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4D Attention: Comprehensive Framework
for Spatio-Temporal Gaze Mapping
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Abstract—This study presents a framework for capturing
human attention in the spatio-temporal domain using eye-
tracking glasses. Attention mapping is a key technology for
human perceptual activity analysis or Human-Robot Interaction
(HRI) to support human visual cognition; however, measuring
human attention in dynamic environments is challenging owing
to the difficulty in localizing the subject and dealing with moving
objects. To address this, we present a comprehensive framework,
4D Attention, for unified gaze mapping onto static and dynamic
objects. Specifically, we estimate the glasses pose by leveraging a
loose coupling of direct visual localization and Inertial Measure-
ment Unit (IMU) values. Further, by installing reconstruction
components into our framework, dynamic objects not captured
in the 3D environment map are instantiated based on the input
images. Finally, a scene rendering component synthesizes a first-
person view with identification (ID) textures and performs direct
2D-3D gaze association. Quantitative evaluations showed the
effectiveness of our framework. Additionally, we demonstrated
the applications of 4D Attention through experiments in real
situations1.

Index Terms—Localization, Visual Tracking, Intention Recog-
nition, Multi-Modal Perception for HRI

I. INTRODUCTION

“The eyes which are the windows of the soul.”
— Plato (427 BC - 347 BC)

EYE movements are crucial but implicit cues for determin-
ing people’s attention. Gaze estimation enables the study

of visual perception mechanisms in humans, and has been
used in many fields, such as action recognition [1], situation
awareness estimation [2], and driver attention analysis [3]. It
is also a non-verbal communication method, and thus, it can
be applied to shared autonomy [4] or teleoperation [5] in the
context of Human-Robot Interaction (HRI).

Recent studies have enabled human attention mapping in
3D environments using mobile eye-tracking glasses [6] [7].
Most approaches compute a 3D gaze by extending a measured
2D gaze vector from a camera pose estimated by visual
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Fig. 1. 4D attention analysis in a dynamic environment. Given first-person
view with the subject’s 2D gaze, it projects human attention onto the static
3D map and dynamic object models employing visual localization, rapid
intersection search, and instance object reconstruction.

localization or motion capture systems in a pre-built static
3D map. They are assumed to operate in static environments;
however, the real world is a place of constant change, with
objects appearing and disappearing from the scenes. Human
attention analysis in both spatial and temporal domains is still
an open problem, which when solved will help determine
human behavior in the real world.

To address this issue, we propose a comprehensive frame-
work for 4D attention mapping (see Fig.1). The main contri-
butions of this study are three-fold:

• A new framework, 4D Attention, is proposed for cap-
turing human attention to static and dynamic objects
by assembling 6-DoF camera localization, rapid gaze
projection, and instant dynamic object reconstruction.
Human attention is accumulated on each 3D mesh model,
which makes gaze mapping much more meaningful, for
example, the semantic analysis of perceptual activities
rather than generating cluttered 3D gaze point clouds.

• The framework is designed so that scene rendering plays
a central role. This makes the entire system simple
and does not require additional map or object model
representations for localization and attention mapping.
Additionally, it facilitates a unified attention-mapping
procedure regardless of the target objects.

• We examined the accuracy and precision of our method
using a moving target board whose ground truth position
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Fig. 2. Overview of 4D Attention: In the localization layer, we compute the pose of the eye-tracker with C∗ [8] based on images from a scene camera.
Fusing IMU data with the raw pose estimate can further boost and stabilize visual localization [9]. In the 3D gaze layer, the intersection of a gaze ray and
the environment map is calculated using the direct 2D-3D gaze association via scene rendering with an ID texture. The 4D gaze layer incorporates any object
reconstruction components into the framework to instantiate dynamic objects, which facilitates the analysis of spatio-temporal human attention in the real
world.

was measured by a total station. Additional experiments
for monitoring human attention in the real world demon-
strated the capability of analyzing human attention in
static and dynamic targets including maps, household
items, and people, during the free movement of the
subject.

II. RELATED WORK

Eye movement patterns: Eye movements imply visual
perception activities. Several approaches have inferred or de-
termined perceptual activities based on the observations from
electrooculography (EOG). Bulling et al. [10] developed a
pioneering system that classifies several activities from eye
movement patterns by utilizing machine learning. Ishimaru
et al. [11] also determined daily activities including typing,
reading, eating, and talking, using signals from EOG glasses.
This approach allows us to identify the current activity of a
subject without complex settings, and can be applied to HCI
to provide relevant services.

