Equations for ASTER radiometric calibration ver.0.20



by

Satoshi TSUCHIDA, Humihiro SAKUMA
National Institute of Advanced Industrial Science and Technology
and
Akira IWASAKI
University of TOKYO

under construction c.always


Index


1. Conversion from DNL1Ato DNL1B in GDS

    DNL1B(b,m,v)= Rad(b,v) /C(b, m)+1                                                         (1)
      : DNL1B(b,m,v)=1 corresponds to Rad=0.

    Rad(b,v)=A(b, i, v)* DNL1A(b,m)/G(b, m)+D(b, i,v)                                       (2)

    A(b,i, v)=A(b, i, 1.00)/R(b, v)                                                                  (3a)

    D(b,i, v)=D(b, i, 1.00)/R(b, v)                                                                  (3b)

      b: Band number

      i: Detector number

      v: Version of the radiometric calibration (1.00-)

      m: Mode of gain switching function

      Rad(b,v) : Radiance in band b and calibration version v. [W/m2/sr/micron]

      DNL1A(b,m)  : Digital Number of L1A data in band b, gain mode m

      DNL1B(b,m, v): Digital Number of L1B data in band b, gain mode m and calibration version v

      A(b,i, v) and D(b, i, v): The conversion coefficients for L1 data in band b, detector i and calibration version v

      G(b,m): Gain switching function in band b and gain mode m.

      R(b, v):Optical calibration coefficients for sensor degradation in band b and calibration version v.

      C(b,m): Unit conversion coefficients in band b and gain mode m.

2. Radiance calculation from DNL1B

    Rad(b,v) = C(b, m)* ( DNL1B(b,m, v)- 1 )                                                   (4)
      The radiances are calculated by the calibration coefficients of version v. The data are calibrated for the on-board temperature and the difference between detectors, and the degradation of the sensors after launch.

    Rad(b,1.00) = C(b, m)* ( DNL1B(b,m, v)- 1 ) * R(b, v)                                  (5)
      The radiances are calculated by the calibration coefficients before launch (version 1.00-2.00, RE02(VNIR) or PFT(SWIR)). The data are calibrated for the on-board temperature and the difference between detectors, and the degradation of the sensors after launch.

3. Radiance calculation from DNL1A

    Rad(b,1.00) ~ C(b, m)* ( DNL1A(b,m)- 1 )                                                   (6a)
      : ~ mark means "nealy eqaul".

      The radiances approximate the values calculated by the calibration coefficients before launch (version 1.00-2.00, RE02(VNIR) or PFT(SWIR)). The data are not calibrated for the on-board temperature and the difference between detectors, and the degradation of the sensors after launch. However, there are two problems in this equation. One is that D(b, i, v) shows sometimes large values (see below table "Example of coefficients"), which leads to large error (maybe a few to ten percent) in the eq.6. The other is that the radiance in eq.6 shows almost a few percent difference from the radiance derived from DNL1B of the eq.5 for the safety of dynamic range in radiance. More precise equations eq.6b, 6c and 6d can be obtained from eq.2 as follows.

    Rad(b,1.00) = ( A(b, i, 1.00) / G(b, m) ) * DNL1A(b,m)+D(b, i,1.00)                                        (6b)

      This is most precise equation but needs a ditector by ditector (pixel by pixel) calculation, therefore the band average A(b,*,1.0) and D(b,*,1.0) of the conversion coefficients A(b,i,1.0) and D(b,i,1.0) can be used for the calculation convenience. The values of A(b,*,1.0) and D(b,*,1.0) are shown in below table.

    Rad(b,1.00) ~ ( A(b, *, 1.00) / G(b, m) ) * DNL1A(b,m)+D(b, *, 1.00)                                     (6c)

      Moreover, if DNL1A(b,m) >> |D(b,*,1.00)*G(b,m)/A(b,*,1.00)|, the following equation is useful for the calculation from Rad(b,1.00) in eq.6a.

    Rad(b,1.00) ~ ( A(b, *, 1.00) / G(b, m) ) * DNL1A(b,m)+D(b, *, 1.00)
        = C(b, m) * ( DNL1A(b,m) + D(b, *, 1.00) * G(b, m) / A(b, *, 1.00) )
                  * ( A(b, *, 1.00) / G(b, m) / C(b, m) )
        ~ C(b, m)* ( DNL1A(b,m)- 1 ) * ( A(b, *, 1.00) / G(b, m) / C(b, m) )                 (6d)
          Rad(b,1.00) in eq.6a

Table Example of coefficients
Band b Line i D(b, i, 2.06) A(b, i, 2.06) G(b, High)
1 2500 -1.336 1.8678 2.472
2501 -2.7967 1.8987 2.472
2 2500 -2.0651 1.5042 1.994
2501 -1.1827 1.5311 1.994
3 2500 -7.1037 0.88374 1
2501 -1.5675 0.88523 1


