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Abstract—Autonomous driving of a personal mobility vehicle
such as a wheelchair in a walking space is crucial as a means
of transportation for the elderly and the physically handicapped.
To realize this, accurate pedestrian detection is indispensable.
As existing 3D object detection methods are trained with a
roadway dataset, they are widely used for object detection in
roadways. These methods have two major drawbacks as regards
the detection of objects in walking spaces. The first is that they
largely depend on the different LIDAR models. To eliminate this
issue, we propose a 3D object detection method, CosPointPillars,
that does not take the reflection intensities of the LIDAR point
cloud, which causes a sensor model dependency, as input. The
second drawback is that networks trained with a roadway dataset
cannot sufficiently detect pedestrians (who are major traffic
participants in walking spaces) located within a short distance;
this is because the roadway dataset hardly includes nearby
pedestrians. To solve this issue, we generated a new walking space
dataset called SimDataset, which includes nearby pedestrians
as a training dataset in the simulations. An experiment on a
real walking space showed that SimDataset is suitable for use in
pedestrian detection.

I. INTRODUCTION

Autonomous driving of a personal mobility vehicle such as a
wheelchair in walking spaces is necessary as a means of trans-
portation for the elderly and the physically handicapped. To
realize this, accurate pedestrian detection is indispensable for
collision avoidance. In recent years, many LIDAR-based 3D
object detection methods using convolutional neural networks
(CNN) have been proposed. Being trained with a roadway
dataset, these methods are widely used for object detection on
roadways.

Existing methods trained with a roadway dataset have two
major issues when applied to wheelchairs. The first issue
is that these networks are largely affected by the difference
of LIDAR models. This is because the input of most of
the existing methods includes the reflection intensity of a
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Fig. 1. Example of a personal mobility vehicle in walking space. The
wheelchair is equipped with a relatively small LIDAR.

LIDAR point cloud, whose characteristics largely depend on
the sensor model [19][20]. LIDARs equipped with wheelchairs
are different from those equipped with cars. LIDARs on
wheelchairs are smaller and have fewer scan lines compared
with those on cars, owing to price and size restrictions. For
example, it is difficult to mount Velodyne HDL-64E on a
wheelchair, which is a LIDAR widely used for cars, and only a
small LIDAR can be mounted as shown in Fig. 1. Therefore, it
is not appropriate to apply the datasets of the LIDARs mounted
on cars to wheelchairs.

The second issue is that the surrounding environment of
cars and wheelchairs is different. In particular, there are few
pedestrians near cars on roadways, while there are many
pedestrians near wheelchairs on walking spaces. Therefore,
roadway datasets are not optimal for object detection in
walking spaces. There are, however, not enough walking space
datasets containing LIDAR point clouds.

In this study, we realized accurate pedestrian detection in
walking spaces by using a sensor-independent network trained
with a walking space dataset. To eliminate the sensor model
dependence issue, we created a 3D object detection network,
whose input does not include reflection intensities of LIDAR
points. This network includes an architecture called cosine
estimation network (CEN) to retain the detection accuracy.
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Fig. 2. Schematic of architecture of CosPointPillars

Furthermore, because there are not enough walking space
datasets, we generated a new walking space dataset that
includes nearby pedestrians, using a simulation on a game
engine.

The contribution of this study is two-fold. First, we propose
a 3D object detection network independent of reflection inten-
sity. Second, we propose a walking space dataset generated
by simulation. Through an experiment, we showed that the
proposed network trained with our dataset achieved high
pedestrian detection accuracy in a real walking space.

The rest of this study is organized as follows. Section
II reviews related studies on 3D object detection methods
and datasets. Section III describes the proposed pedestrian
detection network with a CEN. Section IV explains the details
of our walking space dataset. Section V shows the results of
two experiments: one shows that the CEN helps to retain the
detection accuracy while removing the sensor dependency, and
the other demonstrates that the proposed network is applicable
to real walking spaces.

II. RELATED WORK

A. 3D object detection

Many CNN-based 3D object detection methods have been
proposed. Some of them use LIDAR point clouds projected
on planar maps. MV3D [1] is a pioneering method that uses
a bird’s eye view (BEV) mapping approach. The problem
with this method is that it is difficult to recognize relatively
small objects such as pedestrians. There are other methods that
utilize BEV maps [2][3][4]. AVOD [2] shows that applying a
feature pyramid network improves the detection accuracy for
small objects.

