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Abstract— We propose a method for extracting a low dimen-
sional structure from a set of parameters of probability distri-
butions. By an information geometrical interpretation, we show
that there exist two kinds of possible flat structures for fitting
(e-PCA and m-PCA). We derive alternating procedures to find
the low dimensional structures. Each alternating procedure can
be written in a nonlinear equation. It can be solved analytically
in some special cases. Otherwise, we need to apply gradient type
methods that we also derive. Since the overall algorithm may
converge to a local optimum, we propose a method to find a
good initial solution by using metric information.

I. INTRODUCTION

Principal component analysis (PCA) is widely used for
extracting a low dimensional linear subspace that is underlying
in a set of spatial data. PCA minimizes the reconstruction error
defined by the sum of the squared distance between a data
point and its projection onto the subspace.

In this paper, we consider the case in which a data point
is represented as a parameter of a probability distribution. For
example, suppose we have a population and each individual
is represented as a stochastic model. We would like to ex-
tract features that are common in the population, when the
parameter of each individual has been already identified.

Let us consider a simple example. Suppose there are five
individuals ‘A’, ‘B’, . . . , ‘E’, each of which is characterized by
a normal distribution N [µ, σ2]. In Fig. 1, they are represented
by points on the (σ2, µ) space. What we would like to do
here is to find a lower dimensional structure of the population.
In this example, we can consider zero or one dimensional
subspace: The 0-dim space is a point representing a center of
the population, and the 1-dim space is a line (or curve) fitting
the population.

Another example can be found in the field of bioinformatics
where a structure is to be extracted from a set of kernel
matrices, each of which represents a similarity of genes or
proteins[16]. The kernel matrix can be regarded as a covari-
ance parameter of a normal distribution with zero mean.

In those examples, PCA does not always give a good result,
mainly because the squared distance is not an appropriate met-
ric in the space of distributions. Furthermore, the projection
point may exceed the domain of the parameter space.

Let us consider the example of Fig. 1 again. The solid line
represents a one dimensional subspace obtained by PCA. In
this space, only the right half-plane σ2 > 0 is meaningful.
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Fig. 1. Schematic figure of PCA for the parameters of a distribution

However, the projection points of ‘A’ and ‘B’ are in the
negative variance region. Even if the projection point is luckily
in the positive region, we do not know whether the vertical
projection is reasonable especially for the point that is distant
from the subspace.

To cope with such problems, we apply the information
geometrical framework[2], [4] that gives natural geometry of
probability distributions. The information geometry has been
successfully applied to analyze and interpret many kinds of
learning methods, for instance, the EM algorithm[3], mean
field approximation[14], turbo coding[9] and boosting[11].

We assume the data points belong to an exponential family
that is a basic space in the information geometry. Then the
task is to find a linear subspace of the exponential family that
fits to data points. An extension of PCA to the exponential
family was studied in the pioneer work of Collins et al[7].
Our framework is more general as shown in sec. VIII. Further,
our information geometrical interpretation can provide with
understandings as follows: Firstly, we show the existence of
another set of linear subspace, so we have two kinds of
subspaces unlike the original PCA. Secondly, there are some
cases in which we can calculate a closed form solution in each
step. Thirdly, we can obtain a good initial solution by using
metric information.



II. DUALISTIC GEOMETRY OF THE EXPONENTIAL FAMILY

To obtain a flat submanifold fitting in the space of an
exponential family, we need to extend the notion of flatness
and projection. For that purpose, we briefly summarize the
information geometry of the exponential family.

The exponential family S is a set of distributions of random
variable x with a density,

p(x; θ) = exp{
d∑

i=1

θiFi(x) + C(x) − ψ(θ)}, (1)

where θ = (θ1, . . . , θd)� is called the natural parameter. A
set of parameters of the exponential family can be regarded as
a Riemannian space specified by the local coordinate system
θ. We can take another coordinate system η = (η1, . . . , ηd)�

that is dual to θ and defined by ηi = Eθ [Fi(x)], where Eθ
denotes the expectation with respect to the distribution p(x; θ).
Thus η is called the expectation parameter. θ coordinate and
η coordinate are related one-to-one, hence there is coordinate
transformation maps θ(η) and η(θ). Note that the parameters
θ and η cannot take all values in R

