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Abstract— This paper presents a point cloud downsampling
algorithm for fast and accurate trajectory optimization based
on global registration error minimization. The proposed algo-
rithm selects a weighted subset of residuals of the input point
cloud such that the subset yields exactly the same quadratic
point cloud registration error function as that of the original
point cloud at the evaluation point. This method accurately
approximates the original registration error function with only
a small subset of input points (29 residuals at a minimum).
Experimental results using the KITTI dataset demonstrate
that the proposed algorithm significantly reduces processing
time (by 87%) and memory consumption (by 99%) for global
registration error minimization while retaining accuracy.

I. INTRODUCTION

Global trajectory optimization is a crucial step for local-
ization and mapping systems. Because it is unavoidable that
trajectory errors accumulate in online odometry estimation
that performs real-time optimization using local observations,
it is necessary to correct estimation drift by considering the
global consistency of the map.

Global registration error minimization is one of the most
accurate approaches to global trajectory optimization [1].
Unlike the conventional pose graph optimization that min-
imizes the errors in the pose space [2], global registration
error minimization directly minimizes the multi-frame point
cloud registration errors over the entire map. This approach
avoids the Gaussian approximation of the relative pose con-
straint and enables accurate trajectory optimization by jointly
aligning all frames in the map [3]. However, it is known
to be computationally expensive compared to pose graph
optimization, as it requires a re-evaluation of registration
error functions that involve residual computations for many
points [4]. It also consumes a substantial amount of memory
in order to remember the point correspondences between
frames.

To mitigate the processing cost and memory consumption
of global registration error minimization, we propose a point
cloud downsampling algorithm based on an efficient and
exact weighted coreset extraction algorithm [5]. A coreset
is a subset of an input dataset selected such that the result
of an algorithm on the coreset approximates that on the
original set [6]. For example, considering a Hessian matrix
calculated from a Jacobian matrix (H = J7J and J €
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Fig. 1: The proposed algorithm extracts a weighted subset
of input source points such that the subset yields the same
quadratic registration error function as that of the original
points at the evaluation point.

Fig. 2: Dense factor graph for global registration error
minimization. The proposed algorithm reduces memory con-
sumption by 99% and processing time by 87% for the
optimization of the factor graph.

RNXDP) a weighted coreset § € RM*D approximates the
original Hessian matrix with a subset of the Jacobian matrix
(STS ~ H and S C J). In this work, we employ a novel
coreset extraction algorithm, which finds a coreset to exactly
represent the original Hessian matrix in a time linear to the
number of points [5].

Using this algorithm, we find a coreset of the residuals
of the input point cloud such that it exactly reconstructs the
original quadratic registration error function at the evaluation
point (see Fig. 1). The proposed method needs only 29
residuals at a minimum to compose an exact coreset for a
quadratic error function with six-dimensional input. It is also
able to find a larger coreset with M residuals (e.g., M=256) to
enhance the nonlinearity approximation accuracy. Note that
because one three-dimensional point yields three residuals
for point cloud registration, the computation of 29 residuals



entails a processing cost approximately equal to that for 10
points.

For global trajectory optimization, we construct an ex-
tremely dense global registration error minimization factor
graph, as shown in Fig. 2. The graph contains 4,540 pose
variables and 585,417 registration error factors. We evaluate
the residuals of approximately 10,000 points for each factor
at every optimization iteration. The optimization requires ap-
proximately 22 GB of memory and 13 hours on a CPU with
128 threads. The proposed algorithm drastically decreases
the number of residuals to be computed and reduces memory
consumption and processing time to approximately 0.25
GB and 1.7 hours, respectively, while retaining estimation
accuracy.

The main contributions of this work can be summarized
as follows:

« We extend the exact coreset extraction algorithm in [5]
so that it can extract coresets with an arbitrary number
of residuals. We also made several modifications to
improve the processing speed of the algorithm.

« Based on the extended exact coreset extraction algo-
rithm, we propose a point cloud downsampling al-
gorithm that exactly recovers the original quadratic
registration error function at the evaluation point. It also
shows good approximation accuracy for the nonlinearity
of the original function.

« We release the code of the proposed coreset extraction
algorithm as open source.

