.66 0.55 0.63 042 0.28 0.34 0.35 0.81 0.55 0.54 0.56 / 0.52 -
Proposed (SE3) v 0.58 0.61 0.60 069 044 038 0.34 0.37 1.51 0.68 0.74 0.74 / 0.63 -
LOAM [29] 0.78 1.43 0.92 0.86 0.71 0.57 0.65 0.63 1.12 0.77 0.79 - /084 0.55
MULLS [15] 0.51 0.62 0.55 0.61 035 0.28 0.24 0.29 0.80 0.49 0.61 - /049 0.65
MULLS [15] v 0.54 0.62 0.69 0.61 035 0.29 0.29 0.27 0.83 0.51 0.61 - /052 -
ELO [24] 0.54 0.61 054 065 032 033 0.30 0.31 0.79 0.48 0.59 - /050 0.68
IMLS-SLAM [30] 0.50 0.82 053 068 033 0.32 0.33 0.33 0.80 0.55 0.53 0.55/0.52 0.69
SuMa [2] 0.68 1.70 120 074 044 043 0.54 0.74 1.20 0.62 0.72 0.83/0.82 1.39
SuMa++ [31] v 0.64 1.60 1.00 0.67 0.37 0.40 0.46 0.34 1.10 0.47 0.66 0.70 / 0.70 1.06
LiTAMIN? [14] 0.70 2.10 0.98 096  1.05 0.45 0.59 0.44 0.95 0.69 0.80 0.85/0.88 -
LO-Net [25] 0.78 1.42 1.01 073 056  0.62 0.55 0.56 1.08 0.77 0.92 - /082 -

Réd and bl'ue respeétively iridicate th.e first and second best results.

Mean ST and S respectively indicate the means of sub-trajectory and sequence errors.

Fig. 9: Factor graph with SE3 relative pose factors. The line
color indicates the magnitude of the error (Red: large error,
Green: small error).

relative pose factors. The color of lines indicates the magnitude
of errors (Green: small error, Red: large error). We can see
that factors between submaps in distance tend to have large
errors because the scan matching failed to align the submap
pairs with small overlap. The factors with large errors were
removed by the robust kernel and thus did not contribute to
the optimization result. Note that more factors would have
worse relative pose measurements in a practical situation
because a good initial guess cannot be expected for scan

TABLE III: Average processing time through KITTI 00

Module | Submodule | Time [ms]

Local mapping Factor creation 2.8 £5.0
Optimization 123.9 4+ 130.4

Factor creation 7.7 £ 12.3

Global mapping ScanContext 7.1 £ 19.9
Optimization 884.0 £+ 87.6

0 T T T T T
0 Time [Frame ID]

4541

Fig. 10: Numbers of submaps and matching cost factors, as
well as the global map optimization time for the KITTI 00
sequence.

matching. This result suggests that the pose graph optimization
scheme, which requires explicit estimation of the relative pose
between frames, has difficulty in constraining distant frames
and preserving the consistency over a long trajectory.
Runtime: Through the sequence 00, one of the longest se-
quences in KITTI, the proposed framework ran approximately
twice as fast as the real-time elapsed (20 FPS). Note that we
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used pre-recorded frontend trajectory estimation results with
MULLS [15] (ran at 26 FPS), and thus the processing time of
the frontend algorithm was not taken into account.

Table III summarizes the runtime of the local and global
mapping modules. The local submap optimization, which
was performed approximately every 1.5 s, took 123.9 ms
on average. The global optimization, which was performed
approximately every 7.5 s, took 884.0 ms on average to
optimize the factor graph, which had more than 4,500 factors
at the end of the sequence by fully leveraging GPU parallel
processing. Figure 10 shows how the runtime of the global
optimization grew as the numbers of submaps and matching
factors increased. Although a longer time (3 to 4 s) was
required after closing large loops, most of the time, the
optimization quickly converged in less than one second. Note
that while the linearization and error evaluation of matching
cost factors occupied most of the optimization time, the linear
solver (performed on a CPU) took only approximately 3% of
the total optimization time on average.

V. CONCLUSIONS

This paper presented a 3D LiDAR mapping framework
based on VGICP matching cost factors. The GPU-accelerated
matching cost evaluation enables simultaneous alignment of
all frame pairs in the factor graph and preserves the global
consistency over a long trajectory. The local and global
mapping modules are managed based on the overlap metric,
which can quickly be evaluated on a GPU, and the explicit
loop closing mechanism helps the voxel-based matching cost
factors to avoid convergence in a local minimum.
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