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Abstract— To infer a 3D entire shape from its partial observa-
tion, a non-rigid registration algorithm that employs embedded
deformations is proposed. We construct a deformation graph
on a reference model to discretize the space, and compute a
complex deformation as a collection of affine transformations to
align the reference model toward the given geometric data. To
avoid distortion artifacts during the non-rigid registration, we
introduce constraint ”As symmetric as possible (ASAP)” on the
graph via a generalized cylinder decomposition. ASAP allows
model deformation maintaining its underlying local symmetry,
which leads to plausible shape completion in the area with no
observation. We performed experiments with synthesized data,
and demonstrated that the proposed method successfully re-
stored missing surfaces compared with conventional completion
techniques.

I. INTRODUCTION

Inferring complete 3D shapes of objects from a single view
is important for autonomous robots to grab a structure of the
scene. As robots capture geometric data with range sensors
such as RGB-D cameras and laser scanners from a certain
viewpoint, the region behind objects may be occluded. This
incomplete observation creates uncertainty in understanding
the surroundings, and results in, for example, inefficient path
planning and awkward object manipulations. Therefore, the
ability to infer the entire shape from partial cues allows
robots to better understand the surroundings, leading to more
stable task execution.

We humans can easily predict the entire 3D shape based
on its partial observation. To imitate this sophisticated human
visual perception, a variety of techniques have been devel-
oped to infer the underlying geometry, as shall be explained
later in Section II. These shape completion techniques enable
autonomous robots to perform complicated tasks based even
on limited observations, for example, in robotic grasp plan-
ning employing occluded-shape inference[1][2] or in shape-
uncertainty-driven tactile exploration[3]. In particular, the
recent development of a non-rigid registration[4][5][6][7]
makes it possible to generate a detailed complete 3D model
by deforming a reference mesh model onto the given partial
shape. However, a difficulty remains in recovering unseen
surfaces from the partial cues because some parts of the ref-
erence model have no target to align with and a meaningful
deformation is impossible.
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In this paper, we propose a method that overcomes the
drawback of non-rigid registration by leveraging symmetry
extracted via the generalized cylinder decomposition[8]. Our
method decomposes a reference model into a set of skeletal
and cross-section profiles, and builds a symmetry-aware
deformation graph by analyzing local symmetry based on the
decomposition result. The deformation graph enables an ”As
Symmetric As Possible (ASAP)” constraint to be introduced
in non-rigid registration, which leads to symmetry-aware
model deformations to infer the missing surface better.

The main contribution of this paper is combining the
model deformation and the symmetry assumption by lever-
aging the generalized cylinder decomposition for 3D shape
completion, and hence allow for a more general non-rigid
registration. Note that we are interested in a complete
and detailed generation of a mesh model starting from a
reference model the shape of which is moderately similar
but not the same as the query, i.e., an object in the same
category. Although conventional non-rigid registration tech-
niques successfully reconstruct the full 3D model from a
partial geometric form, they typically require highly similar
reference models, which implicitly assumes the target and
reference models (almost) describe the same objects. As
another approach, data-driven techniques[9][10][11][2] have
shown the ability to recover complete shapes only from
partial cues; however, a large amount of relevant data is
required for learning and the reconstruction results tend to
have some undesirable artifacts. In contrast, the proposed
method seeks to deform the reference model to align the
partial observation while retaining the intrinsic geometry by
introducing the ASAP constraint, which leads to high-quality
completion from one example.

The rest of this paper is organized as follows. First,
the previous shape completion approaches are reviewed in
Section II to see the overview. In Section III, we describe
the algorithm of our shape completion method including
non-rigid registration, deformation graph construction via
the generalized cylinder decomposition, and symmetry-aware
model deformations. In Section IV, we show experimental
results using synthesized data to quantitatively evaluate the
performance of the proposed method, and also compared our
method with other recent techniques.

