
Automatic Hyper-Parameter Tuning for Black-box LiDAR Odometry

Kenji Koide1, Masashi Yokozuka1, Shuji Oishi1, and Atsuhiko Banno1

Abstract— LiDAR odometry algorithms are complex and
involve a number of hyper-parameters. The choice of hyper-
parameters can substantively affect the performance of odom-
etry estimation, and it is necessary to carefully fine-tune the
hyper-parameters depending on the sensor, environment, and
algorithm to achieve the best estimation results. While odometry
estimation algorithms are often tuned manually, this is time-
consuming and may also result in a sub-optimal parameter
set. This paper presents an automatic hyper-parameter tuning
approach for LiDAR odometry estimation. By taking advantage
of the sequential model-based optimization (SMBO) approach,
we automatically optimize the hyper-parameter set of a black-
box odometry estimation algorithm without detailed knowledge
of the algorithm. In addition, a LiDAR data augmentation
approach is also proposed to prevent overfitting. Through evalu-
ation, we show that the combination of SMBO-based parameter
exploration and data augmentation enables us to efficiently and
robustly optimize the hyper-parameter set for several different
odometry estimation algorithms. We also demonstrate that the
optimized parameter set exhibits superior performance with
respect to KITTI dataset and in a real use scenario.

I. INTRODUCTION
LiDAR odometry estimation and SLAM are crucial for

many functions in intelligent autonomous systems, such as
localization, mapping, and navigation. A number of odome-
try estimation and SLAM algorithms have been proposed
[1], [2], [3], and the SLAM community has benefited
from these advances. Those algorithms are, however, often
surprisingly complex and involve many hyper-parameters.
Their performance can depend substantively on the choice
of hyper-parameters. It is necessary to carefully fine-tune
the hyper-parameters depending on the sensor, environment,
and algorithm to achieve the best estimation results. Without
appropriate hyper-parameter selection, their accuracy can
drastically deteriorate when we try to apply them in a new
environment or we use a new sensor model [4].

Despite their importance, hyper-parameters tend to be
manually calibrated in odometry estimation algorithms. Man-
ual tuning through trial and error, however, requires a
large amount of human effort to maximize the estimation
performance for large datasets. Furthermore, it requires a
thorough mechanistic understanding of the algorithm to be
tuned; insufficient understanding and cursory tuning can lead
to a parameter set that results in sub-optimal performance.
Although a few studies have proposed automatic hyper-
parameter tuning methods for LiDAR and visual odometry
estimation methods [5], [6], [7], they are all dedicated to
specific algorithms or environments.

1 All the authors are with the Department of Information Technology
and Human Factors, the National Institute of Advanced Industrial Sci-
ence and Technology, Umezono 1-1-1, Tsukuba, 3050061, Ibaraki, Japan,
k.koide@aist.go.jp

In the context of machine learning, sequential model-based
optimization (SMBO), which optimizes a set of parameters
without detailed modeling of the behavior of the system to
be tuned, has attracted attention and has been applied to
automatic hyper-parameter tuning [8], [9], [10]. The SMBO
approach explores the parameter space through an automatic
parameter-selection-and-trial loop with a surrogate function
of an expensive evaluation function. It has been shown that
this approach can efficiently optimize the hyper-parameters
of models that have high evaluation cost and involve many
hyper-parameters, such as deep neural networks [11].

The purpose of this paper is to put forward an improved
approach for hyper-parameter tuning that can be applied to
all odometry estimation algorithms. We first propose an au-
tomatic hyper-parameter optimization method for odometry
estimation algorithms based on the SMBO approach. The
proposed approach does not exploit detailed knowledge of
the algorithm to be tuned but instead treats the system as
a black-box. We also propose a data augmentation method
for LiDAR sequences to prevent overfitting of the optimized
hyper-parameters and find a hyper-parameter set that is
robust to environment changes. Through evaluation, we show
that the proposed hyper-parameter optimization approach
considerably improves the performance of LiDAR odometry
algorithms for a publicly available dataset, KITTI [12].

