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Abstract— This paper describes a method of generating
attending behaviors adaptively to the user state. The method
classifies the user state based on user information such as the
relative position and the orientation. For each classified state,
the method executes the corresponding policy for behavior
generation, which has been trained using a deep reinforcement
learning, namely DDPG (deep deterministic policy gradient).
We use as a state space of DDPG a distance-transformed local
map with person information, and define reward functions
suitable for respective user states. We conducted attending
experiments both in a simulated and a real environment to
show the effectiveness of the proposed method.

I. INTRODUCTION

Lifestyle support is one of the applications areas to which
mobile robot technologies are applied. As many countries
are facing aging/aged society, service robots are needed that
support people for self-reliance. One promising example
of services is attending. Going outside is a good practice
for the elderly, but there exist many dangerous/inconvenient
situations such as getting tired or sick, carrying heavy items,
and losing the way, and an attendant robot has to provide
services adaptively to each situation. Fig. 1 illustrates some
example of robot’s adaptive behaviors.

Person following is one of the fundamental functions of
such robots, which is realized by combination of person
detection and tracking [1], [2], [3] and dynamic path planning
[4], [5]. In addition to this fundamental function, an attendant
robot has to provide various behaviors depending on the
state of the user to be attended. There are several works on
adaptive behavior selection of robots that interact with people
[6], [7], [8]. For such an adaptive behavior, both classifying
the user state and generating an appropriate behavior are
needed.

We have developed an attendant robot which adaptively
switches its behaviors according to the classified user state
[8]. The state classification is guided by a finite state

Fig. 1: Adaptive attending behaviors.

machine-based state transition model and a sensor-based
transition detection. This work dealt with a simple two-
state case: walking and sitting. The subjective evaluation has
shown that the adaptive behavior generation is favorable to
users.

To cope with more realistic situations, we extend this
approach in the following two points: (1) behavior gener-
ation becomes more general by using a deep reinforcement
learning; (2) the number of user states is increased.

The rest of the paper is organized as follows. Section
II describes related work. Section III explains the user
state classification and its evaluation. Section IV explains a
method of generating behaviors using a deep reinforcement
learning. Section V describes the results of experimental
evaluation. Section VI concludes the paper and discusses
future work.

II. RELATED WORK

A. Attendant robot

Many research efforts for realizing attendant robots focus
on reliable person following. Various sensors are used in
person detection and identification such as LIDARs (laser
imaging detection and ranging) [1], [9], images [10], depth
cameras [11], [2], or their combinations [12], [3].

Path planning is also needed for realizing safe following
behaviors. Real-time efficiency and avoidance of dynamic
obstacles (usually other people) are two important points and
sampling-based methods are suitable for this purpose [4], [5].

As mentioned above, an attending task is not a simple
following but consists of various behaviors. Ardiyanto and
Miura [13] proposed a unique method of generating a robot
motion which does not necessarily come close to a target
person as long as the robot does not miss the target. This
approach can reduce the person’s feeling annoying as well as
the energy for robot movement. Oishi et al. [8] developed a
robot that switches the behavior depending on the classified
person state (walking and sitting, in this case). For realizing
versatile attending behaviors, a robot has to reliably recog-
nize the person’s state and generate appropriate behaviors.

B. Human action recognition

Human behavior/action recognition has widely been stud-
ied in various contexts. Image-based methods use feature se-
quences such as optical flow for classifying actions/behaviors
[14]. Recently CNN-based approaches are greatly increasing



[15], [16], [17], [18]. Datasets for evaluation have also
been developed (e.g., KTH dataset [19] and UCF sports
dataset [20]). Since the relationship between a person and
a mobile robot may continuously change during providing
services, recognition using a single camera could sometimes
be difficult.

Depth images have also been used for action recogni-
tion, usually extracting joint position sequences [21], [22];
datasets for such approaches have also been developed [23],
[24]. Although they show good results, applications are
limited to indoor scenarios to get reliable depth images.