2D contextual analysis: However, human beings live in a
context. Visual perception activities are not independent of
the surrounding environment; in fact, they are induced by
“attractive” objects in the scene. Eye-tracking and gaze overlay
on 2D camera views make it possible to determine the focus of
the subject, as in [12]. For semantic human attention analysis
in natural environments, Fritz and Paletta [13] introduced
object recognition in mobile eye tracking using local image
descriptors. A similar approach can be observed in [14],
which identifies objects fixated by the subject for a museum
guide. [15] further progressed toward online object-of-interest
recognition using a hierarchical visual feature representation.

3D gaze mapping: For the holistic estimation of human
attention, recent techniques have attempted to obtain fixations
in the real 3D world leaving the image plane. [16] and [2]
extended 2D gaze mapping by combining it with a motion
capture system to track the pose of gaze glasses, which

enables the measurement of the 3D point of interest. [17]
built a similar system relying on visual markers for monocular
camera tracking and 3D gaze analysis. However, they require
a complex setup of multiple sensors, making the measurement
area small and unscalable to large environments. Thus, several
approaches compute the 3D gaze by localizing an agile monoc-
ular camera using visual localization or structure-from-motion.
[6] was the pioneering work, and was followed by promising
techniques such as [7], [18] where they estimated camera poses
using visual features and projected 3D gaze information onto
the pre-built 3D environment map.

Toward attention analysis in the real world: 3D gaze
mapping facilitates the analysis of human attention regardless
of the scale of the environment; however, they still operate
only in the static environment. Attention analysis in dynamic
situations is still an open problem; it is necessary to address
the spatio-temporal attention analysis to truly comprehend
perceptual activities in the real world.

III. PROPOSED METHOD

A. System overview

In this study, we propose a comprehensive framework to
capture 4D human attention, which is attention in the spatial
and temporal domains in dynamic environments. A schematic
overview of the proposed system is depicted in Fig.2. Ob-
taining 4D human attention from eye-tracking glasses with a
scene camera has three main problems that need to be solved:
robust camera localization, rapid 3D gaze mapping, and instant
processing of dynamic objects.

Principally, 4D attention mapping is performed by project-
ing a first-person 2D human gaze onto a 3D environment
map (static) and moving objects (dynamic). It first requires
accurate and stable 6-DoF camera localization even in dynamic
environments, which means that appearance of the pre-built
3D map and current view can be significantly changed. Ad-
ditionally, given the camera pose, the system has to compute
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Fig. 3. ID texture mapping for direct 2D and 3D gaze association: The scene rendering component synthesizes an image from the estimated camera pose to
simulate the first-person view. Different textures help to comprehend the scene. Here, we attach an ID texture to the 3D environment map to directly look
up the surface with which the input 2D gaze intersects. Gaze hits are accumulated on an attention texture [19], which simplifies the management of human
attention information.

the intersection of the gaze ray and target object surface in
real-time to record the 3D distribution of the subject’s interest.
Furthermore, dynamic objects such as humans or daily objects
should not stay in the same position, but should rather change
their poses. Therefore, they cannot be captured in the 3D map
in advance; instead, they should be processed on the fly.

In this section, we describe the major components of the
framework shown in Fig.2 that are assembled to address these
issues and capture 4D attention in the real world.

B. Localization

1) Monocular camera localization: Visual localization is
used to infer the pose of an agile monocular camera in a
given 3D map. It can be categorized as either indirect methods
via feature point matching, or direct methods via appearance
comparison. Although major 3D gaze mapping methods [7]
[18] rely on indirect methods to estimate the camera pose,
they require the construction and maintenance of an extra
feature point 3D map for localization. As will be explained
later in Section III-C, the subject’s gaze is projected and
accumulated on the dense 3D environment map (or dynamic
object models); thus, the requirement doubles the map building
cost. It also incurs other problems such as a 7-DoF exact
alignment (including scale) between the environment and
feature point maps.

Therefore, for a simple and straightforward system, we
employ a direct localization method, specifically C∗ [8], which
facilitates the localization of the agile monocular camera
only with the colored 3D environment map. It leverages
the information-theoretic cost, the Normalized Information
Distance (NID), to directly evaluate the appearance similarity
between the current camera view and 3D map. It achieves
high robustness to large appearance changes owing to lighting
conditions, dynamic obstacles, or different sensor properties
[8], and results in minimal effort in map management.