The contribution of this paper is three-fold. First, we
propose an automatic and general hyper-parameter tuning
approach for odometry estimation algorithms. Second, a
data augmentation method to prevent the parameter tuning
process from overfitting is proposed. Third, we have released
the code, as open source, to automate the odometry tuning
process 1.

II. RELATED WORK
SLAM and odometry estimation algorithms are inherently

very complex and use various hyper-parameters (e.g., point
cloud resolution, feature matching threshold, and keyframe
interval). It is known that some popular SLAM frameworks
like Google cartographer require fine-tuning many hyper-
parameters that affect each other to achieve the best results
[13]. This tuning process requires a thorough understanding
of its inner behavior and a large amount of trial and error.

Despite the importance of hyper-parameter tuning, only
a few studies have considered automatic tuning of SLAM-
related algorithms. Nobili et al. proposed a tuning method
for ICP algorithms to improve the LiDAR localization accu-
racy for a humanoid robot [6]. This method automatically

1https://github.com/SMRT-AIST/automatic_tuning/
tree/devel

optimizes outlier removal based on the estimated overlap
rate between point clouds. Permeleau et al. performed an
exhaustive parameter-by-parameter exploration to investigate
how changes in parameter values affect ICP registration
results [5]. Zheng optimized the hyper-parameters for a
visual SLAM algorithm (e.g., the number of features, patch
size, and edge threshold) using a grid search [7]. There
are also several case studies that propose techniques to
tune SLAM-related algorithms for specific contexts [14].
However, the above-described methods are all dedicated
to specific sensors and task configurations. We argue the
necessity of an automatic and general hyper-parameter tuning
process that is potentially beneficial to every SLAM-related
algorithm.

In the context of machine learning, hyper-parameter tuning
has been recognized as an important step to maximize the
performance of learning models [15]. Machine learning algo-
rithms commonly use a certain number of hyper-parameters
to control their behavior, and their performance can sub-
stantively depend on the choice of the hyper-parameter set.
In classic algorithms that use only a few parameters (e.g.,
RBF SVM parameter selection [16]), parameter tuning is
often undertaken by an exhaustive grid search or a random
search [17]. However, when the number of parameters is
large or computation of the evaluation function is expensive,
it is difficult to obtain a sufficient solution with these naive
methods in a reasonable time. To efficiently optimize many
parameters in an expensive model, the SMBO approach has
been widely used in recent years [18], [19]. This approach
uses a light surrogate function to approximate the costly
evaluation function and effectively explore the parameter
space with the model response prediction calculated with the
surrogate function. Many SMBO algorithms have been pro-
posed, and they are popular in the machine learning domain
because automatic parameter tuning confers clear advantages
over manual alternatives [8], [9], [10]. In particular, deep
learning-based methods, which require tuning many hyper-
parameters for a very costly training model, have benefited
from SMBO-based automated hyper-parameter tuning [11].

In this work, we apply the SMBO approach to hyper-
parameter tuning of odometry estimation algorithms. Al-
though we focus on LiDAR odometry estimation, the pro-
posed approach is general and can also be applied to visual
odometry algorithms.

III. METHODOLOGY
A. Problem Definition

Let us assume that we have an odometry estimation
function F that takes D as input data sequences and x
as a set of hyper-parameters, and then outputs estimated
sensor trajectories T ; T = F(D,x). Our goal is to find
the parameter set x̃ that minimizes the evaluation function
G for the estimated trajectories:

x̃ = arg min
x

G (F(D,x)) . (1)

We use the notation G(x) = G (F (X ,x)) in the rest of this
paper for simplicity.

Algorithm 1 Sequential Model-Based Optimization [18]

1: H ← []
2: for i ∈ [1, · · · , N] do
3: x∗ ← arg max

x
A (S (x,Mi−1))

4: Evaluate G (x∗)
5: H ← H∪ (x∗,G(x∗))
6: Fit Mi to H

return H

The most naive and common ways to find x̃ are an
exhaustive grid search and a random search [17]. They are
straightforward to implement and are often used when the
number of parameters is small. As the number of parameters
increases, however, the required number of evaluations grows
exponentially. The evaluation of a parameter set G(x) is quite
expensive in LiDAR odometry estimation, and these naive
methods cannot sufficiently explore the parameter space and
find a good parameter set in a reasonable time.