Other methods generate regions of interest and directly
detect objects based on the points in the region [7][8][15].
Frustum PointNets [7] and Frustum ConvNet [8] generate
frustum-shaped regions of interest based on 2D object detec-
tion on RGB images. Meanwhile, PointRCNN [15] generates
regions of interest using the whole point cloud.

There are methods that use a voxelized representation of
LIDAR point clouds [9][10][11]. VoxelNet divides the detec-
tion space into voxels, and generates the features of each voxel
with a network inspired by PointNets [5][6]. PointPillars [11]
divides the space into columns (also known as pillars) that
extend from 2D grids on the horizontal plane in the vertical
direction. These methods use only point cloud as the input and
do not require RGB images.

Amongst existing 3D object detection methods, we focused
on PointPillars, which is particularly excellent in terms of
pedestrian detection accuracy and speed. The original Point-
Pillars takes reflection intensities of point clouds as input. This
leads to the limitation of versatility, because the characteristics
of reflection intensity measurements largely depend on the
sensor model.

B. Dataset

Roadway datasets are utilized for training and evaluating 3D
object detection networks. These datasets provide sensor data
with object annotations, e.g. pedestrians, cars, cyclists. KITTI
dataset [12] is the pioneering multimodal roadway dataset
that provides LIDAR point clouds, front-facing images, and
GNSS/IMU data. In KITTI, only frontal objects are annotated.
H3D [13] and NuScenes [14] are datasets providing a large
number of diverse scenes and objects. Furthermore, in these
datasets, objects in all directions are annotated. However,
these roadway datasets are not optimal for object detection in
walking spaces because the roadway and walking space envi-
ronments are largely different. In particular, roadway datasets
contain few pedestrians (who are major traffic participants in
walking spaces) within close proximity.

To train a 3D object detection network, it is also possible
to use datasets generated by simulation. There are two major
advantages of generating a dataset by simulation. First, a
large amount of perfectly annotated data can be obtained
within a short period of time. Second, a simulated environment
can be customized freely. AirSim [16] and CARLA [17] are



popular simulators that can generate LIDAR point clouds.
They can simulate various environments and objects; however,
the objects in the point cloud have quite simplified shapes
because they are generated from simple collision models. For
realistic LIDAR point cloud simulation, we generated point
clouds by performing raycasting on depth images. In this
manner, we can obtain point clouds with the same geometric
shapes as rendered on RGB images.

III. METHODOLOGY

Most of the existing 3D object detection methods take
reflection intensities as input. These methods can deteriorate
owing to sensor differences because the characteristics of the
reflection intensity depend on the sensor model [19][20].

We propose a sensor-independent network that does not use
the reflection intensities as input. We refer to this network as
CosPointPillars. Figure 2 shows a schematic of CosPointPil-
lars. Most parts of the architecture follow PointPillars, which
is a LIDAR-based end-to-end 3D object detection method
showing excellent detection speed and accuracy. PointPillars
takes the coordinates and the reflection intensity of each
point. CosPointPillars differ from PointPillars in that, the
reflection intensity is removed from the input and, that a cosine
estimation network (CEN) is newly added.

A. Alternative channel for reflection intensity

In addition to removing the reflection intensity from the
input, we alternatively set sensor-independent features of the
reflection intensity to retain the detection accuracy. We chose
the alternative features from the information that the reflection
intensity contained. Assuming that the reflection intensity
measurement of the LIDAR is proportional to the spectral
illuminance of the reflected light, and that the reflection
follows the Lambertian model, the reflection intensity r is
modeled as follows:

r =
kKλ cos θ

d2
, (1)

where k is a proportional constant, Kλ is the reflectivity of the
object at wavelength λ, θ is the incident angle of the LIDAR
ray on the surface of the object, and d is the distance from
the surface to the photoreceptor of the LIDAR.

The reflectivity Kλ is excluded from the candidates of
the alternative features because it largely depends on the
wavelength of the LIDAR model. The distance d is also not
set as an alternative channel. It is because d is a simple
feature that can be easily encoded from the coordinates.
Furthermore, some sensor models such as Velodyne’s LIDARs
provide reflection intensities normalized to distance, wherein
the distance information is not included.