Table Band average A(b,*,1.0) and D(b,*,1.0) of the conversion coefficients A(b,i,1.0) and D(b,i,1.0)
Band b Mode m A(b,*,1.0) * D(b,*,1.0) * A/G D*G/A * A/G/C
1 odd High 1.750 1.775 -1.914 -2.607 0.7080 0.7180 -2.704 -3.631 1.047 1.062
even 1.726 -1.221 0.6980 -1.750 1.033
2 odd High 1.459 1.466 -1.580 -1.158 0.7317 0.7354 -2.159 -1.574 1.034 1.039
even 1.452 -2.002 0.7281 -2.750 1.028
3N odd Normal 0.880 0.879 -4.348 -1.572 0.8803 0.8788 -4.939 -1.789 1.021 1.019
even 0.882 -7.123 0.8819 -8.077 1.023
4 odd Normal 0.243 0.243 -0.5 -0.4 0.243 0.243 -2 -2 1.12 1.12
even 0.243 -0.6 0.243 -3 1.12
5 odd Normal 0.0734 0.0734 -0.7 -0.8 0.0734 0.0734 -10 -11 1.05 1.05
even 0.0734 -0.7 0.0734 -9 1.05
6 odd Normal 0.0666 0.0666 -0.6 -0.6 0.0666 0.0666 -10 -9 1.07 1.07
even 0.0666 -0.7 0.0666 -10 1.07
7 odd Normal 0.0662 0.0662 -0.6 -0.7 0.0662 0.0662 -9 -10 1.11 1.11
even 0.0662 -0.6 0.0662 -9 1.11
8 odd Normal 0.0460 0.0459 -0.4 -0.4 0.0460 0.0459 -9 -8 1.10 1.10
even 0.0460 -0.4 0.0460 -9 1.10
9 odd Normal 0.0340 0.0340 -0.3 -0.3 0.0340 0.0340 -9 -10 1.07 1.07
even 0.0340 -0.3 0.0340 -8 1.07

* : A(b,i,1.0) and D(b,i,1.0) can be changed by other factors (ex. on-board temparature), however the values shown above are almost stable.


4. Scaled calibration coefficient for sensor trend analysis

    K(b) = Rad(b,1.00)/Radactual(b)                                                                (7)
      : Rad(b,1.00) should be calculated by the eq.5 in precise analysis.

      Radactual(b): Actual radiance in band b, which is measured by the on-board calibrator and/or the vicarious calibration.

      K(b): Degradation coefficient. New R(b,v) could be estimated from this K(b), so K(b) is near value of New R(b,v).

    L(b, m) = DNL1A(b, m)/ Radactual(b)                                                         (8)
      : Sometimes L(b, m) is used instead of K(b) for the comparison works of the calibration teams. The relation of L(b, m) and K(b) is shown as follows,

      L(b, m) = DNL1A(b, m)/ Radactual(b)
        ~ (Rad(b,1.00)/C(b, m)+1) / Radactual                           (by eq.6)
        = Rad(b,1.00) / Radactual(b)/C(b, m)+ 1/ Radactual(b)
        = K(b)/C(b, m) + 1/ Radactual(b)                                  (by eq.7)
        ~ K(b)/C(b, m)                                 (if K(b) /C(b, m) >> 1/ Radactual)
      : ~ mark means "nealy eqaul".

    K(b) ~ L(b,m) *C(b, m)                                                                                           (9a)

    From the eq.6b, 6c and 6d, the eq.9a can be changed to be more precise eqations eq.9b, 9c and 9d as follows,

      K(b) = L(b,m) * ( A(b, i, 1.00) / G(b, m) ) + D(b, i,1.00) / Radactual(b)                 (9b)
        ~ L(b,m) * ( A(b, *, 1.00) / G(b, m) ) + D(b, *,1.00) / Radactual(b)            (9c)
        ~ L(b,m) * ( A(b, *, 1.00) / G(b, m) )
        = L(b,m) *C(b, m) * ( A(b, *, 1.00) / G(b, m) / *C(b, m) )                       (9d)
          K(b) in eq.9a

      The values of A(b,*,1.0) and D(b,*,1.0) are shown in the table of section 3.