B. Sequential Model-Based Optimization

SMBO [18] is a technique to efficiently explore the
parameter space with fewer evaluations. SMBO uses a light-
weight surrogate function S(x,Mi) that approximates the
costly evaluation function G (x) based on a model Mi fitted
to the evaluation history H. It then explores the parameter
space by sampling the parameter set x∗ that maximizes an
acquisition criterion A (see Algorithm 1).

The expected improvement (EI) [20] has been widely used
as an acquisition criterion. EI is the expectation that y =
G(x) negatively exceeds a threshold y∗:

EIy∗ :=

∫ ∞
−∞

max (y∗ − y, 0) pMi
(y|x)dy. (2)

A parameter set sample x∗ that maximizes EIy∗ can be
found using the tree-structured Parzen estimator (TPE); this
is popular in automatic hyper-parameter tuning frameworks
[9], [10]. TPE models p(x|y) instead of directly modeling
p(y|x). It defines p(x|y) using two density functions l(x)
and g(x):

p(x|y) =

{
l(x) if y < y∗

g(x) otherwise,
(3)

where l(x) is composed of the evaluation results where
G(x) < y∗, and g(x) is composed of the other evaluation
results. The quantile γ for the evaluation results such that
p(y < y∗) = γ is chosen as y∗, and Kernel density
estimation is used to model l(x) and g(x).

By substituting Eq. (3) into Eq. (2), we obtain the follow-
ing equation (see [18] for the detailed derivation):

EIy∗(x) ∝
(
γ +

g(x)

l(x)
(1− γ)

)−1
. (4)

Eq. 4 indicates that we can obtain x∗ by finding x that
maximizes g(x)/l(x). Sampling-based techniques are used
to find x∗ in the parameter space.

TABLE I: Averaged translational RTEs [%] for KITTI

Training set Test set
Method Config 00 01 02 03 04 05 Avg.* 06 07 08 09 10 Avg. *

LeGO-LOAM Baseline 1.77 39.9 6.78 1.50 1.02 1.20 9.90 0.99 1.11 1.75 1.47 1.92 1.53
Tuned 3.01 3.76 2.39 2.09 1.01 1.65 2.62 (-7.28) 1.30 1.45 2.41 1.93 2.25 2.03 (+0.50)

hdl graph slam Baseline 1.78 17.3 2.45 1.62 2.34 1.38 4.60 1.00 0.84 1.73 2.01 2.54 1.69
Tuned 1.36 6.88 1.58 1.06 1.18 0.93 2.29 (-2.31) 0.83 1.47 1.64 1.38 3.08 1.61 (-0.07)

SuMa Baseline 1.12 13.2 1.52 1.55 0.53 1.44 3.37 0.68 0.77 1.72 1.36 2.21 1.45
Tuned 1.06 10.5 1.40 1.25 0.60 1.13 2.80 (-0.57) 0.66 0.71 1.86 0.98 1.97 1.39 (-0.06)

* Values in parentheses are with respect to the baseline.

TABLE II: Averaged translational RTEs [%] without KITTI 01 and 02

Training set Test set
Method Configuration 00 03 04 05 Avg. * 06 07 08 09 10 Avg. *

LeGO-LOAM
Baseline 1.77 1.50 1.02 1.20 1.52 0.99 1.11 1.75 1.47 1.92 1.52
Tuned 1.60 1.51 1.14 0.98 1.37 (-0.15) 1.03 1.07 1.71 5.51 2.10 2.42 (+0.90)

Tuned w. D.A. 1.80 1.52 1.03 0.99 1.47 (-0.05) 0.99 1.07 1.73 1.46 1.84 1.51 (-0.01)

hdl graph slam
Baseline 1.78 1.62 2.34 1.38 1.67 1.00 0.84 1.73 2.01 2.54 1.69
Tuned 1.37 1.64 1.90 1.05 1.32 (-0.35) 0.98 0.60 1.37 1.61 1.78 1.34 (-0.35)

Tuned w. D.A. 1.48 1.91 1.87 1.16 1.43 (-0.24) 0.96 0.66 1.51 1.54 1.69 1.37 (-0.32)

SuMa
Baseline 1.12 1.55 0.53 1.55 1.22 0.68 0.77 1.72 1.36 2.21 1.45
Tuned 1.05 1.24 0.61 1.24 1.08 (-0.17) 0.63 0.72 1.55 0.94 1.70 1.21 (-0.24)

Tuned w. D.A. 1.13 1.28 0.57 1.14 1.11 (-0.11) 0.67 0.82 1.62 1.30 1.96 1.37 (-0.08)
* Values in parentheses are with respect to the baseline.