In this study, we selected cos θ as an alternative channel
of the reflection intensity. The value of cos θ is considered
to be a parameter reflecting local characteristics of the re-
flection intensity. Though real LIDAR reflection intensity
does not completely follow ideal Lambertian reflection, it
tends to decrease with increasing incident angle θ [19][20].
Furthermore, it is considered to be difficult for the network
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to acquire this information naturally, because cos θ contains
information of the positional relationship with neighboring
points. Therefore, even though cos θ is a feature that can
be encoded from coordinates of points, it is meaningful to
estimate cos θ explicitly.

B. Cosine estimation network (CEN)

By introducing the CEN, we aim to compensate for the
missing geometrical information contained in the reflection
intensity. A naive way to make existing networks independent
of the reflection intensity is to simply remove it from the
input channels. However, this causes a lack of information,
which can result in degraded detection accuracy. To retain the
detection accuracy, the CEN estimates cos θ as an alternative
feature of the reflection intensity. The normal of the point, by
which cos θ is defined, is often calculated from its neighboring
points; however, it is difficult to calculate accurate values of
the normal from sparse point clouds. Thus, we used a neural-
network-based method to robustly estimate cos θ from sparse
points.

Similar to PointPillars, the detection space is divided into
pillars that extend vertically from the grid dividing the XY
plane into W H.

First, the points in each pillar are fed into the CEN, which
estimates cos θ for each point. The structure of the CEN is
inspired by VoxleNet’s feature learning network [9], consisting
of multiple voxel feature encoding layers (VFE layer) in a
series. Figure 3 shows a schematic of the CEN for one pillar.
The input for the CEN is Vin = {pi = [xi, yi, zi, xi−mx, yi−
my, zi −mz]

T ∈ R
6}1...n, where mx, my , and mz are the x,

y, and z values, respectively, of the average coordinates of the
points in the pillar. The value n is the maximum number of
features input to one pillar. If the number of points in a pillar
is larger than n, random sampling is performed. Conversely,



if the number of points is smaller than n, zero padding is
performed.

Next, pi is converted to point-wise pillar features fPFE
i ∈

R
2l through the first pillar feature encoding (PFE) layer. The

PFE layer has a similar structure to the VFE layer of VoxelNet.
In the first PFE layer, pi is converted to fpoint

i ∈ R
l through

a fully connected network. This fully connected network
consists of a linear layer, batch normalization (BatchNorm)
method, and a rectified linear unit (ReLU). Note that, all
the linear layers in a fully connected network share their
weights as a shared multi-layer perceptron in PointNet [5].
Thereafter, an fpoint

i is converted to fpillar
i ∈ R

l using
element-wise max pooling. Finally, a concatenated feature
fPFE
i = [fpoint

i , fpillar
i ]T is the output. In the CEN, multiple

PFN layers that have the same architecture as the first one can
be chained. In this study, three sequential layers are used. The
input and output sizes of each layer are (6, 64), (64, 32), and
(32, 8), respectively. The point-wise feature from the last PFE
layer is converted to cos θesti ∈ R through a fully connected
network.

C. Pillar feature network

Pillar feature net (PFN) has the same structure as that of
PointPillars, and it is constructed with a simplified PointNet.
The input of this network is V PFN

in = [pTi , xi − cx, yi −
cy, cos θ

est
i ]T ∈ R

9}, where cx and cy are the X and Y
coordinates of the center of each pillar, respectively. PFN of
CosPointPillars differs from that of PointPillars in that cos θesti

is input instead of the reflection intensity. Thereafter, V PFN
in

is converted into pillar feature vPFN
out ∈ R

C through PFN. The
value of C can be set arbitrarily, and we set C = 64 in this
study. Finally, a feature whose size is (W, H, C) is generated
by combining the pillar features calculated in each pillar.

D. Region proposal network

We adopted an SSD-like [18] network proposed in SEC-
OND [10] as a region proposal network (RPN). The RPN
consists of three top-down blocks and three deconvolution
layers as shown in Fig. 2. A top-down block is a combination
of multiple 2D CNN layers. The blocks in CosPointPillars are
denoted by block1 to block3. Block1 is a chain of four 2D
CNN layers. Block2 is a chain of six 2D CNN layers. Block3
is a chain of six 2D CNN layers. Each of the layers in the
blocks is followed by BatchNorm and ReLU. These blocks
generate features with size (W, H, C), (W/2, H/2, 2C), and
(W/4, H/4, 4C), respectively.