II. RELATED WORK
A. Pose Graph Optimization

Pose graph optimization is the gold standard for global
trajectory optimization for range-based SLAM [2]. It models
the relative pose between frames estimated by scan matching
as a Gaussian distribution and optimizes the sensor poses via
maximum a posteriori estimation in the pose space. To model
the Gaussian relative pose constraint, an explicit estimate
of the representative relative pose value (i.e., mean) and
its uncertainty (i.e., covariance) is required. However, scan
matching becomes unreliable when two frames have only
a small overlap, making it difficult to obtain an accurate
relative pose estimate, which, in turn, makes it difficult to
constrain the relative pose between small overlapping frames
with pose graph optimization [3]. The uncertainty estimation
of a scan matching result is also difficult in practice [7],
and many works use inappropriate covariance matrices to
construct the relative pose constraints (e.g., using constant
covariance matrices [8] or a simple weighting scheme [9]).
These difficulties in the modeling of the relative pose con-
straint lead to inaccurate estimation results.

B. Bundle Adjustment

Bundle adjustment (BA) is another approach to global
trajectory optimization that simultaneously optimizes sensor
poses and environment parameters. For range-based SLAM,
BA is often formulated as the simultaneous estimation of
pose variables and plane or edge environment parameters

[10]. Because the plane and edge parameters can be esti-
mated from sensor poses and point coordinates, they can
be eliminated from the estimation variables, turning the BA
problem into a direct eigenvalue minimization of the accu-
mulated points [11]. While this approach ensures a consistent
mapping result, it can suffer from high computation cost and
a small convergence basin due to the non-least-squares error
function. To mitigate these issues, it is necessary to combine
range-based BA with hierarchical pose graph optimization
[12].

C. Global Registration Error Minimization

Global registration error minimization is an approach to
directly minimize multi-frame registration errors over the
entire map [1]. Because it avoids the Gaussian approximation
of pose graph optimization, it enables the construction of
accurate relative pose constraints between point clouds with
a very small overlap. Furthermore, it naturally propagates
the per-point uncertainty of input data to the pose uncertainty
via re-linearization of point cloud registration errors. While it
shows a substantially better accuracy compared to pose graph
optimization, it is computationally expensive because it re-
evaluates point cloud registration errors between all point
cloud pairs at every optimization iteration.

To mitigate the computation cost of global registration
error minimization, one may consider reducing the number
of input points by, for example, random sampling [4]. How-
ever, this may change the shape of the objective function,
depending on the selected points, and can negatively and
substantially affect the optimization result. Although there
is another approach to speeding up global registration error
minimization with GPU-acceleration, the computation cost
is still high, and it requires submap-level registration [3].

D. Coreset Extraction

Geometric data summarization is an essential tool for
handling big data in computational geometry, and coresets
are one of the most important classes of summarization
methods. A coreset is a subset of an input dataset selected
such that the result of an algorithm on it approximates the
result on the original set [6]. When a coreset produces the
same output of an algorithm as that of the original set, it
is called exact. For example, Caratheodory’s theorem states
that every point in a convex hull of points in R” can be
represented by a weighted sum of at most D + 1 points [13].
This means there always exists an exact coreset with only
D + 1 points to represent a point in a convex hull (a.k.a., a
Caratheodory set).

While Caratheodory provided an algorithm to find such a
coreset, the time required was O(N?D?), rendering it im-
practical for large-scale problems [13]. Although there were
several subsequent works proposing efficient approximating
algorithms to find a Caratheodory set, an exact algorithm
with a linear time complexity had, until recently, been
unavailable. However, in 2019, an epoch-making algorithm
was proposed by Maalouf et al., one that finds an exact
Caratheodory set in time linear to the number of input data



points [5]. The method was applied to find an exact coreset
to reconstruct a Hessian matrix using only a small subset of
the input data for accelerating least squares optimization.

Our aim in this work is to introduce this novel data sum-
marization technique to drastically reduce the computation
cost of point cloud registration while retaining the accuracy
of the original set by extracting an exact coreset of input
points. To the best of our knowledge, this is the first work that
introduces this type of exact data summarization technique
in the context of point cloud registration.