II. RELATED WORK

Implicit surface: Implicit surface is one of several popular
completion methods. By representing the object shape as
a signed distance function (SDF) and extracting its zero
isosurface by meshing techniques like the marching cubes, a



smooth and closed 3D model can be reconstructed. A variety
of techniques such as those based on the compactly supported
radial basis functions[12] is proposed to interpolate scat-
tered point clouds. Concerning robotic applications, Gaussian
process implicit surface (GPIS)[13], Bayesian representation
of SDFs, has been employed to incorporate uncertainty in
noisy observations[14][3]. However, implicit surface is only
capable of dealing with small defects and not suitable for
completing areas with no observation.

Symmetric duplication: To construct unseen surfaces, it
may be effective to make some assumption as to the un-
derlying geometry. Symmetry is one useful option to model
organic objects and artifacts, in which partial observations
are duplicated in another side. Bohg et al.[1] proposed a
method to predict full shapes of manmade objects with
symmetric duplication for reliable object grasping. It finds
the optimal symmetry plane perpendicular to the tabletop on
which the target objects are located by evaluating whether
the mirrored points are consistent with the original points.
A similar approach can be found in [15] followed by hole
filling to complete the 3D models.

Speciale et al.[16] also developed a surface denoising
and completion method making use of symmetries in a
variational optimization framework for plausible 3D recon-
struction. They first detect multiple planar symmetries that
underlie an incomplete 3D model using random sample
consensus (RANSAC) or Hough transform, and introduce
them as a prior in the variation regularizer to reconstruct
smooth and symmetric surfaces in a truncated signed dis-
tance function. While it leads to simultaneous denoising and
completion, extracting accurate symmetry axes from limited
observations is not always trivial. Moreover, the assumption
works well on objects whose shapes can be described only
by symmetric duplications of the partial observations.

Model fitting: When prior knowledge such as complete
3D model database is available, an entire shape of the target
is easily recovered by aligning the same or similar 3D model
in the database to the query depth data. This is the so-called
”model fitting”, which enables hidden surfaces to be inferred
in detail. For example, Moreno et al.[17] developed a robust
RGB-D SLAM that employed real-time object recognition
and pre-constructed 3D model fitting using the iterative
closest points (ICP) algorithm. Choi et al.[18] proposed a
6-DoF object tracking algorithm using an RGB-D camera
parallelizing likelihood evaluations in particle filtering with
a GPU for real-time accurate pose estimation. For semantic
mapping, Zeng et al.[19] developed a simultaneous object
detection and localization method employing conditional
random field (CRF) methods to model contextual relations
between objects and achieving significantly higher accuracy
in object pose estimation. Model fitting, however, is applica-
ble only to known objects for which prior 3D mesh models
are given, and thus it is necessary to prepare the 3D models
of all possible objects in advance.

Deformation: Relaxing the limitations of model fitting,
deforming the reference model so that the surface well
aligns with the given observation, is one promising ap-

proach. With simultaneous registration and deformation, it
has the capability of generating highly detailed completed 3D
models. Amberg et al.[20] proposed a deformation method
that estimates an affine transformation on each vertex in-
troducing a stiffness term to control the flexibility of the
reference model. Similarly, Li et al.[4][5] presented non-rigid
registration algorithms using embedded deformation[21]
which efficiently and robustly solved complex deformations
in a non-linear optimization. More recently, GPU-aided
deformation[6] for realtime shape completion, and L1-norm
regularized deformation[7] for robustness in large changes in
posture have been proposed.

However, the methods require highly similar reference
models, which implicitly assumes both target and reference
mesh models represent (almost) the same objects. This
implicit assumption allows us to neglect deformations of
surfaces with no observations; vertices in the reference model
having no correspondences are merely displaced to maintain
smoothness and tend to remain in their original shape of
the reference model. If the partial observation and reference
model describes almost the same object, the reconstruction
result might be fine.

In contrast, our work considers shape completion with
more general non-rigid registration where shapes of the
query and reference model are not the same, i.e., objects
in the same category, and conventional non-rigid registration
techniques might not be suitable for inferring the missing
surfaces. The most similar technique to our method would
be as-conformal-as-possible surface registration proposed by
Yoshiyasu et al.[22]. They introduced an angle-preserving
stiffness term in non-rigid registration to allow changes in
local scale (similarity transformation) and enabled non-rigid
registration between different size models. However, as is
the case with other techniques, valid constraints are limited
around partial observations.