SMBO algorithms are available in several hyper parameter
optimization frameworks [8], [9], and in this work, we utilize
the TPE implementation in optuna [10], a hyper parameter
optimization library, to find the best hyper-parameter set x̃.

C. Data Augmentation

Although the SMBO approach enables us to efficiently
explore the parameter space, it tends to find an aggressive
hyper-parameter set to minimize the trajectory errors in the
training set and suffer from overfitting. In particular, for
odometry estimation, the number of training sequences is
much smaller compared to usual machine learning tasks, and
overfitting can be a critical problem. Inspired by the recent
success for data augmentation in the context of deep learning
[21], we propose the following three data augmentation
techniques to avoid overfitting:

1) Random range noise: For each point in an input point
cloud, we sample a random range of noise in a typical
noise range for a 3D LiDAR: r ∼ N (µ = 0, σ =
0.025) [m] and add it to the point.

2) Random transformation: For each input frame, we
randomly sample a transformation, where the trans-
lation ‖t‖ ∼ N (0, 0.05) [m] and the rotation angle
θ ∼ N (0, 0.25) [°], and apply it to the point cloud
and its inverse to the ground truth pose.

3) Reversing order: We reverse the data order for half of
the augmented sequences.

By introducing perturbations with these data augmentation
techniques, we aim to let SMBO find a parameter set that
can robustly deal with noise and environment changes. We
generate four augmented sequences for each input data
sequence.

IV. EXPERIMENT

A. Evaluation on KITTI

1) Evaluation setting: To show that there is scope to
improve the estimation accuracy with hyper-parameter tuning
for many odometry estimation methods, we carried out an
evaluation on the KITTI dataset [12]. Following [12] and
[2], we used relative trajectory errors (RTEs) [22] averaged
over sub-trajectories of 100 to 800 m lengths as the metric
for evaluation. We utilized evo 2 to calculate the RTEs.
The sequences 00 to 05 were used for hyper-parameter
optimization, while the remaining sequences were used for
validation.

We ran LeGO-LOAM [1], hdl graph slam [3], and SuMa
[2] on the KITTI dataset and evaluated their RTEs. We used
manually tuned parameter sets as the baselines. It is worth
mentioning that the baseline parameter set of SuMa is fine-
tuned for the KITTI dataset in [2]. Then, we optimized the
parameter sets for these frameworks with the TPE-based
SMBO approach. The list of tuned parameters and their
ranges are available on our project page 3. The number
of SMBO evaluation trials was set to 128. For the CPU-
based frameworks (LeGO-LOAM and hdl graph slam), we
ran eight trials in parallel to speed up the optimization
process. Parameter optimization was completed in about
four hours. However, optimization of SuMa, which utilizes
GPU computation, took about 12 hours. This is because its
processing speed decreases significantly when multiple trials
are run in parallel due to GPU scheduling issues, and we
thus had to run a single trial at a time.

2) Optimizing parameters using the entire KITTI: Table
I shows the RTEs for the baseline and tuned parameter
sets. We can see that the RTEs for all the methods for
the training set were significantly improved after fine-tuning
(LeGO-LOAM: −7.28%, hdl graph slam: −2.31%, SuMa:

2https://github.com/MichaelGrupp/evo
3https://github.com/SMRT-AIST/automatic_tuning/

blob/devel/parameters.md

Fig. 1: Parameters for LeGO-LOAM sampled by TPE-based SMBO during parameter optimization. The blue dashed lines
indicate the sample densities.