III. METHODOLOGY
A. Problem Setting

Given a sequence of point clouds P; = {p1,--- ,py} and
an initial guess of their poses T;,, we estimate refined sensor
poses T; by minimizing the registration errors between all
overlapping point clouds. The registration error function
fREG is defined as the sum of least square errors between
corresponding points:

PP PLTLT) = S 1P (P o T TP (1)
Pk E'Pj

=e'e, 2)

where pj, € P; is the corresponding point of py, € P;, fPI57
is a distance function between points that returns a residual
vector ey, € R?, and e = [eT el ---]T is a stack of ey.

In Gauss-Newton optimization, the error function fFEC is
linearized at the current estimate T' = (T7, ’_ZV“J) and modeled

in the quadratic form
FRES(P; Py, T B Az) ~ AxT HAz 4 26T Az +¢, (3)

where ¢ = fREG(P;, P;, T) is a constant, J = de/IT is the
Jacobian of residuals evaluated at ’f, andb=JTeand H =
JTJ are the information vector and matrix, respectively.

Because the linearization of f*E¢ involves residual com-
putation for all input points in P;, it is computationally
expensive. It also consumes a substantial amount of memory
to remember the corresponding points for each point cloud
pair.

To mitigate the memory consumption and processing cost
of global registration error minimization, we introduce a
downsampling function that takes as input the error function,
point clouds, and current estimate of sensor poses, and
outputs a weighted subset of residuals:

fDOWN(fRElepiijvT'i»j%j) = (wijagij)v (4)

where g;;(e) = € is a function to select M residuals from
e (ie., € C e and € € RM), and w;; € RM is the weights
for the selected residuals. During optimization, we use the
subset of residuals e instead of the original set to re-linearize
the nonlinear error function fREC.

To accurately approximate the original error function with
only a small subset of the input data, we select a subset that
will yield exactly the same quadratic error function as the
original function at the evaluation point :

H=H, b=0>b, c=¢, 5)
where
- -~ Oe .
€ = Gij (e), J = 37, Wij = dlag(wij), (6)
H=J"W,;J, b=J"W,e, ¢=é&"Wge. ()

For simplicity and efficiency, we assume that the initial
guess of sensor poses is reasonably accurate and use the
point correspondences found at the initial state during opti-
mization.

B. Registration Error Function

The proposed downsampling algorithm only requires the
error function to be a first-order differentiable least squares
function. It thus can be applied to most of the common
registration error functions (e.g., point-to-point [14] and
point-to-plane [15] distance functions). In this work, we use
the generalized ICP (GICP) error function [16] based on the
distribution-to-distribution distance.

GICP models each point as a Gaussian distribution pj =
(pr, Cy) representing the local surface shape around the
point and calculates the distribution-to-distribution distance
between a point p; € P; and its corresponding point
D}, € P; as follows:

P (P, pr, T, T;) = d' Qd, (8)
Q=C} +T,;C,.TL 9)

d:N;g—ngNka ij

where T;; = Ti_lTj is the relative pose between T; and T};.
For ease of the following downsampling process, we

decompose €2 = ®®7 and use the following function fPiST

that gives the same least square errors as fCCP:

25 (pl pr, T, Ty) = @7 d. (10)

Because €2 is a symmetric positive definite matrix, the
decomposition Q@ = ®®7 can efficiently be found via
Cholesky decomposition. This modification does not change
the final objective function and thus does not affect the
optimization process.

C. Fast Coreset Extraction

To extract a weighted subset of input residuals that yields
the same quadratic error function as that of the original
set, we use an extended version of the efficient coreset set
extraction algorithm in [5].

Caratheodory’s theorem [13] states that every point in a
convex hull of points in R” can be represented as a weighted
sum of a subset of at most D + 1 points. Given a Jacobian
matrix J = [a], -, a%]T, where a), = 2% € RIXP
represents derivatives of a residual ey, the Hessian matrix
H = JTJ can be given by ijzl a} ay. We consider
flattened vectors hy, € RP” of alay, and calculate their
mean p" = ’“N]:vl he _ TimiMaten(aier) pecayge uh s
always in the convex hull of hy, we can find a minimum
exact coreset (a.k.a., the Caratheodory set) of hj to represent
w1 and scale it to recover the original Hessian matrix from

at most D? + 1 row vectors in the original Jacobian matrix.