Given the current view It, C∗ estimates the camera pose
Tt

W in the world coordinate system W via SE(3) local

tracking against a synthetic key frame Ik rendered at a known
pose Tk

W :

T̂t
k = argmin

Tt
k

δINID

(
It, Ik,T

t
k

)
,

Tt
W = T̂t

k ◦Tk
W .

(1)

C∗ reduces the localization problem to alternate local tracking
and occasional key frame rendering for efficiency, which leads
to 6-DoF real-time localization regardless of the 3D map scale.

The NID metric between the current frame It and key frame
Ik is given as follows:

δINID

(
It, Ik,T

t
k

)
≡ Ht,k (T

t
k)− It,k (T

t
k)

Ht,k (Tt
k)

(2)

where Ht,k and It,k denote the joint entropy and mutual
information calculated based on the color co-occurrence in It
and Ik, respectively. To determine the most likely relative pose
Tt

k, gradient-based optimization is performed. Specifically,
starting from the given initial guess or previously estimated
pose, the BFGS is employed to iteratively solve Eq.1 according
to the Jacobian of the NID as follows:

(i+1)Tt
k = (i)Tt

k − αB−1k

dδINID

d(i)Tt
k

,

dδINID

dTt
k

=

(
dHt,k

dTt
k

− dIt,k
dTt

k

)
Ht,k − (Ht,k − It;k)

dHt,k

dTt
k

H2
t,k

.

(3)

2) Visual-Inertial integration for rapid head and eye move-
ment tracking: C∗ is capable of providing reliable camera
poses at several tens of hertz. To track the rapid head
movements of the subjects, we further fuse the localization
results and measurements from an Inertial Measurement Unit
(IMU) calibrated to the camera in a loosely coupled manner
[9]. The framework allows us to achieve more than several
hundreds of hertz estimation rates according to the IMU rates.
Simultaneously, it significantly stabilizes visual localization
by forming a closed loop that feeds the output pose into
the localizer as the next initial guess of the optimization.
Localization boosting and stabilization are suitable for real-
time gaze projection, as described in the following section.
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C. 3D gaze projection onto the environment map

Given the camera pose (subject’s head pose) and gaze
position on the 2D image, the 3D human gaze can be recovered
by generating a 3D ray beginning from the camera through the
gaze point. To determine the fixation point, the intersection of
the gaze ray and target object must be calculated.

Ray casting can be computationally expensive for real-time
operation. Therefore, Paletta et al. [7] pre-computed a hierar-
chical map representation, specifically, an Oriented Bounding
Box Tree (OBB-Tree), and traversed the tree to rapidly find
the intersection. In [20] and [21], the authors estimated the
3D gaze point by first applying Delaunay triangulation to
the feature point map, detecting the triangular plane that
includes the 2D gaze, and finally investing the sub-mesh 3D
gaze point into the world coordinate system from the triangle
vertices. Although these methods work efficiently, they require
pre-computation to build certain data structures for 3D gaze
mapping, and their resolutions significantly affect the balance
between the runtime computation cost and mapping accuracy.
Furthermore, when dealing with dynamic objects that are not
included in the pre-built 3D environment map, a more flexible
scheme that does not require the construction of the data
structure each time is preferable.

Thus, for a unified framework of human gaze projection,
we propose ID texture mapping as depicted in Fig.3. Texture
mapping is a very popular method for attaching a highly
detailed appearance to a geometric model that provides real-
istic rendering images. Given a 3D mesh model, its texture
image, and per-vertex UV coordinates, we can generate a
textured 3D model with GPU acceleration. Any texture images
are available in texture mapping; therefore, we attach a 32-
bit integer texture that contains an unique ID of each pixel
in its position, for example, p(x, y) = y ∗ width + x, for
gaze projection. Specifically, we determine the pixels that are
currently observable by rendering the 3D map from the camera
pose with the ID texture, and directly find the 3D gaze point
by accessing the pixel corresponding to the 2D gaze point.

In addition to the simple setup and direct 2D-3D gaze
association, the framework offers other benefits with the use of
different types of textures. For example, by preparing another
texture filled with zero and counting gaze hits, attention
accumulation can be easily managed on a 2D image similar to
the attention texture proposed in [19]. Additionally, overlaying
a texture with an object class or semantics on the ID texture
enables the semantic understanding of the subject’s perceptual
activities [18] in a unified pipeline.

ID texture mapping provides a simple yet efficient way of
projecting the human gaze onto any geometric model, which
is not limited to the map data. In the next section, we extend
this framework to dynamic objects for 4D attention mapping.