C. Attending behavior generation

Designing attending behavior is challenging because var-
ious factors have to be taken into account such as relation-
ships between the robot and the target and other persons,
geometrical configuration of the surrounding environment,
and the target person’s feelings. As mentioned above, many
path planning and positioning methods have been proposed,
but the resultant behaviors are basically reactive, that is, they
are planned based on the current state of the environment.

For pursuing long-term optimality, reinforcement learning
(RL) approaches are effective and many efforts have been
made [25], [26]. Recently combination of RL and deep
learning, that is, deep reinforcement learning has been very
popular. For example, Mnih et al. [27] proposed Deep Q-
Network which learns the Q-values using a deep neural
network (DNN). Lillicrap et al. [28] apply DNN to Actor-
Critic method [29] to propose Deep Deterministic Policy
Gradient (Deep DPG) method, which can learn the policy for
a continuous-valued control. To effectively utilize Deep RL
approaches, selection of the state space and reward functions
are crucial.

III. USER STATE CLASSIFICATION

A. User states

We consider the case where a robot attends a user to go
out. While going out, the user faces various situations, each
of such situations is called user state. In this paper, we deal
with the following four user states and develop a method of
classifying them and generate corresponding robot behaviors.

walking
The user is walking freely. The robot follows the
user with an appropriate relative positioning.

standing
The user is temporarily stopping during walking.
The robot stands by the user with a similar posi-
tioning to the walking case.

sitting
The user is sitting on a chair (or something like
that). The robot stands by with an appropriate
relative positioning to the user.

talking
The user is standing while talking with other per-
son(s). The robot also stands by with an appropriate
relative positioning which does not bother the per-
sons in talking.

Fig. 2: Flow of user state classification.

(a) Talking. (b) Talking. (c) Not talking.

Fig. 3: Talk state classification examples.

B. User state classification

We use our person detection and identification method [3]
and orientation estimation method [30] to obtain the position,
the velocity, the height, and the orientation of each person.
These values are analyzed to determine the user state.

Fig. 2 shows the flow of classification by a cascade of
tests. The detailed classification steps are as follows:

• If the velocity of a person is larger than 0.1 [m/s] then
the state is classified as walking.

• If the height is less than 0.55H, then the state is
classified as sitting. We currently use 1.71 [m] as H
which is from a national statistics of Japan of men at
twenties.

• Proxemics by Hall [31] suggests that persons who do
not know with each other talk at the distance range of
1.2 ∼ 2.0 [m]. We thus search for other persons within
the range of 2.0 [m] and, if exists, examine if the relative
orientation vectors intersect or not (see Fig. 3). If yes,
the state is classified as talking.

• If any of the above conditions do not hold, the state is
classified as standing.

C. Evaluation of state classification

We constructed a dataset in our laboratory (Active Intel-
ligent Systems Lab at Toyohashi Tech.). We used a web
camera and a 2D LIDAR (Hokuyo UST-20LX) and took
data for eight lab members, and extracted the position, the
velocity, the height, and the orientation of each person at each
frame. Person regions for orientation estimation are extracted
by an image-based object detector [32].

The dataset contains 48,087 data: 9,618, 7,409, 12,198,
and 18,862 for standing, sitting, walking, and talking, re-
spectively. Fig. 4 shows example extracted person regions
for the four user states. Table I summarizes the classification
rate. The average rate is 86.1%.



Fig. 4: Example scenes in the dataset.

TABLE I: State classification accuracy by the proposed
method.

State # of data # of correct classifications Accuracy[%]
Stand 9618 8317 86.5

Sit 7409 7165 96.7
Walk 12198 11553 94.7
Talk 18862 14364 76.2
Total 48087 41399 86.1

IV. BEHAVIOR GENERATION USING DEEP
REINFORCEMENT LEARNING

We use Deep Deterministic Policy Gradient (DDPG) al-
gorithm [28] for generating attending behaviors. DDPG uses
neural networks for representing Actor and Critic. Lillicrap
et al. applied DDPG to a vehicle control task using the
TORCS simulator [33]. The input is the frontal image from
the vehicle and the outputs are the acceleration, the steering,
and the braking controls, and DDPG was able to learn the
control policy for driving.