−0.57%). In particular, the RTEs for sequences 01 and 02,
which were the most difficult sequences in KITTI, involving
forest-like environments with baselines that tend to yield
corrupted estimates, were greatly improved. However, for
some of the other sequences in the training set and the
sequences in the test set, the RTEs deteriorated. This is
because, to improve the RTEs for the difficult sequences (01
and 02), the SMBO selected more conservative parameters,
which resulted in worse RTEs for the other sequences.

This finding testifies to the importance of the metric used
for optimization. Although the SMBO approach enables us
to improve the performance of a system for a specific metric,
the results do not always reflect intuitive impressions of the
goodness of the system (Discussed later in Sec V).

Fig. 1 shows the parameters for LeGO-LOAM sampled
during parameter optimization. The blue dashed lines show
the sampling densities estimated using kernel density es-
timation. We can see that the SMBO took more samples
from regions where the RTE was expected to be small
and efficiently explored the parameter space to find the
best parameter set. While some parameters have a clear
relationship between the parameter value and the RTE value
and appear straightforward to optimize (e.g., edge threshold
and segment valid point num), some other parameters pro-
duce relatively complex RTE distributions (e.g., near-
est feature search distance and surf threshold) that would be
more difficult to optimize manually.

3) Optimizing parameters for urban scenes: To evalu-
ate the peak performance of these frameworks in terms

of accuracy in a typical urban environment, we removed
sequences 01 and 02, which involve forest-like environments,
from the training set and ran the parameter optimization
again. The results are shown in Table II. In this case,
SMBO chose the parameters that fitted better to the typical
urban scenes in KITTI, and the RTEs for hdl graph slam
and SuMa were greatly improved for both the training
and test sets (hdl graph slam: (−0.35%,−0.35%), SuMa:
(0.17%, 0.24%) for the training and test sets, respectively).
While the RTE for LeGO-LOAM was also improved for the
training set (−0.15%), it deteriorated substantively for the
test set (+0.90%). This suggests that an overly aggressive
parameter set was selected to improve the RTE for the
training set, and resulted in overfitting.

Next we generated four data sequences for each train-
ing sequence with the proposed data augmentation tech-
niques and optimized the parameter sets for the aug-
mented training dataset (see Table II). Although the
parameter sets optimized with data augmentation have
slightly inferior RTEs compared to those optimized with-
out data augmentation, we can see that the proposed data
augmentation enables all the methods including LeGO-
LOAM to improve the RTEs for both the training and
test sets (LeGO-LOAM: (−0.05%,−0.01%) hdl graph slam:
(−0.24%,−0.32%), SuMa: (−0.11%,−0.08%)). This sug-
gests that perturbations injected in the augmented dataset
lead SMBO to choose a robust parameter set and help to
prevent overfitting.

Imagery©2020 Google, Map data ©2020 5m

START/END

(a) Environment 1

Imagery©2020 Google, Map data ©2020 5m

START/END

(b) Environment 2

Fig. 2: Experimental environments.

TABLE III: Odometry drift errors for LeGO-LOAM in real environments

Training set (Env1) Test set (Env1) Test set (Env2)
Configuration Trans. [m] Rot. [°] Trans. [m] Rot. [°] Trans. [m] Rot. [°]

Baseline 0.104 ± 0.029 0.027 ± 0.009 0.102 ± 0.006 0.030 ± 0.006 0.170 ± 0.053 0.015 ± 0.003
Tuned 0.078 ± 0.035 0.028 ± 0.010 0.214 ± 0.058 0.060 ± 0.015 0.135 ± 0.046 0.022 ± 0.003

Tuned w. D.A. 0.098 ± 0.042 0.033 ± 0.009 0.092 ± 0.020 0.021 ± 0.009 0.083 ± 0.029 0.022 ± 0.008

B. Evaluation in a Real Environment

To show that the proposed approach can be applied to a
practical situation, we recorded five LiDAR data sequences
with Velodyne VLP16 in environment 1 shown in Fig. 2 and
optimized the LeGO-LOAM parameter set. For validation,
we recorded two more sets of three sequences in environment
1 and 2, respectively.