D. Dynamic object handling for 4D attention mapping

Objects that do not exist in the map building phase cannot be
stored in the 3D environment map, which means that the map
data should only record static objects. However, many dynamic
objects such as humans or household items are observed in
daily life, and they seem to have “illegally” appeared in the
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Fig. 4. Texturing dynamic objects: Attention mapping onto dynamic objects
is performed in the same way as the case of 3D environment maps by
employing the corresponding ID textures. Notably, attaching different textures,
for example, a semantic texture, helps to determine perceptual activities in the
spatio-temporal domain.

static 3D map. The temporal gap between the mapping and
runtime phases causes the absence or presence of dynamic
objects, which leads to incorrect gaze projection.

Most conventional works only focus on static scenes and
have no choice but to ignore dynamic objects. To analyze
human gaze in dynamic scenes, Fathaliyan et al. [1] proposed
a 3D gaze tracking method that relies on a marker-based
motion capture system installed in a small space. It inquires
the motion capture tabletop objects’ poses in a moment and
computes the intersections between the object models and gaze
vector; however, the settings are costly and the model does not
scale to larger environments. For wearable 3D gaze acquisition
outside the laboratory, Qodseya et al. [23] and Hausamann et
al. [24] developed eye-trackers equipped with depth sensors.
They overlay 2D gaze points on the depth image and directly
reconstruct the 3D human gaze. However, the scheme is highly
sensitive to depth noise and the maximum measurement range.
Moreover, the 3D gaze information is represented as cluttered
3D point clouds, which makes gaze analysis less meaningful
than accumulation on model surfaces.

To address this, we enable the framework to install addi-
tional components of object reconstruction for instantiating
dynamic objects not captured in the 3D environment map.
The recent development of object recognition and tracking
techniques has facilitated the determination of full 3D shapes
of target objects from monocular images on the fly. Here, we
exploit two methods to handle rigid and non-rigid objects,
specifically household items and human models, respectively,
for 4D attention mapping. Notably, any desired components
that estimate the poses and 3D shapes of specific objects can
be incorporated as explained below.

1) Household item models (Rigid objects): We introduce
a pose detection and tracking method [25] into our system.
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Fig. 5. Overview of the quantitative evaluation: AprilTag [22] was used as a target object to evaluate our attention mapping. Our framework generated
successive 3D gaze points by finding gaze intersections while the subject stared at its center. The target board and subject changed their states: (Static or
dynamic), and (walking around, standing still, or following), respectively, to demonstrate the robustness of the framework to scene dynamics. Notably, AprilTag
was embedded in the 3D map in Evaluation 1, whereas it was reconstructed on the fly in Evaluations 2 and 3.

Given the mesh models and textures of the target objects, it
facilitates the recovery of the 6-DoF poses of hundreds of
objects in real-time through the proposed scene simulation
with SIFT features. The acquired information is sent to the
same process as the 3D environment maps described in Section
III-C; By attaching an ID texture to each model (Fig.4) and
rendering it at the estimated 6-DoF pose, we can easily
associate the 2D human gaze with the object model surface.
Notably, Multiple Render Targets (MRT) on OpenGL are used
to create an integer mask image that helps to distinguish the
categories and individuals captured in the rendered view (see
the bottom right of Fig.1). In the following experiments, an
8-bit integer mask was rendered in addition to the ID image
in the MRT manner to distinguish up to 256 objects belonging
to three categories: map, object, and human.

2) Human models (Non-rigid objects): The human model
is a representative example of non-rigid objects that are
important for analyzing perceptual activity in the real world.
Humans change their postures unlike rigid objects; therefore,
the reconstruction includes non-rigid deformation, making it
more complicated than just detecting 6-DoF poses. In this
research, we use the state-of-the-art method, FrankMocap [26],
to instantiate humans in a 3D environment map. It fits a
statistical body model SMPL-X [27] to each person captured in
the input image and provides their shape and pose parameters.
The renderer in our framework subscribes the parameters
to reconstruct the human models on-demand and examines
whether the 3D human gaze hits the surfaces as in the rigid
objects.

IV. EXPERIMENTS

A. Setup

In this section, we verify the capability of the proposed
framework to recover 4D human attention in dynamic envi-
ronments. We first quantitatively evaluated the accuracy and
precision of the recovered gaze points using a dynamic target
marker, followed by demonstrations in real situations.