Algorithm 1 Caratheodory(P,u, M)

Algorithm 3 Fast-Caratheodory-Quadratic(e, J, M)

Input:
A set of points P = {p1,--- ,pn} in RF
A weighting function u : P — [0, o]
Target output size M
Output:
A subset of input points and weighting function (S, w) s.t.
> (u(pi) - pi) = 3 (w(si) - s:) and |S| = M
: if N < M then
return (P, u)
: for pi € {p2a"' 7pN} do
a; < Pi — P1
A+ [az| - |an] > AeREXV-D
: Compute v = [v2,--- ,on]T #0s.t. Av=0
v =D,
o a < min{u(p;)/vili € {1,--- ,N} and v; > 0}
s w(pi) < u(pi) — av; for every i € {1,--- , N}
. S+ {pilw(p;) >0and i € {1,--- ,N}}
: if |S| > M then
return CARATHEODORY(S, w, M)
: return (S, w)

A A

_—
N = o0

—_
[95]

Algorithm 2 Fast-Caratheodory(P, u, K, M)

Input:
A set of points P = {p1,--- ,pn} in RY
A weighting function u : P — [0, o0]
Number of clusters K >= L 4 2
Target output size M
Output:
A subset of input points and weighting function (C,w) s.t.

> (ulpi) - pi) = > (w(ei) - e)

1: if |N < M| then

2: return (P, u)

3: {P1,---, Px} = equally divided disjoint subsets of P

4: for i€ {1,--- ,K} do

5: Wi — Zper; WP P > Compute mean of the cluster
' N Zpepi u(p)

6 (i) < Xpep, ulp)

7: (fi,w) < CARATHEODORY({pt1, -+ , K },u’)

8: C « Uy,epP; > Recover points from selected clusters

9: for pu; € fr and p € P; do

10:  w(p) 7525;1#53)

11: return FAST-CARATHEODORY(C, w, K, M)

Algorithms 1, 2, and 3 describe the proposed coreset
extraction algorithm extending the algorithms in [13], [5].
Due to space limitations, we provide only a brief explanation
of the algorithms and highlight the modifications we made.
For details of the original algorithms, we refer the reader to
[5]. The code for the proposed algorithm is available online
so that the reader can confirm the details .

Algorithm 1 is Caratheodory’s classic algorithm for find-
ing a minimum exact coreset from a weighted input set [13].
This algorithm finds and eliminates redundant data points one
by one. Because the time required to execute the algorithm
is O(N?L?), it cannot be directly applied to large datasets.
To reduce the time complexity, Algorithm 2 divides the input
set into K disjoint subsets (e.g., i = 64) and computes the
means of the clusters. It then applies Algorithm 1 to extract a

https://github.com/koide3/caratheodory?2

Input:
A residual vector e € RY = [e1,--- ,en]”
Jacobian matrix J € RV*P =[ay,--- ,an]”

Target output size M
Output:
A function g to select a subset of e
Weights w for the selected subset
g and w satisfy jTWJ: =JVJ, J"we=J"e, eTWeé =
eTe, where é = g(e),J = g(J), and W = diag(w)
cfor :€{1,---,N} do
h; < ugper triangular elements of a; a;
b; a; e;
C; 612
pi < [hi,b] )"
u(pi) < 1/N
P+ {p17"' apN}
: (C,w) < FAST-CARATHEODORY (P, u, K, M)
g < A function to select entries of e exist in C
s w 4 [w(e)|e € g(e)]
: return (g, w)

TRV DN E RN

—_—

Caratheodory set of the cluster means and eliminates clusters
that are not selected to be in the Caratheodory set. It recovers
the set of input data from the clusters in the extracted
Caratheodory set and repeats this process until the number
of data points becomes less than or equal to a target output
size. The clustering strategy significantly improves the time
complexity and can find a Caratheodory set in time linear
to the number of input data points O(NL). Algorithm 3
takes as input a residual vector e and its Jacobian matrix
J, computes flattened vectors of H b, ¢, and passes them to
Algorithm 2 to obtain a weighted subset of input residuals
to reconstruct the original quadratic function.

The modifications we made to fit the algorithms in [5] to
our problem can be summarized as follows:

1) While the original algorithm selects only a minimum
number of data points to compose a Caratheodory set,
we modified Algorithms 1 and 2 so that they can
change the target number of data points M to con-
trol the trade-off between approximation accuracy and
computation speed. By increasing M, the algorithm
extracts more data that are redundant to compose a
Caratheodory set but help approximate the nonlinearity
of the original registration error function. Note that
the proposed algorithm does not extract exactly M
points but rather extracts points in the range [max (M —
K,29), M]. While we can easily modify Algorithm 2
to select exactly M points, we avoided doing so to
save processing time.