5. Radiance calculation from DNL1B based on the results for the trend analysis of the on-board calibrator and/or the vicarious calibration

    Radreal(b) = Rad(b,1.00)/Ktrend(b, days)
          = C(b, m)* ( DNL1B(b,m, v)- 1 ) * R(b, v) / Ktrend(b, days)                      (10)

        Radreal(b): Radiance in band b based on the results for the trend analysis of the on-board calibrator and/or the vicarious calibration. Therefore Radreal(b) is best for the radiance-based scientific analysis using multi-temporal ASTER images.

        days: Days since launch

        Ktrend(b, days): Degradation function in band b and the days since launch estimated from the sensor trend analysis (see above 4.). The following Ktrend(b, days) functions are recommended,

          * Band 1 to 3N (b=1,2,3N)
            i)   0 < days < 672
              Ktrend(b, days)=X(b)days2 + Y(b)days + Z(b)

              Table X(b), Y(b) and Z(b) Coefficients

              Band b

              1

              2

              3

              X(b)

              1.2945*10-7

              3.221*10-8

              -9.360*10-9

              Y(b)

              -2.967*10-4

              -1.5246*10-4

              -5.726*10-5

              Z(b)

              9.802*10-1

              9.879*10-1

              9.817*10-1


            ii)   672 ≤ days
          * Band 4 to 9 (b=4 to 9)
            Ktrend(b, days)= 1.0

        These Ktrend(b, days) functions are acquired by only onboard calibrator results (see. the trend of the radiometric calibration coefficients by onboard calibration) and one of our recommended equations. In ASTER Science Team, there are other Ktrend(b, days) functions based on the results of vicarious calibration by three groups (Univ. of Arizona, Saga Univ. and AIST groups), and the best of these fuctions is still under discussion in the team.




Appendix: Coefficients Tables

Table 1 C(b, m): Unit conversion coefficients in band b and gain mode m.

Gain mode(m)

High

Normal

Low1

Low2

Band (b)

1

2

3N,3B

4

5

6

7

8

9

 

0.676

0.708

0.423

0.1087

0.0348

0.0313

0.0299

0.0209

0.0159

 

1.688

1.415

0.862

0.2174

0.0696

0.0625

0.0597

0.0417

0.0318

 

2.25

1.89

1.15

0.290

0.0925

0.0830

0.0795

0.0556

0.0424

 

NA

NA

NA

0.290

0.409

0.390

0.332

0.245

0.265



Table 2 R(b, v): Optical calibration coefficients for sensor degradation in band b and calibration version v.

Version (v)

Band 1

Band 2

Band 3

1.00-2.00

1

1

1

2.01

0.972

0.982

0.978

2.02-2.03

0.948

0.972

0.982

2.04

0.931

0.966

0.985

2.05-2.06

0.921

0.959

0.982

2.07-2.08

0.892

0.950

0.983

2.09-2.11

0.802

0.872

0.917

2.12-2.15

0.779

0.852

0.902

2.16-2.17

0.760

0.833

0.886



Table 3 v : Version of radiometric calibration
(Caution: Some data has older version than estimated version from this table, because ASTER Ground Data System (GDS) always started the process in newer vesion a few months after the starting date of the following time period.)

Version (v)

Application Time Period

Day of Optical Calibration Coefficients

Corresponding Telescope

Ver.2.00

1996/11/09-2000/02/01

 

 

Ver.2.01

2000/02/02-2000/06/03

2000/02/02

VNIR

Ver.2.02

2000/06/04-2000/09/13

2000/06/03

VNIR

Ver.2.03

2000/09/14-2000/11/13

2000/09/13

TIR

Ver.2.04

2000/11/04-2001/02/13

2000/11/03

VNIR

Ver.2.05

2001/02/14-2001/11/30

2001/02/13

VNIR,TIR

Ver.2.06

2001/12/01-2002/10/11

2001/08/16

TIR

Ver.2.07

-

2001/12/25

VNIR,TIR

Ver.2.08

-

2002/04/03

TIR

Ver.2.09

2002/10/12-2002/12/15

2002/05/07

VNIR,SWIR*,TIR

Ver.2.10

-

2002/8/13

TIR

Ver.2.11

2002/12/16-2003/01/29

2002/11/20

TIR

Ver.2.12

2003/01/30-2003/05/14

2002/12/23

VNIR

Ver.2.13

2003/05/15-2003/08/25

2003/04/17

TIR

Ver.2.14

2003/08/26-12/05

2003/08/04

TIR

Ver.2.15

2003/12/06-2004/01/04

2003/11/11

TIR

Ver.2.16

2004/01/05-2004/03/09

2003/11/11

VNIR

Ver.2.17

2004/03/10-

2004/02/18

TIR

* SWIR offset conversion coefficients D(b, i, v) were changed.


Table 4 G(b, m): Gain switching function in band b and gain mode m.

Band

High

Normal

Low Gain-1

Low Gain-2

1

2.472

1

0.750

NA

2

1.994

1

0.755

NA

3N

2.041

1

0.757

NA

3B

2*

1

0.759

NA

4

2*

1

0.75*

0.75*

5

2*

1

0.75*

0.17*

6

2*

1

0.75*

0.16*

7

2*

1

0.75*

0.18*

8

2*

1

0.75*

0.17*

9

2*

1

0.75*

0.12*

*: Planning value before launch. (Now checking values after launch)

(Nov. 1, 2004)