To build 3D environment maps, we used LiDAR, Focus3D
(FARO Technologies, Inc.), which enabled us to capture dense
and colored 3D point clouds. A panoramic spherical image
can be generated by arranging each vertex color; we used

it as a texture of the 3D map while thinning out some
vertices to save GPU memory usage. Notably, our method only
assumes that colored or textured 3D models are available for
localization and gaze mapping, and thus it also operates on
3D geometric models reconstructed with different sensors, for
example, RGB-D SLAM [28], similar to [7].

The rendering and localization components rely on GPU
parallelization; a GeForce GTX2080 performed the compu-
tations in all the experiments. We also used a wearable eye
tracker, Tobii Pro Glasses 3 (Tobii Technology, Inc.) to capture
first-person views with the subject’s 2D gaze information and
IMU data.

B. Performance evaluation

To evaluate the proposed attention mapping, AprilTag [22],
which provides reliable 6-DoF marker poses, was employed
as shown in Fig.5, whereas the subject was changing the
relative positions and its states. We asked the subject to stare
at the center of the target board (0.24 × 0.24 [m]) wearing
the eye-tracker, and our method generated the corresponding
3D gaze points. In Evaluation 1, the board was embedded
in the 3D map; thus, we calculated the Absolute Position
Error (APE) between the generated 3D gaze points and the
center of the board. In Evaluations 2 and 3, the ground truth
trajectories of the agile target board were obtained by tracking
a total station prism attached to the board with the known
relative transformation using a Trimble S7 (Trinble Navi-
gation, Limited.). Subsequently, we synchronized the pairs
of trajectories based on system timestamps to evaluate the
Absolute Trajectory Error (ATE) [29] with a least-squares
transformation estimation [30], in addition to APE. Notably,
the 3D trajectory comparison computes a rigid transformation
that minimizes the positional errors between the two point
clouds. The minimization process cancels the systematic bias
underlying the framework, which is caused by reasons such
as eye-camera miscalibration. Therefore, the ATE is approxi-
mately equivalent to the precision of our framework, whereas
the APE is equivalent to the accuracy.

Table I and Figure 6 present the evaluation results. —
Evaluation 1: We demonstrated the performance of our

framework in a static scene to compare it with the most
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TABLE I
ERRORS OF 3D GAZE POINTS IN THE QUANTITATIVE EVALUATION.

No. object subject distance [m] APE [m] ATE [m]
state state from board (' inaccuracy) (' imprecision)

1 static walking approx. 0.034± 0.015 -
around 1.0 - 2.5 0.115± 0.021† -

1.0 0.028± 0.016 0.020± 0.012
2 dynamic standing 1.5 0.034± 0.012 0.017± 0.011

still 2.0 0.049± 0.019 0.034± 0.017
2.5 0.070± 0.025 0.034± 0.018

3 dynamic following approx. 1.5 0.046± 0.0092 0.024± 0.014

†: Errors of 3D gaze points generated by [7] (our implementation) as a baseline.

relevant work [7] as a baseline. Specifically, we implemented
[7] whose localizer was replaced with state-of-the-art indirect
visual localization [31] for a comparison in the same 3D
map retaining the concept of the method. Compared with [7],
4D attention achieved high accuracy of 3D gaze mapping
benefitting from the rendering-centerd framework such as
direct localization and ID texture mapping, which suppress
the systematic error.

Evaluation 2: The subject watched the center of the moving
target standing at four different positions to evaluate the influ-
ence of proximity following the evaluations in previous studies
[7] [18]. Overall, although the APE (inaccuracy) increased
proportionally with the distance from the target board, the
framework successfully suppressed the increase in the ATE
(imprecision).

Evaluation 3: The subject walked around a 4 × 6 [m]
space to follow the moving target board approximately 1.5
[m] behind while watching the center. Notably, the subject and
the person to follow held an assistant rope to maintain their
distance. Although the proposed framework slightly increased
the APE and ATE owing to the necessity of the 6-DoF and
instant object reconstruction in a complicated situation, it
successfully facilitated valid attention mapping even in highly
dynamic environments.

C. Applications

To further evaluate our method, we performed attention
mapping in three realistic situations as shown in Fig. 7.
Figure 8 picks up “attractive” models in each case, in which
accumulated human gaze is highlighted. 4D Attention robustly
estimated the subject’s poses and 3D gaze directions, and
simultaneously projected human gaze onto the static and dy-
namic targets. This facilitates the analysis of human intention
or semantic understanding of the subject’s perceptual activities
in the real world.