Through the deconvolution layer, features generated from
top-down blocks are transformed into features with size (W,
H, 2C). Next, BatchNorm and an ReLU are applied to each
of these features. By concatenating them, a feature map with
size (W, H, 6C) is output.

Finally, the feature map is mapped to three learning targets:
a classifier, a box regressor, and a direction classifier. In the
box regressor, matching to the ground truth is determined by
whether the 2D IoU [22] between the generated bounding box
and the ground truth exceeds the threshold.

E. Loss function

The loss function is shown as follows:

L = βdetLdet + βcosLcos, (3)

where Ldet is a loss function for 3D object detection, and Lcos

is a loss function for the cosine estimation in the CEN. βdet

and βcos are constants. In this study, we set βdet = 1 and
βcos = 0.5.

The loss function for the detection of Ldet is the same as
that of Pointpillars and SECOND, and it is defined as follows:

Ldet =
1

Npos

(βclsLcls + βlocLloc + βdirLdir), (4)

where βloc, βcls, and βdir are constants. In this study we set
βcls = 1, βloc = 2 and βdir = 0.2. Npos is the number
of positive anchors. The function denoted by Lcls is the loss
function for the classification, and is defined as follows using
focal loss [21]:

Lcls =
∑

i=1...Npos+Nneg

−κ(1− pt)
γ log pt, (5)

where pt is the certainty of the classification. Nneg is the
number of negative anchors. κ and γ are constants. We set
κ = 0.25 and γ = 2. Meanwhile, Lloc is a loss function
related to the object locations and defined as follows:

Lloc =
∑

i=1...Npos

∑

b∈x,y,z,w,h,l,h,Θ

SmoothL1(∆b), (6)

subject to

∆x =
xgt − xa

da
,∆y =

ygt − ya
da

,∆z =
zgt − za

ha

,

∆w = log
wgt

wa

,∆l = log
lgt
la

,∆h = log
hgt

ha

, (7)

∆Θ = sin (Θgt −Θa),

where (xgt, ygt, zgt, wgt, lgt, hgt, Θgt ) and (xa, ya, za, wa,
la, ha, Θa ) are the locations, dimensions, and rotation values
of the z-axis for bounding boxes of ground truth and positive
anchors, respectively. The value da is defined by

√

x2
a + y2a.

The function Ldir is the orientation loss function proposed in
SECOND [10].

The function Lcos is a loss function for cosine estimation
that we newly add, and it is defined as follows:

Lcos =
∑

i=1...N

|| cos θi − cos θesti ||2, (8)

where N represents the total number of points in all the pillars.
The value cos θesti is the cosine estimated by the CEN at each
point.
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Fig. 4. Schematic of depth images on LIDAR coordinate system.

Fig. 5. Examples of generated datasets: In these images, white points represent the generated points and red bounding boxes represent ground truth. Yellow
points represent the points in the ground truth bounding boxes.

IV. DATASET

We created a new point cloud dataset in a simulated walking
space and referred it to as SimDataset. We created a virtual
walking space on Unity, a popular game engine, and simulated
point clouds obtained by a LIDAR in the space. There are
three major advantages of constructing a dataset by simulation
compared with collecting real sensor data. First, a large
amount and variety of data with perfect annotation can be
generated in a short period of time. Second, the simulated
environment can be freely customized depending on the use
scenario. Third, accurate cosine can be calculated for the
training of CosPointPillars.

SimDataset is generated by performing raycasting on depth
images; we can obtain a more realistic point cloud compared
with that generated by collision models. Figure 4 shows
a schematic of the raycasting-based point cloud generation
method.

The definition of the annotation follows that of KITTI. The
annotation of each object consists of the class, the location,
the dimension, and the rotation angle of the 3D bounding box
(Fig. 5). The location is the value of the coordinates (x [m], y
[m], z [m]) in the front depth camera coordinate system. The
dimension contains the height (h [m]), the width (w [m]), and
the length (l [m]) of the 3D bounding box. The rotation angle
is the direction of the bounding box about the y-axis in the
front depth camera coordinate system.