To evaluate the odometry drift, we aligned the last frame
of each sequence with the first frame using ICP, and then
compared the obtained relative pose with the last sensor pose
of the estimated sensor trajectory. In this evaluation, we made
SMBO minimize the sum of the translation and rotation pose
errors: G(x) = errort[m] + errorr[rad].

Table III shows the evaluation results. Although the esti-
mation accuracy for the training set was greatly improved
by hyper-parameter optimization, the accuracy for the test
set in environment 1 deteriorated due to overfitting. With
the proposed data augmentation, although the errors for
the training set were slightly worse compared to the case
without data augmentation, we achieved the best results for
the test sets. This shows that the proposed combination of
SMBO-based hyper-parameter tuning and data augmentation
is effective for improving the accuracy of LiDAR odometry
while retaining its robustness in practical situations.

V. DISCUSSION

A. Evaluation Metric

As shown in Sec. IV-A, the SMBO approach enables us to
improve the performance of odometry estimation algorithms
with respect to a specific metric. However, the optimiza-
tion results do not always reflect the intuitive goodness of

the system. While the averaged RTE is widely used for
odometry evaluation in the literature, it does not represent
some important aspects of odometry estimation (e.g., the
balance between accuracy and robustness). We believe that it
is necessary to create a new metric that reflects other aspects
of odometry estimation (e.g., robustness to sensor motion
and environment change) to better capture the performance
of odometry estimation systems.

B. Data Augmentation

While we proposed basic data augmentation techniques
for LiDAR odometry datasets, there is scope to investigate
more advanced techniques. When we injected a large amount
of noise into the augmented dataset (e.g., translation noise
‖t‖ ∼ N (0, 0.25) [m] and rotation noise θ ∼ N (0, 2.5)
[°]), that made SMBO choose a very conservative parameter
set and resulted in deteriorated RTEs on not only the test
set but also the training set. It is desirable to develop data
augmentation techniques to safely inject large perturbations
without jeopardizing the accuracy of odometry estimations.
We consider that techniques used in deep learning (e.g.,
randomly erasing some parts of input data [23], data gen-
eration with adversarial networks [24]) could be a way to
safely increase the variety in the training dataset. We also
consider that recent simulation-based LiDAR data generation
techniques [25] are promising for enlarging the training
dataset and striking a balance between the accuracy and
robustness of odometry estimation.

C. Optimization Time

Parameter optimization using SuMa [2] for the augmented
dataset took about two days. It would require a much longer

amount of time if we optimized the hyper-parameters on a
large dataset (e.g., a city-scale dataset). As described in Sec.
IV-A, we can process each trial of the SMBO in parallel, and
this significantly reduces the optimization time. However,
with GPU-based algorithms like SuMa, it is difficult to run
multiple trials in parallel due to GPU scheduling issues, and
thus it is not possible to reduce the optimization time in the
same way.

For parameter tuning of deep neural networks, trial prun-
ing based on learning curve evaluation is often used [26]. We
consider that a similar approach to terminate unpromising
trials by evaluating only a few of the first sequences would
be effective for accelerating the entire parameter optimization
process.

VI. CONCLUSION

This paper proposed an automatic hyper-parameter tuning
approach for LiDAR odometry estimation algorithms. The
proposed approach utilized the TPE-based SMBO technique
to efficiently explore the parameter space to maximize an
evaluation metric without detailed knowledge of the al-
gorithm to be tuned. The experimental results show that
the proposed data augmentation techniques enable us to
prevent overfitting during parameter optimization and obtain
a parameter set for robust and accurate odometry estimation.

Although we explored the possibility of hyper-parameter
tuning to improve odometry estimation performance, as
discussed in Sec. V, we consider that there is scope to make
the automatic hyper-parameter tuning more efficient and
practical (e.g., developing new metric, data augmentation,
and trial pruning strategies). Furthermore, we would be able
to obtain greater performance gains by adaptively changing
the hyper-parameters depending on the circumstances instead
of using fixed pre-optimized parameters; we plan to focus on
this in future work.

ACKNOWLEDGMENT

*This work was supported in part by a project com-
missioned by the New Energy and Industrial Technology
Development Organization (NEDO).

REFERENCES

[1] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, oct 2018.