2) In the original implementation of Algorithm 1, most of
the computation time was taken by SVD to find v # 0
such that Av = 0. To improve the processing speed,
we use an efficient LU decomposition method to find
the nullspace of A instead of SVD.

3) While [5] recovers only the Hessian matrix H, we
recover b and c in addition to H to approximate the
quadratic function in Eq. 3. Although this modification
increases the dimension of the input vectors from D?



Algorithm 4 Exact-Downsampling(P;, P;, T}, Ty, fREC, M)

Input:
Point clouds P; and P;
Poses T} and TJ to evaluate errors between P; and P;
Registration error function fRF¢
Target output size M
Qutput:
A function g to select a subset of residuals of input points
A weight vector w
: Shuffle points in P;
cele fREG(Pi7 pja Li, :'Ej)
. J + Oe/0T;
: (g, w) + FAST-CARATHEODORY-QUADRATIC(e, J, M)
: return (g, w)

S VS I R

(a) Target points

(b) Source points (N = 10,000)

(c) Sampled residuals (M = 29) (d) Sampled residuals (M = 512)

Fig. 3: Example of downsampling results. Source points
(b) and sampled points with different target numbers of
residuals (M=29 (c), and M=512 (d)) all yield the same
quadratic registration error function for the target points
at the evaluation point. The colors of the sampled points
represent the selected axes of residuals (R=X, G=Y, B=2).

to D? 4+ D + 1, we can omit the non-upper-triangular
elements of H, since it is symmetric. As a result, for
a function with six-dimensional input, the input vector
dimension becomes 21+6+1 = 28, and we need only
28 + 1 = 29 residuals to exactly recover the original
quadratic function at a minimum.

As we will show in Sec. IV-A, modifications 2 and 3 reduce
processing time by a factor of 10. Note that because the
registration error function is symmetric for T; and Tj, the
subset extracted for T exactly reconstructs H;;, H;;, and
b; as well.

D. Point Cloud Downsampling

The proposed exact point cloud downsampling algorithm
is summarized as in Algorithm 4. Because Algorithm 2
reduces the dataset size by dropping contiguous items, we
first shuffle the input points to avoid bias in the sampling
result. We then evaluate the residuals e and Jacobian J of
the registration error function at T; and CIU’J We input e and
J to Algorithm 3 and obtain a subset of the residuals and
weights.

During Gauss-Newton optimization, we iteratively re-
linearize the error function fREC with the extracted subset
to obtain a quadratic error function.

Fig. 3 (c) and (d) show examples of downsampling results.
The colors of the points indicate the selected axes of the
sampled points (R=X, G=Y, B=Z). Because the proposed
algorithm works on a per-residual basis, it happens that only
one or two axes of a point are selected (Fig. 3 (c)). Because
the algorithm tends to drop contiguous residuals, most of
the selected points have all selected axes when the number
of target residuals is sufficiently large (Fig. 3 (d)). Both the
sampled points with M = 29 and M = 512 shown in Fig.
3 (c) and (d) exactly recover the quadratic registration error
function between the original input point clouds shown in
Fig. 3 (a) and (b).

IV. EXPERIMENTS
A. Numerical Validation

We first verified the proposed algorithm through numerical
validation. We began by randomly generating J € RN*6
and e € RY (N = 30,000 ~ 10,000 points) and ap-
plying the proposed downsampling algorithm to obtain a
weighted subset of the residuals (g, w). We then calculated
the quadratic function approximation error as max(|J7J —
JWJ|,|JTe — J*TWeé|,eTe — eTWE), where J =
g(J),é = g(e), and W = diag(w). We repeated this nu-
merical validation 100 times 2.
To evaluate the speed gain of the modifications proposed
in Sec. III-C, we ran the algorithm with three configurations:
1) Naive implementation of [5] with the expanded input
dimension D? + D + 1 = 43

2) Naive implementation of [5] with the compact input
dimension without the non-upper-triangular elements
of the Hessian (D + 1) x (D/2) + D + 1 = 28)

3) Using the compact input dimension (28) and LU

decomposition instead of SVD

All three configurations produced approximation errors
below 10719 for all trials, showing the validity of the
proposed algorithm. Configuration 1 took approximately 125
ms for each trial. With configuration 2, the processing time
decreased to 76 ms by using the compact input represen-
tation. Finally, with configuration 3, the processing time
further decreased to 7 ms, or roughly 5.6% of the time for
configuration 1.