V. EXPERIMENT

In the first of the two experiments, we compared the
pedestrian detection accuracy of CosPointPillars with other
methods on downsampled KITTI and NuScenes to show that
the cosine estimation helps in pedestrian detection on sparse
point clouds. In the second experiment, we compared two

TABLE I
NUMBER OF PEDESTRIANS PER DISTANCE IN EACH DATASET

dataset
Distance [m]

[0, 2.5) [2.5, 5.0) [5.0, 7.5) [7.5, 10.0)
KITTI-train 0 27 112 373
KITTI-test 0 37 224 407
Sim-train 8901 21621 22441 20868
Sim-test 5952 12059 11205 8844

CosPointPillars models, which were separately trained with
SimDataset and KITTI, to confirm that SimDataset is suitable
for pedestrian detection in a walking space.

A. Setup of dataset

In these experiments, we used KITTI dataset, NuScenes
dataset, and SimDataset for both training and verification. In
the SimDataset, we simulated a real LIDAR model equipped
with wheelchairs (e.g., Velodyne VLP-16) with 16 scan layers.
We generated two sets of data for training and verification:
Sim-train and Sim-test. Sim-train and Sim-test contain 12,080
and 10,524 frames, respectively. For these point clouds, pedes-
trians within 10 m from the virtual sensor are annotated.
Assuming that the walking speed of the pedestrian is 4 km/h
and the moving speed of the wheelchair is 6 km/h, the time to
collide with a pedestrian who is 10 m away is at least 3.6 s.
Since this is enough time for collision avoidance, detection of
pedestrians who are further away is not required in our case.
Sim-train and Sim-test contain 73,831 and 38,060 pedestrian
annotations, respectively. Note that we generated these two
datasets from different sequences in the simulation to avoid
the same pedestrians being included in both datasets.

KITTI dataset provides point cloud data of 7,481 frames for
training and 7,518 frames for testing. Since the correct anno-



tations for the testing frames were not available, we only used
training frames in the experiments. Following [1][9][10][11],
we divided the training frames into 3,712 and 3,769 frames
for training and verification such that they did not contain
pedestrian data sampled from the same sequence. In this paper,
we refer to them as KITTI-train and KITTI-test. Following
SimDataset, the point clouds in KITTI were downsampled
so that the vertical resolution would become 2◦ to imitate
point clouds of VLP-16. Furthermore, the annotation of objects
further than 10 m was removed. To generate the ground truth
of cos θ, we calculated the normal vectors by performing
principal components analysis (PCA) of the points within a
radius of 0.2 m from each point. Thereafter, the normal was
defined by the third component. In the case where the number
of surrounding points is insufficient to perform PCA, we define
cos θ as 0. Note that cosine calculation is performed based on
original point clouds without downsampling.

To highlight the difference in the pedestrian distance distri-
butions of KITTI and SimDataset, we summarize the number
of pedestrians in different distance ranges, as shown in Table
I. SimDataset contains more pedestrians who are nearby
compared with KITTI. In particular, while no pedestrian exists
within 2.5 m in the KITTI dataset, Sim-train and Sim-test
contain 8,901 and 5,952 pedestrians, respectively, located
closer than 2.5 m. SimDataset contains a total of 111,891
pedestrians. Note that, while the original KITTI contains a
total of 4,487 pedestrians, it contains only 1,180 pedestrians
within 10 m.

We also used the NuScenes dataset. NuScenes dataset pro-
vides 34,149 frames from 850 different scenes. We following
NuScenes’ official split, and used 700 scenes and 150 scenes
as training and testing data. The point clouds and annotations
in NuScenes were downsampled in the same way as in KITTI.
The ground truth of cos θ was also calculated with the same
method as in KITTI.

B. Setup of CosPointPillars

The pillar size was 0.16×0.16×5.00 m3, and the observation
ranges in the X, Y, and Z axes were (0.00, 10.24) m, (-10.24,
10.24) m, and (-2.50, 2.50) m, respectively. The maximum
number of points in a pillar was set to 50. The other parameters
follow those of the original PointPillars.

In training, we applied the same data augmentation method
as that proposed in PointPillars. For KITTI, we applied ro-
tation noise in the range [−π/20, π/20] to the ground truth
bounding boxes and location noise following normal distri-
bution N (0, 0.25). In addition, global rotation noise in the
range [−π/4, π/4] and uninformed scaling noise in the range
[0.95, 1.05] were applied to entire point clouds. Meanwhile,
for SimDataset, we only applied global rotation noise in the
range [−π/8, π/8] and uninformed scaling noise in the range
[0.95, 1.05] for entire point clouds. Since the SimDataset had
enough variation for training, other data augmentation methods
were not applied. In these conditions, each of the networks was
trained for 200 epochs with a batch size of 2 for KITTI and
6 for SimDataset.