[2] J. Behley and C. Stachniss, “Efficient surfel-based SLAM using 3d
laser range data in urban environments,” in Robotics: Science and
Systems. Robotics: Science and Systems Foundation, jun 2018.

[3] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional
LIDAR-based system for long-term and wide-area people behavior
measurement,” International Journal of Advanced Robotic Systems,
vol. 16, no. 2, p. 172988141984153, mar 2019.

[4] K. Koide, J. Miura, M. Yokozuka, S. Oishi, and A. Banno, “Interactive
3d graph SLAM for map correction,” IEEE Robotics and Automation
Letters, vol. 6, no. 1, pp. 40–47, jan 2021.

[5] F. Pomerleau, S. Magnenat, F. Colas, M. Liu, and R. Siegwart,
“Tracking a depth camera: Parameter exploration for fast ICP,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, sep 2011.

[6] S. Nobili, R. Scona, M. Caravagna, and M. Fallon, “Overlap-based
ICP tuning for robust localization of a humanoid robot,” in IEEE
International Conference on Robotics and Automation. IEEE, may
2017.

[7] Z. Zheng, “Feature based monocular visual odometry for autonomous
driving and hyperparameter tuning to improve trajectory estimation,”
Journal of Physics: Conference Series, vol. 1453, p. 012067, jan 2020.

[8] F. Madrigal, C. Maurice, and F. Lerasle, “Hyper-parameter opti-
mization tools comparison for multiple object tracking applications,”
Machine Vision and Applications, vol. 30, no. 2, pp. 269–289, oct
2018.

[9] J. Bergstra, D. Yamins, and D. Cox, “Hyperopt: A python library for
optimizing the hyperparameters of machine learning algorithms,” in
Python in Science Conference. SciPy, 2013.

[10] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna,” in
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. ACM, jul 2019.

[11] X. Liang, “Image-based post-disaster inspection of reinforced concrete
bridge systems using deep learning with bayesian optimization,”
Computer-Aided Civil and Infrastructure Engineering, vol. 34, no. 5,
pp. 415–430, dec 2018.

[12] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, jun 2012.

[13] “Google cartographer: Tuning methodology.” [Online]. Available:
https://google-cartographer-ros.readthedocs.io/en/latest/tuning.html

[14] F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud
registration algorithms for mobile robotics,” Foundations and Trends
in Robotics, vol. 4, no. 1, pp. 1–104, 2015.

[15] P. Probst, A.-L. Boulesteix, and B. Bischl, “Tunability: Importance of
hyperparameters of machine learning algorithms.” Journal of Machine
Learning Research, vol. 20, no. 53, pp. 1–32, 2019.

[16] S. Han, Cao Qubo, and Han Meng, “Parameter selection in svm with
rbf kernel function,” in World Automation Congress, 2012, pp. 1–4.

[17] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13, no.
null, p. 281–305, Feb. 2012.

[18] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in Neural Information
Processing Systems, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, Eds., 2011, pp. 2546–2554.

[19] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, jan 2016.

[20] D. Zhan and H. Xing, “Expected improvement for expensive opti-
mization: a review,” Journal of Global Optimization, vol. 78, no. 3,
pp. 507–544, jul 2020.

[21] C. Shorten and T. M. Khoshgoftaar, “A survey on image data aug-
mentation for deep learning,” Journal of Big Data, vol. 6, no. 1, jul
2019.

[22] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, oct 2018.

[23] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random eras-
ing data augmentation,” AAAI Conference on Artificial Intelligence,
vol. 34, no. 07, pp. 13 001–13 008, apr 2020.

[24] G. Douzas and F. Bacao, “Effective data generation for imbalanced
learning using conditional generative adversarial networks,” Expert
Systems with Applications, vol. 91, pp. 464–471, jan 2018.

[25] T. Shimizu, K. Koide, S. Oishi, M. Yokozuka, A. Banno, and M. Shino,
“Sensor-independent pedestrian detection for personal mobility vehi-
cles in walking space using dataset generated by simulation,” in IAPR
International Conference on Pattern Recognition, 2020.

[26] A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter, “Learning curve
prediction with bayesian neural networks,” in International Conference
on Learning Representations, 2017.