III. AS SYMMETRIC AS POSSIBLE DEFORMATION

A. Overview

Whereas the model deformations allow us to reconstruct
detailed complete 3D models by aligning and transforming a
reference model, the hidden surfaces to be estimated tend to
have almost the same shape as the original reference model.
To make plausible deformations there, we also need to pose
valid assumptions as mentioned in Section II to duplicate the
displacements by analyzing the geometry.

This motivated us to develop a new completion approach
the ”as symmetric as possible (ASAP)” deformation. By
extracting intrinsic symmetry in the reference model and
building a symmetry-aware deformation graph, we enjoy the
benefit of symmetric assumption in non-rigid registration
(see Fig.1). In this section, we first describe a non-rigid
registration algorithm based on embedded deformation[21],
and then introduce the symmetric constraint derived from the
generalized cylinder decomposition.



Fig. 1. Overview of As Symmetric As Possible (ASAP) deformation graph

B. Surface Deformation with Embedded Deformation

Inspired by [5], [4], and [22], we developed a non-rigid
registration employing the embedded deformation[21] for ro-
bust and efficient surface registration. Embedded deformation
discretizes the space by defining a deformation graph on
the reference model (Fig.1(a),(b)) that computes complex
deformations as a collection of transformations. Each node
xi ∈ R3, i ∈ 1 · · ·m of the embedded graph induces a local
affine deformation specified by a 3×3 transformation matrix
Ai and a 3×1 translation vector ti. Each vertex v j ∈R3, j ∈
1 · · ·n of the reference model is mapped to the new position
v′ j with influences from the surrounding nodes described as
follows:

v′ j = ∑
xi

w(v j,xi) [Ai (v j−xi)+xi + ti] , (1)

w(v j,xi) = |1−d2(v j,xi)/d2
max|3, (2)

where d(v j,xi) denotes the distance between v j and xi,
and dmax the distance from vi to the farthest neighboring
node. Following [5], we used geodesic distances instead of
Euclidean distances to calculate d(v j,xi) to avoid distortion
artifacts during non-rigid registration.

The node-wise affine transformations Xi = [Ai, ti] , i ∈
1 · · ·m are treated as unknowns to be solved in the non-
rigid registration. The local features in the reference model
should be preserved to avoid unnatural deformations, and
therefore all Ai in the similarity transformation should satisfy
orthogonality conditions and have the same norm[22].
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where a1, a2, and a3 denote the column vectors of Ai.
Esim plays an important role not only in preferring pure
rigid motions but also in adjusting local scales to ensure
the reference model aligns with the target model well. This
is essential in performing non-rigid registration between
models of different sizes.

The additional regularization term Ereg ensures smoothness
in deformation. Actually, Ereg sums two energies, specifi-
cally, Ereg = Econsist +Esmooth. The following regularization
Econsist allows us to yield consistent affine transformations
and translations.

Econsist = ∑
xi

∑
x j

∥∥Ai (x j−xi)+xi + ti− (x j + t j)
∥∥2

2 (4)

In addition, Esmooth is introduced to ensure that the transfor-
mation Ti associated with node xi is compatible with those
of adjacent nodes as follows:

Esmooth = ∑
xi

∑
x j

∥∥Ai (x j−xi)+A j (xi−x j)
∥∥2

2 . (5)

C. Pairwise Registration

To align the reference model toward the target model,
we define another energy term E f it that shifts graph nodes
toward the corresponding positions. Given correspondences
C = {(xi,qi)|i ∈ 1 · · ·s} where qi denotes a vertex of the
target model corresponding to graph node xi, E f it penal-
izes distances between the corresponding pairs. Because
the simple point-to-point metric may degrade the reference
model, we project the displacements onto the normals of
the nodes to suppress extreme deformations in the tangential
directions[22]. Additionally, assuming the given correspon-
dences C may contain bad corresponding pairs as is often
the case with ICP, we associate a confidence variable ωi
with each node to evaluate the reliability. Specifically, E f it
is defined accompanied with an energy term Econ f [4] for
regularization as follows:

Efit = ∑
i∈C

ωi
2 ‖xi− (x̃i +µiñi)‖2

2 , (6)

Econf = ∑
i∈C

(
1−ωi

2)2
, (7)

where x̃i and ñi are the current position and normal of
node x̃i respectively, and µi is set as µi = (qi− x̃i) · ñi. Note
that each ωi is treated as an unknown as well as the affine
transformations to naturally eliminates bad correspondences
that cause extreme deformations.