We then evaluated the change in processing time for
the proposed algorithm when the target output size varies
from 29 to 1024. Again, all the selected subsets showed
reconstruction errors below 10710 for all the settings. Table I
summarizes the average processing times with several target
numbers of residuals M. As shown, when the target number
of residuals was increased, the processing time also grew,
albeit gradually. While all the settings exactly reconstructed
the original quadratic error function at the evaluation point,
as we will show in the following Sec. IV-B, a larger number

2The code for reproducing this experiment is available at the GitHub
repository.



TABLE I: Processing time for the exact sampling algorithm

Number of residuals (M) 29 64 128 256 512 1024
Processing time [ms] 6.87 13.39 19.34 25.03 29.99 34.19

TABLE II: Hessian approximation accuracy evaluation result

Method \ Num. of points / residuals Normalized KLD
10 points = 30 residuals 0.996 + 0.026
64 points ~ 192 residuals 0.437 £ 0.213

Random sampling | 256 points & 768 residuals 0.107 £ 0.062
1024 points ~~ 3072 residuals ~ 0.024 + 0.013
10149 points (original points) 0.000 £ 0.000

Exact sampling \ 29 - 3072 residuals 0.000 £ 0.000

of residuals leads to better approximation accuracy under
pose displacements. Thus, setting the target number of resid-
uals parameter involves a trade-off between approximation
accuracy and processing speed.

B. Nonlinearity Approximation Accuracy Analysis

We next compared the approximation accuracy of the
proposed exact sampling with that of the commonly used
random sampling approach. Here, we took two consecutive
frames in the sequence 00 of the KITTI dataset [17], as
shown in Fig. 3. We aligned the frames by using standard
GICP scan matching and then sampled subsets of the input
points and residuals using random sampling and the proposed
exact sampling method while changing the target output size.

We computed the Hessian matrices of fXE¢ by using the
sampled subsets and compared them with that computed
using the original input points. To compare Hessian matrices,
we used the normalized KLD metric defined as follows:

2
NormedKLD(H, H) = 1 — exp(—KLD(H, H)).

KLD(H,H) = 1 (log(:g:) +tr(H—1I§r)> , (D
(12)

We repeated the evaluation 100 times while shuffling the
order of the points.

Table II summarizes the normalized KLDs for the random
and exact sampling results. The random sampling results
showed large errors when the number of points was small.
In particular, when the number of points was set to 10,
we observed that the Hessian matrix computed from the
sampled points sometimes degenerated. As the number of
points increased, the approximation accuracy of the random
sampling results improved. When and only when the target
number of points was set to the same number as the number
of input points, the approximation error became zero. This
result suggests that random sampling would not be a good
choice for sampling point cloud registration errors, since it
substantially changes the objective function shape when the
number of sampling points is small. On the other hand,
as verified in Sec. IV-A, the proposed algorithm exactly
recovered the original Hessian matrix with a small number
of residuals and thus the normalized KLD was always zero
at the evaluation point.

We then evaluated the changes in function approximation
accuracy of the two sampling methods under pose displace-

0.0100
E 0.0075

/’// & 60050
b

[ — £ 0.0025

= —————

0 2 4 6 8 10 0 2 4 6 8 10
Displacement [deg] Displacement [deg]

1
w

J

_ 1

o o
~

o
o

Rot. error [deg]

Tra

o4
5}

0.0000

—— 10 pts ~ 30 residuals 64pts —— 256pts —— 1024 pts —— 4096 pts —— 10149 pts

(a) Random sampling
0.4 0.0100

303 € 0.0075

502
0.1
£
0.0 0.0000

0 2 4 6 8 10 0 2 4 6 8 10
Displacement [deg] Displacement [deg]

—— 3072 residuals

[de

2 0.0050
5

Rot. errol

£ 0.0025
e

—— 29 residuals 192 residuals ~ —— 768 residuals —— 12288 residuals

(b) Exact sampling

Fig. 4: Errors of the displacement vector Az = H~'b of
random and exact sampling results under rotation noise.

ments. We applied random rotation noise and re-evaluated the
registration error function using the sampled subsets to obtain
H and b. We then computed the displacement vector claimed
by the linearized system (Axz = H~'b) and compared it
with that computed using the original points.