In the case of our attendant robot, using only images
as inputs does not suffice because geometrical relationships
among the robot, the target person, other persons, and obsta-
cles are very important and must be considered. Therefore,
we propose to use a local map with person information
as inputs (i.e., state space). Defining appropriate reward
functions is also important in training. We define a different
set of functions for training for each user state.

A. State space

We suppose that the robot has omnidirectional 2D LIDARs
which can cover a 360 [deg] field of view. The data from the
LIDARs come in as scan of range data. Since that type of
data is not suitable for extracting features in a 2D coordinate
system, we make a 2D local map by placing each range
measurement in the 2D space. The size of local map is set
to 2.5 [m] × 2.5 [m].

We also include the person information in the state space.
Using the position and the velocity of each detected person,
we calculate a region where that person occupies for a certain
time period from the current time and draw it as a virtual
obstacle both in the target person map and in the other
persons map. Figs. 5 and 6 show an example situation and
the corresponding maps, respectively.

These maps are binary and may not be appropriate as
inputs to convolutional filters. We thus apply a distance
transformation (see, for example, [34]) to the maps and the

Fig. 5: Example situation.

(a) Obstacles. (b) Target person. (c) Other persons.

Fig. 6: Local maps for the situation shown in Fig. 5.

(a) Obstacles. (b) Target person. (c) Other persons.

Fig. 7: Local distance maps corresponding to the ones shown
in Fig. 6.

distance to obstacle cells normalized by the width of the
image is recorded at each pixel. We call this map a local
distance map. Fig. 7 shows the three local distance maps
generated from the local maps in Fig. 6. The effectiveness
of this representation will be validated in Sec. V-A in
comparison with others.

B. Network structure

Fig. 8 shows the network structure used in DDPG. The
Actor network receives the local distance maps as inputs and
outputs the translational velocity v [m/s] and the rotational
velocity ω [rad/s]. To introduce limitations on the velocities,
we use a hyperbolic tangent function (tanh) as an activation
function at the output layer. We use a linear function as that
of the Critic network since no such limitation exists for Q-
values (i.e., output of the Critic network).

C. Dataset construction using a simulator

We use a realistic robot simulator V-REP [35] for gen-
erating dataset for training and testing. Fig. 9 shows the
model of the attendant robot used for simulation. It is
equipped with a camera and two omnidirectional 2D LRFs.



Fig. 8: Network structure.

Fig. 9: Robot model.

Fig. 10: Social force model.

To automatically generate a variety of situations, we simulate
people movement using a social force model (SFM) [36].
SFM controls each person using an attractive force from
the destination and repulsive forces from obstacles and other
persons, as shown in Fig. 10.

D. Reward functions

We consider four factors in defining reward functions for
attending behaviors: relative orientation to the target person,
translational acceleration, rotational acceleration, and relative
positioning to the target person. We also define a reward
function for the end of each episode. The summation of all
reward functions is used for training.

1) Reward for accelerations: Abrupt changes of the speed
and/or the moving direction are dangerous and increase the
possibility of collisions and falls. We thus give a negative
reward for accelerations above a certain threshold, defined

(a) for walking and standing. (b) for sitting and talking.

Fig. 11: Definitions of relative orientation.

by eqs. (1) and (2):

Racc
t (Acct) =

{
0.30−Acct[m/s2] (Acct > 0.3)
0 (otherwise)

(1)

Racc
r (Accr) =

{
π/6−Accr[rad/s2] (Accr > π/6)
0 (otherwise)

(2)

2) Reward for relative orientation: We would like to train
the robot to take an appropriate heading with respect to the
position or the heading of the target. The reward function
for each state is defined as follows.

a) Walking and standing state: The camera of the
robot is directed forward and the robot needs to face the
similar direction with that of the target, in order to watch
his/her front region. We thus give a negative reward when
the orientational difference θwd is large as follows (see Fig.
11(a)):