Fig. 2. Symmetry constraint derived from generalized cylinders

D. Symmetry constraint via generalized cylinder decompo-
sition

To better infer the missing surface, we pose an additional
constraint concerning the symmetricity by leveraging the
generalized cylinder. Cylindrical parts are ubiquitous in
many natural and artificial objects. Therefore, the general-
ized cylinder, which is composed of pairs of skeletal and
cross-section profile curves, covers a broad scope of object
shapes[23][24][25]. We decompose the reference 3D model
into generalized cylinders to analyze its symmetry, and build
a symmetry-aware embedded graph so that displacements
toward the partial observation affect the other side of the
reference model to maintain the symmetric structure, thereby
recover missing parts in more detail.

First, a reference mesh model is decomposed into a set of
generalized cylinders following [8]. The generalized cylin-
der decomposition[8] progressively builds local to non-local
cylinders and decides on a globally optimized combination of
cylinders in a manner of the exact cover problem. It provides
consistent skeletal and cross-section profile curves (see Fig.
1(c)), and enables us to analyze local symmetry.

As a next step, we introduce symmetry-aware edges in the
embedded deformation graph based on the decomposition re-
sult. The embedded deformation graph is constructed through
farthest-point sampling and K-nearest neighbors (m = 400
and K = 4 in all experiments) to approximate the reference
model by a coarse mesh model. To preserve the symmetry
of the reference model, we additionally connect symmetric
nodes. Specifically, we use a skeleton point for a central
symmetry, or extract an axial symmetry passing through the
skeleton point that minimizes symmetry distance [26] on
every 2D profile curve, and form symmetric point pairs in
the generalized cylinders (Fig.2). The symmetric edges are
then added in the deformation graph by approximating the
point pairs with the closest nodes (Fig.1(d)).

Finally, for symmetry-aware deformation, we replace
Equation (6) with the following ASAP energy term:

Easap = ∑
i∈C

ωi
2
{
‖xi− (x̃i +µiñi)‖2

2 +
∥∥x j− (x̃ j +µiñ j)

∥∥2
2

}
,

(8)

where (xi,x j) are connected with a symmetric edge. ASAP
allows the reference model to deform itself maintaining its
underlying symmetry by duplicating displacements µi on
another side; this leads to plausible shape completion in
the area with no observation. Note that if the symmetric
node x j has its own position constraint, the latter symmetric
constraint in Equation (8) is ignored to avoid inconsistent
deformation.

E. Optimization

We define an objective function in the non-rigid registra-
tion by summing up the energy terms:

E = αsimEsim +αregEreg +αasapEasap +αcon f Econf. (9)

The number of optimization variables is 13m, corresponding
to the affine transformations and confidences in the embed-
ded deformation graph. We minimize Equation (9) by solving
the nonlinear least-squares problem with the Gauss-Newton
algorithm using Cholesky factorization. By alternating the
energy minimization and correspondence determination, we
gradually deform the reference model.

The optimization weights are initially set as αsim = 100,
αreg = 100, αasap = 10, and αcon f = 10, and αreg is halved
at every iteration until αreg < 10. We then remove the
confidence variables ω and replace Easap as the following
energy term to pose the vertex-wise constraints; we then
perform an iterative optimization again to capture the details
of the target model according to vertex correspondences C ∗.

E∗asap = ∑
i∈C ∗

{
‖vi− (ṽi +µiñi)‖2

2 +
∥∥v j− (ṽ j +µiñ j)

∥∥2
2

}
,

(10)

IV. EXPERIMENTS

A. Results

We performed experiments to evaluate the performance of
the proposed method. 3D models used in the experiments
were obtained from a benchmark[27]. We first selected three
models belonging to different categories as reference models
to be deformed (Fig.3(a)). To evaluate the completion results



Fig. 3. Experimental results and error comparisons

quantitatively, we synthesized incomplete geometric data
assuming partial observation (Fig.3(b)). Specifically, each
incomplete model was used as a query and a reference
model from the same category was deformed with non-
rigid registration techniques to infer the entire shapes. The
completion results were evaluated by calculating residual
errors between the original and completed models based on
vertex correspondences via nearest neighbor searches.