Fig. 4 summarizes the displacement vector errors. Because
the residuals sampled by the proposed algorithm exactly
recovered the original quadratic error function, the proposed
algorithm showed zero displacement vector errors with all
the settings when the noise was zero. As the rotation noise
became larger and the current estimate separated further from
the evaluation point, the displacement vector errors became
gradually worse due to the nonlinearity of the registration
error function. However, we can see that the results of the
proposed exact sampling show substantially smaller errors
compared to the random sampling results with equivalent
output size settings.

C. Application to Global Trajectory Optimization

We applied the proposed exact downsampling to global
trajectory optimization on the longest four sequences (00,
02, 05, 08) in the KITTI dataset [17] in order to compare
its trajectory estimation accuracy and associated processing
time with those of the conventional pose graph optimization.

Evaluation protocol: To obtain an initial guess of sensor
poses, we applied GICP scan matching between consecutive
frames (i.e., odometry estimation). Meanwhile, we ran Scan-
Context [18] to detect loop candidates and validated them
via GICP scan matching. We constructed a pose graph with
relative pose constraints between the consecutive frames and
loop pairs and performed optimization using the Levenberg-
Marquardt optimizer in GTSAM [19]. The objective function
of pose graph optimization is defined as follows:

fFoxy = > I, TL TP, (3)

(T;,T;,T35)
FRT, Ty, Tg) = p (A Higdyg) (14)
dij = log (11;11;—113) : (15)



TABLE III: ATEs [m] of pose graph optimization and global registration error minimization results

Method ‘ 00

Sequence

02

05

08

1.6257 £ 0.7529
1.3777 £ 0.6051
1.1846 £ 0.5625

Pose graph optimization (Identity)
Pose graph optimization (Hessian)
Pose graph optimization (Hessian + Dense)

23.9856 + 8.2752
9.3406 £ 3.1490
9.3393 £ 3.1486

1.5149 £ 0.6760
1.6249 + 0.8489
1.6240 + 0.8488

9.3636 + 3.2890
5.0532 +£ 2.5991
5.0520 + 2.5993

Registration error minimization + Exact sampling (M=29) \ 0.9553 £ 0.4650

8.9679 + 3.0856

0.2917 £ 0.1060

4.4394 £ 2.5294

where X is the set of sensor poses, T;; is the relative pose
measurement given by scan matching, and p is Cauchy’s
robust kernel. For H;;, we used two settings: 1) setting
the identity matrix Isxe to H;;, and 2) setting the Hessian
matrix at the last iteration of GICP scan matching to Hj;.

After performing pose graph optimization, we found all
overlapping point cloud pairs by voxel-based overlap assess-
ment [3] and constructed a densely connected graph with
factors between all detected overlapping pairs, as shown in
Fig. 2. With this dense graph structure, we again optimized
the sensor poses using pose graph optimization and global
registration error minimization. The objective function for
global registration error minimization is defined as

GRS

(T;.T))e X0

| FREC(Py, Py T, )12, (16)

where X© is the set of point cloud pairs with an overlap.

For pose graph optimization, we applied GICP scan match-
ing for all frame pairs and created relative pose constraints
from the scan matching results. For global registration error
minimization, we applied the exact sampling for all frame
pairs with the target number of residuals M = 29 and opti-
mized the sensor poses by minimizing the global registration
errors computed with the sampled residuals. For the sequence
00, we also ran the same algorithm with M=256 and M=1024
and the original input points to determine the effect that
changing the number of samples has on processing time and
estimation accuracy.

Comparison with pose graph optimization: Table III
summarizes the absolute trajectory errors (ATEs) [20] for
pose graph optimization and global registration error mini-
mization. We used the evo toolkit * to measure the ATEs.

For most of the sequences, pose graph optimization with
identity Hessian matrices produced much worse results than
when Hessian matrices composed of the scan matching
results were used. This suggests the importance of appro-
priately modeling the relative pose constraints for better
estimation results.