Rori
walk,stand(θwd) =

{
−1 (θwd > π/2[rad])
0 (otherwise)

(3)

b) Sitting and talking state: In these states, the robot
needs to face to the target for watching him/her. We thus give
a negative reward when the angle θheading between the robot
heading and the direction to the target is large as follows
(see Fig. 11(b)):

Rori
sit,talk(θheading)

=

{
π/4−θheading (θheading > π/4[rad])
0 (otherwise)

(4)

3) Reward for relative positioning: We would like to train
the robot for each state to take an appropriate position with
respect to that of the target.

a) Walking and standing state: A human caregiver who
is attending another person watches the surroundings of
that person and navigate him/her so that any dangers and
accidents are avoided. To this end, the caregiver should
be at either side of that person to observe him/her front
region. To design a reward function for such a behavior,
we analyze a dataset [37] which recorded the motions of
caregivers with respect to the attended elderly. Fig. 12 shows
the distribution of the caregivers’ relative position to the
target (indicated by an orange triangle), where red points
indicate high frequencies and blue ones low frequencies. We
normalize this distribution by the maximum frequency to use



Fig. 12: Distribution of relative position of the caregiver with
respect to the attended elderly.

(a) for sitting. (b) for talking.

Fig. 13: Definitions of relative position.

as a part of reward function. We also give a negative reward
when the robot is too far (more than 1 [m]) from the target.
The combined reward function is then defined as:

Rpos
walk,stand(x,y) =

{
1.0− dx,y (dx,y > 1.0[m])

distrib(x,y) (otherwise)
(5)

where distrib(x,y) is the normalized distribution.
b) Sitting state: When attending a sitting person, the

robot has to stand by by considering not only the distance
to obstacles but also the comfort of the target person. Based
on our previous result [8], users prefer that a robot stand by
at their front-left or front-right positions. It is also necessary
to keep a certain distance dsit (1.3 [m] in this case) to the
target. The reward function is then defined as:

Rpos
sit (x,y) = exp

{−sd(dx,y − dsit)
2}

·max
(
exp

{−sth(θx,y −θ f l)
2} , (6)

exp
{−sth(θx,y −θ f r)

2}) ,
where the angles in the equation are indicated in Fig. 13(a).
sd and sth are experimentally set to 16.0 and 8.0, respectively.

c) Talking state: When attending a person talking with
another, the robot has to stand so that it does not bother them
but in the view of him/her. We therefore give higher rewards
at his/her left and right position and at nearer to the target
distance dtalk (currently, 1 [m]). The reward function is then
defined as:

Rpos
talk(x,y) = exp

{−sd(dx,y − dtalk)
2}

·max
(
exp

{−sth(θx,y −θl)
2} , (7)

exp
{−sth(θx,y −θr)

2}) ,
where the angles in the equation are indicated in Fig. 13(b).

(a) View from the robot.

(b) Rpos
walk,stand (c) Rpos

sit (d) Rpos
talk

Fig. 14: Reward distribution examples.

(a) Environment 1 (b) Environment 2

Fig. 15: Simulated environments for evaluation.

d) Reward examples for relative positioning: Fig. 14
shows examples of reward functions for relative position-
ing. For the scene shown in Fig. 14(a), we calculated the
functions using eqs. (5)(6)(7). The results are shown in Fig.
14(b)(c)(d). In the distributions, green circles and the red
lines indicate the position and the orientation of the target
person, respectively.

4) Reward for the end of episode: An episode ends when
the target person reaches a designated goal, when the robot
collides with an obstacle or a person, or when the robot loses
the target person. To train the network to avoid the second
and the third cases, we give −10 for collision and target lost
cases.

V. EXPERIMENTAL EVALUATION

We first evaluate the proposed state space representation
in comparison with others. We then examine the effect of
the local map resolution to the performance. Based on these
results, we conducted experiments of robotic attending in
simulated and real environments. We use environment 1
in Fig. 15 for training, and environment 2 for testing in
simulation.