Note that the initial registration is performed manually
so that the positions and rotations are roughly aligned,
which can be replaced with conventional rigid registrations.
Correspondences between the reference and target models
are computed using closest point methods like ICP while
eliminating invalid ones when the normal difference exceeds
40[deg], or the position difference exceeds 20% of the longest
side of the bounding box of the reference model. In addition,
we assume that the reference models in this experiment have
local point-symmetric structures, and built point-symmetry-
aware embedded graphs for ASAP.

Fig. 3(c)-(f) shows the completed 3D models with non-
rigid registration techniques including the proposed method.

Quantitative comparisons are also shown in Table I. Overall,
the method of [20] aligned reference models well toward
the query shapes, however, the other sides of the model
significantly distorted. The non-rigid alignment technique
[4] based on the embedded deformation did not work well
because the method assumes isometric registration while the
shapes of reference and target models in this experiments
were substantially different. Although the approach of [22]
provided better results by allowing similarity transformations
for different size models, the other side of the deformed
models still remained as in the original reference models.
In contrast, our method restored the entire 3D models from
the partial observation by making the graph nodes cooperate
each other to retain the symmetry of the structure, which
leads to better shape predictions.

B. Limitations
In the human case, the performance of the proposed

method got worse compared with in the other cases. This
may come from the poor description of the underlying
symmetry as a result of the rough assumption of point-
symmetry. Therefore, we perform an additional experiment



Fig. 4. Completion with an axial symmetry-aware graph

TABLE I
QUANTITATIVE COMPARISONS USING 3D MESH MODELS FROM [27]. THE ERRORS INDICATE AVERAGE AND MAX DISTANCES [%] FROM THE

COMPLETE TARGET MODELS TO THE DEFORMED REFERENCE MODELS RELATIVE TO THE LONGEST SIDES OF THE BOUNDING BOXES.

Category Reference Target RMS errors (average / max)

Amberg et al.[20] Li et al.[4] Yoshiyasu et al.[22] Our method
tumbler model 40 model 25 9.32 / 33.8 5.22 / 25.4 2.37 / 15.1 1.32 / 9.08

mug model 27 model 33 6.03 / 26.9 3.12 / 14.8 3.65 / 18.1 2.10 / 11.8
human model 2 model 13 0.557 / 4.22 1.27 / 4.97 0.508 / 5.23 0.708 / 9.36 (point-sym.)

0.625 / 4.87 (axial-sym.)

with an axial-symmetry-aware embedded graph. As shown in
Fig. 4 and Table I, the graph represents the local symmetry
in the reference model better, especially in the torso, and
improved the completion performance. This implies that
adaptive symmetry extraction is essential to obtain valid
symmetry constraints.

In addition, as mentioned in [22], non-rigid shape match-
ing should be used to register different size models. In the
mug case, none of the registration techniques successfully
aligned with the handle because of difficulty in obtaining
valid correspondences via closest point method. Moreover,
ASAP can largely shrink or inflate the partial shapes of
the reference model when it couldn’t get appropriate corre-
spondences (See red circles in Fig. 3). Therefore, non-rigid
matching like [28] should be used in the initial registration,
and as well in the iterative optimization if needed, to boost
the performance of the proposed method.

V. CONCLUSION

We proposed a method to infer an entire 3D shape from
partial geometric data with a new non-rigid registration.
By representing the reference model as a symmetry-aware
deformation graph, we developed an effective non-rigid reg-
istration algorithm that tried to preserve the local symmetry
and restore plausible surfaces.

For better performance in non-rigid registration of differ-
ent size objects, we will improve the correspondence search
and the symmetry extraction. In addition, while we currently
focus only on local symmetry extracted via generalized cylin-
der decomposition, some objects also have global symmetry.

Therefore, we will address shape inference using global and
local symmetry simultaneously for better completion results.
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