C. Performance of CosPointPillars

First, to show that the CosPointPillars improves the pedes-
trian detection accuracy in sparse point clouds, we compared
the pedestrian detection accuracy of CosPointPillars with
existing networks on downsampled KITTI and NuScenes.
We evaluated the average precision (AP) in 3D and BEV
pedestrian detection. Following the official KITTI evaluation
protocol, we set the IoU threshold at 0.5 in the experiment on
KITTI. In the experiment on NuScenes, we prepared two types
of thresholds of IoU, 0.5, which is the same as that for the
KITTI evaluation, and 0.15, which is a more relaxed condition.
This is because NuScenes provides more challenging and
various testing data compared with KITTI.

Table II lists the AP of 3D and BEV pedestrian detection
of CosPointPillars along with that of competing networks.
As competing networks, we chose VoxelNet, SECOND, and
PointPillars for the evaluation on KITTI and PointPillars for
the evaluation on NuScenes. Note that the inputs to these
networks were X, Y, and Z coordinates of each point, whereas
the inputs of the original ones also included a reflection
intensity. In addition, to investigate the effect of removing
the reflection intensity from the input, the performance of the
original PointPillars on KITTI is also shown in Table II. In the
evaluation on KITTI, the AP at each detection difficulty level
(Easy, Moderate, and Hard) is calculated. In the evaluation on
NuScenes, the AP under each IoU threshold level is calculated.

Regarding BEV pedestrian detection, CosPointPillars out-
performed other networks at all difficulty levels on KITTI. On
NuScenes, CosPointPillars outperformed PointPillars under
both IoU thresholds. The result that CoSPointPillars out-
performed PointPillars in BEV detection accuracy on both
datasets suggests that the CEN in CosPointPillars contributes
to improving the accuracy of BEV pedestrian detection.

As regards 3D pedestrian detection, as TableII shows,
CosPointPillars outperforms VoxelNet and SECOND at all the
difficulty levels on KITTI. Comparing the CosPointPillars and
PointPillars, the AP of the CosPointPillars was higher than that
of PointPillars when the detection difficulty level was Easy,
and it was lower at both Moderate and Hard difficulty levels.
These differences in AP were negligible at all the detection
difficulty levels, i.e., less than 0.3%. Thus, the performances
of both networks on KITTI are considered to be almost the
same. On NuScenes, PointPillars exceeded CosPointPillars in
detection accuracy under an IoU threshold of 0.5, whereas
CosPointPillars outperformed PointPillars under a threshold
of 0.15. These results suggest that the estimation accuracy of
the position and size along the Z axis was not improved by
the CEN. The most possible cause of the results is that the
input 16-layer LIDAR point cloud was sparse in the Z axis.
It can be assumed that the CEN could not sufficiently capture
the relationships between points in the Z axis because of the
sparsity of point cloud in the Z axis.

Comparing PointPillars with and without reflection intensity
input, the original PointPillars outperform PointPillars without
reflection intensity input in both 3D and BEV pedestrian detec-



TABLE II
AP OF PEDESTRIAN DETECTION ON KITTI AND NUSCENES

Method Input
KITTI 3D (%) NuScenes 3D (%) KITTI BEV (%) NuScenes BEV (%) Time

Easy Mod. Hard IoU 0.5 IoU 0.15 Easy Mod. Hard IoU 0.5 IoU 0.15 (ms)

PointPillars x, y, z, ref. 75.17 73.16 69.58 — — 84.36 79.97 76.82 — — 8

VoxelNet x, y, z 58.05 54.40 51.74 — — 66.78 61.97 60.58 — — 29
SECOND x, y, z 72.31 67.00 64.36 — — 79.99 74.97 72.71 — — 44

PointPillars x, y, z 74.12 71.17 68.27 21.87 55.10 80.22 75.92 74.48 30.23 55.29 8
CosPointPillars x, y, z 74.42 71.10 68.02 17.85 56.34 82.35 77.29 75.94 32.83 56.94 10

Bold indicates the top two results

TABLE III
AP(%) OF PEDESTRIAN DETECTION PER DISTANCE (IOU THRESHOLD: 0.25)

Training dataset Verification dataset
3D AP (%) BEV AP (%)