TABLE II: Training parameters

Batch size 32
Discount rate of reward 0.99
Target network hyperparameter 0.001
Random process Ornstein-Uhlenbeck process
Optimizer Adam
Actor network’s learning late 0.0001
Critic network’s learning late 0.001
Graphic card GeForce Titan X Pascal

A. Selection of state space

We compare the proposed local distance maps (LDM)
with the following three representations: a concatenation
of LIDAR scan data and person position and velocity data
(LID), the local maps (LM), and an omnidirectional image
(OI). For evaluating LID and OI, we modify the feature
extraction part of the network to deal with the respective
state representation. In the simulation, the target person fol-
lows a designated trajectory while others appear at multiple
locations and take actions of walking, standing, and talking.

Table II summarizes the parameters used for training.
We train the network for 10,000 epochs and compare the
performances of respective representation in terms of the
averaged duration of successful attending, the number of
successful episodes (i.e., the robot can attend the whole target
travel), and the averaged rewards.

Table III shows the evaluation results for all state space
representations. The local distance map representation is
far better than the others. The rewards for accelerations
decreased for this representation, however, because larger
accelerations were used for successfully avoiding collisions.
Note that “Collision” and “Lost” cases sometimes happen
simultaneously and the sum of the counts for each state space
is thus larger than 500, the total number of trials.

B. Selection of local map resolution

We compare several local map resolutions for the same
environment. Table IV summarizes the results. Too low
resolution misses necessary shape features, while too high
resolution takes much time for training. We choose 50× 50
which gives the best among the tested resolutions.

C. Example attending behavior

We performed attending experiments in the simulator,
using a pre-planned scenario of the target person. Fig. 16
shows a sequence of behaviors for a single run, in which
the robot adaptively changes its behavior based on the user
state classification results. In each figure, the left two images
show the scene from two different viewpoints and the right
one indicates the map. Blue, green, red regions in the
map indicate obstacles, the target person region, and other
persons’ regions, respectively.

In this scenario, the robot first follows the target person
(Fig. 16(a)) and stops when he stops (Fig. 16(b)). Then he
re-starts walking and sits on a chair. The robot follows (Figs.
16(c) and 16(d)) and stops at a stand-by position (Fig. 16(e)).
The robot starts following again (Fig. 16(f)) and stands by

when he is talking with others. Then the robot start following
him again after he finishes talking (Fig. 16(h)).

D. Experiments using a real robot

We implemented the proposed method on a real robot
and tested in various situations. Figs. 17, 18, and 19 show
snapshots of robot behaviors for a walking, sitting, and
talking person, respectively. Appropriate robot behaviors are
generated according to the state of the target person.

VI. CONCLUSIONS AND FUTURE WORK

This paper has described a method of generating attendant
robot behaviors adaptively to the user state. User state
classification is performed in a rule-based manner, using
the position, the velocity, the height, and the orientation of
the user obtained from images and LIDAR data. We have
shown that a high classification performance is achieved on
a newly constructed dataset. Behavior generation is done by
using Deep DPG, with a new state space representation, local
distance map, and with reward functions carefully designed
by considering requirements on robot behavior for each user
state. We have shown that our representation is far better than
the others. We have also shown that the proposed method
can cope with state changes of the user in experiments in
simulated and real environments.

User state classification is a key to comfortable and safe
attending. Since the current approach uses only the latest
user information, there may be a delay between the change
of the user state and that of robot behavior. Developing a
method of early recognition of user intention is future work
for a better attending behavior.

Designing reward functions is another issue. Although our
local distance map representation exhibits a much better per-
formance than the others, the ratio of reaching the designated
goal is still not high enough. Reducing the reward for a
narrow space, for example, could increase the ratio. It is also
desirable to adjust reward functions to each user because
preference to the robot behaviors such as the comfortable
relative distance to the robot may be different for respec-
tive users. Adjusting such a preference through attending
experiences could increase the satisfaction of the users. It
is also needed to evaluate and improve the methods through
a variety of real situations.
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