Case 1: As described in Sec.III-C, attaching different types
of textures onto the models makes it possible to access various
properties of the models, for example, semantics (see Fig.
8(a)). We easily understand which body parts the subject was
focusing on (face and hands, in this case).

Case 2: Instance object reconstruction allows us to observe
human attention in highly dynamic situations, for example,
object manipulation. In case 2, after pouring hot water into
the mug, the subject picked up freebies and took one. By
accumulating gaze information on the models, we may acquire
cues to determine the reason for the subject’s choice (Fig.
8(b)).

Attention on the board embedded in the 3D map

(a) Evaluation 1: 4D Attention (left) and [7] (right)
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(c) Evaluation 2 (1.5 m)
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(d) Evaluation 2 (2 m)
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(e) Evaluation 2 (2.5 m)
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(f) Evaluation 3

Fig. 6. Quantitative evaluation results: The 3D gaze points obtained in
each situation were compared with the ground truth (see also Table I). The
proposed framework overwhelmed the competitive method [7] and achieved
high-precision 4D gaze mapping in every case. However, the bias was
clearly observed in the gaze accumulation, and the accuracy proportionally
decreased as the distance from the target board increased. The results imply
that our framework is capable of providing stable gaze projection onto
dynamic objects, and strict gaze-camera calibration of eye-tracking glasses
may improve the accuracy cancelling the systematic error.

Case 3: We simulated a more realistic situation: The subject
walked to a vending machine passing by a person and bought a
drink from it. Our method successfully provided the trajectory,

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3097274

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



OISHI et al.: 4D ATTENTION: COMPREHENSIVE FRAMEWORK FOR SPATIO-TEMPORAL GAZE MAPPING 7

first-person view

4D attention

(a) Case 1: Observe physical actions of a person

first-person view

4D attention

(b) Case 2: Take a Coffee break

first-person view

4D attention

(c) Case 3: Pass by a person and buy a drink from a vending machine

Fig. 7. First-person views and attention accumulation in different situations.
4D attention successfully localized the subject and simultaneously detected
moving objects. Spatio-temporal human attention was accumulated on the
target models according to the subject’s observations.

(a) Human model in Case 1: Appearance (left) and semantics (right)

(b) Electric pot and snacks in Case 2

(c) Vending machine, human, and can models in Case 3

Fig. 8. Attractive models in each case with accumulated attention

and attention to the static and dynamic objects of the subject
(Fig. 8(c)), which helps in determining human behavior in the
spatio-temporal domain.

V. DISCUSSION

In this section, we discuss the contributions, limitations,
and practicality of the proposed method. According to Table

II, which comprehensively compares the characteristics of
different works, our framework is distinguished from other
competitive methods in several aspects, for example, various
targets, real-time operation, and easy setup on a simple 3D
map. In particular, the rendering-centered framework provides
significant benefits to direct localization and gaze projection
via ID texture mapping, which leads to high accuracy of
attention mapping as demonstrated in the evaluations.

Map-based methods, however, require a denser 3D map for
accurate localization and attention mapping, which can also
be a limitation of 4D Attention. Large 3D map reconstruction
and rendering can restrict the application of the method to
certain scenes. Fortunately, 3D reconstruction technologies,
such as SLAM with LiDAR [32] or RGB-D cameras [28],
have evolved and are widely available. Techniques such as
view frustum culling [33] also help in rendering large 3D maps
for real-time processing for further applications in indoor and
outdoor environments.

Moreover, as demonstrated in Section IV-C, learning-based
shape inference, for example, [26] [34], enables attention
mapping to unknown dynamic objects by reconstructing target
shapes on the fly. This also allows easier setup to free us
from 3D modeling of specific objects, and strengthens our
framework toward various usages.

VI. CONCLUSIONS

We developed a novel gaze-mapping framework to capture
human attention in the real world. The experiments demon-
strated that the combination of robust camera localization,
unified attention mapping, and instant object reconstruction
enables access to 4D human attention.

The proposed system is capable of providing a series of
human head poses (trajectory) and simultaneous gaze targets;
thus, it would be applicable in action recognition, for example,
skill-level evaluation in humanitude tender-care [35]. It also
allows us to incorporate any desired components of instance
object reconstruction into the framework, which facilitates
attention analysis to specific objects and is helpful for gaze-
based target selection in dynamic scenes [36]. Additionally,
gaze accumulation on 3D models with multiple textures en-
ables semantic analysis of human behavior.
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