Although pose graph optimization on the dense factor
graph showed better ATEs than those for the sparse graph,
the accuracy gain was not very significant. Fig. 5 shows
the dense pose graph optimization graph. The colors of the
factors indicate the magnitudes of the relative pose errors. We
can see that the factors between frames at a distance tend to
show large errors because the GICP scan matching failed on
small overlapping frames. This suggests that increasing the

3https://github.com/MichaelGrupp/evo

Fig. 5: Dense pose graph optimization result. Color indicates
the magnitude of the relative pose errors of each factor
(Green: small error, Red: large error).

TABLE IV: ATEs of global registration error minimization
with different sampling settings for the sequence 00

Method ‘ ATE [m] ‘ Optimization time [h]
Exact sampling (M=29) 0.9553 £ 0.4650 1.67
Exact sampling (M=256) 0.9549 4 0.4646 1.88
Exact sampling (M=1024) 0.9549 + 0.4647 2.36
Original points (10,000 points) \ 0.9549 + 0.4647 \ 13.21

number of factors does not always improve the estimation
accuracy of pose graph optimization.

The global registration error minimization approach
greatly improved the ATEs of all the sequences compared
to those of pose graph optimization. Because this approach
directly minimizes registration errors over the entire map
while avoiding the Gaussian approximation of the relative
pose constraint, it can accurately constrain the relative pose
between frames with small overlap.

Effect of the exact sampling: Table IV summarizes
the ATEs of global registration error minimization with
different sampling settings. While the ATEs improved as
the number of residuals increased, the smallest number of
residuals M=29 showed an ATE very close to that of the
original points. Because we started the optimization from
a sufficiently good initial guess, the approximation errors
were sufficiently small for the small displacements with the
minimum number of residuals (M=29) as shown in Sec. I'V-
B. We consider that, if the initial guess had larger errors, the
results from the smallest sampling setting might deteriorate
and the other sampling settings with more residual samples
would show better results.

Memory consumption: Table V summarizes the memory
consumption of global registration error minimization for
each sampling setting. For the case in which the original



TABLE V: Memory consumption

Sampling method ‘ Num. residuals Memory consumption [GB]

Correspondences  Sampled residuals
29 0.11 0.14
Exact sampling 256 0.43 1.15
1024 1.52 4.87
All residuals \ ~30,000 \ 25.13 0.00
- 1le9
E 6.050 ‘ —— Registration error
5 ATE 13
£ 6.025 - 12E
.{% 6.000 - e
25,9751 1.0
£ . . . , . .
0 200 400 600 800 1000

Iteration

Fig. 6: Global registration error and ATE change during
global registration error minimization.

points are used, where we need to remember the point
correspondences for each factor, approximately 25 GB of
memory was required. With exact sampling, where, in ad-
dition to remembering the point correspondences, we need
to remember the selected residual samples, total memory
consumption was substantially smaller. For the setting M=29,
only 0.11 GB was needed for the point correspondences and
only 0.14 GB was needed for the sampled residuals.
Processing time: Fig. 6 shows the decreasing pattern
of both the global registration error and the ATE during
optimization. With this large-scale factor graph optimization,
more than several hundred iterations were needed before
convergence. Fig. 7 shows a breakdown of the optimization
times for the different sampling settings. With the original
points, the optimization took approximately 13.2 hours on
a CPU with 128 threads. We can see that the linearization
and cost evaluation of the registration error function con-
sumed a majority of the optimization time. Although the
proposed exact sampling introduced additional processing
time for downsampling of approximately 130 s, it drastically
decreased the processing time for linearization and cost
evaluation and reduced the total optimization time (1.67
hours with M=29, 2.36 hours with M=1024). Note that while
we used the multi-threaded MULTIFRONTAL_CHOLESKY
linear solver in GTSAM, we observed that it did not fully
utilize all the available CPU cores. We consider that the total
optimization time can be further improved by using a linear
solver dedicated to multi-threading or GPU computing.

V. CONCLUSION

This work proposed a point cloud downsampling algo-
rithm based on an algorithm for efficient exact coreset
extraction. Experimental results showed that this approach
drastically reduces the linearization cost of the point cloud
registration error function without sacrificing accuracy. We
plan to apply the proposed algorithm to extremely large city-
or nation-scale mapping problems and other types of data
(e.g., dense full BA for visual SLAM).
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Fig. 7: Optimization time breakdown.
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