<2.5 m ≥ 2.5 m total <2.5 m ≥ 2.5 m total

KITTI-train Sim-test 65.41 85.27 84.43 70.14 85.30 84.54
Sim-train Sim-test 85.56 88.13 87.84 85.63 88.14 87.89

TABLE IV
F-MEASURE OF PEDESTRIAN DETECTION PER DISTANCE ON REAL DATA

Training dataset
F-measure

<2.5 m ≥ 2.5 m total

KITTI-train 30.67 68.80 63.04
Sim-train 96.36 98.44 98.06

tion at all the difficulty levels on KITTI. This result suggests
that refection intensity helps to improve the detection accuracy
when the training data and the testing data are obtained using
the same LIDAR sensor and that the CosPointPillars’ concept
of taking the alternative feature of the reflection intensity is
reasonable.

D. Comparison of dataset

To confirm that SimDataset was suitable for the pedestrian
detection in a walking space, we compared the CosPointPillars
trained with Sim-train and KITTI-train in pedestrian detection
accuracy on both simulated and real walking spaces.

First, we compared the pedestrian detection accuracy of
these two networks by using Sim-test dataset. In this compar-
ison, the network trained with Sim-train is more advantageous
because the size of the annotated bounding boxes in Sim-train
is similar to that in Sim-test. Thus, to make a fair comparison,
we reduced the IoU threshold to 0.25.

Table III shows the results of this experiment. In addition
to the detection accuracy for the whole detection range, we
also evaluated the detection accuracy for pedestrians closer
than 2.5 m and the ones located more than 2.5 m to clarify
the effect of Sim-train containing pedestrians within 2.5 m,
which is not contained in KITTI-train. As Table III shows, in
the detection of pedestrians located more than 2.5 m away, the
AP difference between these two networks is less than 3% in
both 3D and BEV detection. Meanwhile, in the detection of

pedestrians located closer than 2.5 m, the differences in AP
were 20.15% in 3D detection and 15.49% in BEV detection.

Next, we compared CosPointPillars trained with Sim-train
and those trained with KITTI-train in the pedestrian detection
accuracy on real data of walking spaces. In this experiment,
the point clouds were obtained by a Velodyne’s VLP-16 with
16 scan layers on an electric wheelchair. As a verification of
the data, we randomly sampled 100 frames from one sequence
of the LIDAR scans. Thereafter, we compared the F-measure
of two networks in these frames under the condition of a score
threshold of 0.5.

Table IV lists the F-measure of the two networks in each
distance section. As shown in Table IV, the F-measures that
were trained with Sim-train were improved.

Some examples of the results are shown in Fig. 6. The
bounding boxes generated with scores of over 0.5 are shown.
Yellow bounding boxes indicate the detection results gener-
ated by the network trained with SimDataset, whereas blue
bounding boxes indicate the results from a network trained
with KITTI. As shown in Fig 6, it can be seen that the net-
work trained with SimDataset could detect more pedestrians
compared with that trained with KITTI.

As these experiments show, being trained with Sim-train
improved the pedestrian detection accuracy in walking spaces,
particularly within close proximity.

VI. CONCLUSION

For pedestrian detection in walking spaces, we proposed
CosPointPillars and SimDataset. CosPointPillars, which was
independent of reflection intensity, showed higher performance
particularly in BEV detection compared with the existing
reflection intensity independent networks. This result showed
that the CEN helped with the pedestrian detection on sparse
point cloud. Furthermore, having been trained with Sim-
Dataset, CosPointPillars improved the detection performance,
particularly within close proximity. This result showed that
SimDataset is an appropriate dataset for walking spaces.



(a) (b)

(c) (d)

(e) (f)

Fig. 6. Example of detected pedestrians. (a) is a snapshot of the experiment. The other figures are examples of point clouds and pedestrians detected with
CosPointPillars. Five examples denoted from (b) to (f) are shown. The left figure of each example is a raw point cloud, the center figure is the point cloud and
bounding boxes generated by CosPointPillars trained with SimDataset. The right figure is the point cloud and bounding boxes generated by CosPointPillars
trained with KITTI. In these figures, the grid size is 1.0 m. A yellow line indicates the line of X=Y=0 and a red dot indicates the LIDAR.

Given that CosPointPillars showed a lower detection accuracy
compared with original PointPillars in the experiment, future
studies will include improvement of the detection accuracy of
the network. To realize this, we consider that it is worthwhile
improving the accuracy of the CEN.
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