d in general.
The geodesic is a generalized notion of ‘straight curve’ in

the Riemannian space. We can define dually coupled geodesics
for the space of probability distributions: an exponential
geodesic (e-geodesic) and a mixture geodesic (m-geodesic).
The e-geodesic is a linear curve in the θ coordinate, i.e., the
e-geodesic connecting θ1 and θ2 can be written as θ(t) =
tθ1+(1−t)θ2, where t ∈ T ⊂ R, and T is an interval such that
θ(t) is defined. On the other hand, the m-geodesic is a linear
curve in the η coordinate, and the m-geodesic connecting η 1

and η2 can be written as η(t) = tη1 + (1 − t)η2.
In our problem, we consider a ‘flat’ submanifold, which

can also be defined in dual ways. The e-flat submanifold
is defined as a submanifold M in which the e-geodesic
connecting any two points of M is included in M again.
The m-flat submanifold is defined similarly in terms of the
m-geodesic. The whole space of the exponential family is
both e-flat and m-flat, hence it is called dually flat. However,
the e-flat submanifold is not m-flat in general and vice versa.
The conditions that they coincide are partly understood for the
space of positive semidefinite matrices[12].

The notion of projection is also extended in dual ways. The
e-projection from a point θ ∈ S to a submanifold M is the
e-geodesic connecting θ to θ̂ ∈ M which is orthogonal at θ̂
with respect to the Riemannian metric gjk(θ̂) for θ coordinate
(e-metric), which is equal to the Fisher information,

gjk(θ) = Eθ

[
∂ log p(x; θ)

∂θj

∂ log p(x; θ)
∂θk

]
(2)

The m-projection from a point η ∈ S to a submanifold M is
defined in a similar way with respect to the m-geodesic and
the Riemannian metric gjk(η) for η coordinate (m-metric),
which is given by the inverse matrix of gjk(θ(η)).

The e- or m-projection is obtained by the following propo-
sition.

Proposition 1 (Amari[2]): The e-projection from a point
θ ∈ S to a submanifold M is given by finding a point
θ̂ ∈ M that is a critical point of the e-divergence defined
by the Kullback-Leibler divergence

k(θ̂,θ) = Eˆθ
[log p(x; θ̂) − log p(x; θ)]. (3)

In particular, if M is m-flat, the e-projection is unique and it
minimizes the e-divergence.

Similarly, the m-projection from a point η ∈ S to a
submanifold M is given by finding a point η̂ ∈ M that is
a critical point of the m-divergence defined by k(θ(η),θ( η̂)).
If M is e-flat, the m-projection is unique and it minimizes
the m-divergence. (Note that e-divergence is not equal to m-
divergence because of asymmetry of Kullback-Leibler diver-
gence.) �

This proposition gives a relation between the divergence
and the projection, and also it guarantees that there exists a
projection from any point of S, even when S is not defined for
the whole R

d space, while it is not true for the conventional
Euclidean projection.

III. E-PCA AND M-PCA

The information geometrical consideration suggests that
there are two possible ways of a flat submanifold, i.e. e-flat
and m-flat. Let e-PCA denote the e-flat submanifold fitting,
and m-PCA denote the m-flat submanifold fitting.

Here we describe only the e-PCA by space limitation. The
m-PCA can be derived just in a similar (dual) way by just
exchanging m- and e- in the following description.

The h dimensional e-flat submanifold M ⊂ S can be
expressed by the set of points,

θ(w;U) =
h∑

j=1

wjuj + u0, (4)

where U = [u0,u1, . . . ,uh] ∈ R
d×h is a set of basis vectors

and w = (w1, . . . , wh)� ∈ R
h is a local coordinate of M.

Note that the constant vector u0 plays a more significant role
than the original PCA, because the projection points move
nonlinearly by changing u0.

It is easy to show that S is convex with respect to both θ
and η coordinate, hence M is also convex with respect to w.

In the case of e-PCA, it is natural to take an m-projection
since the Proposition 1 holds. Now suppose we have n sample
points θ(1), . . . ,θ(n) ∈ S expressed by θ coordinate. Then
the m-projection of each sample θ (i) onto the submanifold

M is given by θ̂
(i)

= θ(ŵ(i);U), where ŵ(i) is the w(i) that
minimizes the m-divergence k(θ(i),θ(w(i);U)).

Next, we need to define a cost function to optimize the
submanifold bases U . It is convenient to take the sum of the
m-divergence for all samples as a cost function, because the
overall optimization is obtained by minimizing

L(U,W ) =
n∑

i=1

k(θ(i),θ(w(i);U)) (5)



simultaneously with respect to U ∈ U and W ∈ Mn, where
W = [w(1), . . . ,w(n)], and U is the domain of U such that
M �= ∅.

IV. ALTERNATING PROCEDURES

Since it is difficult to optimize U and W simultaneously, we
apply alternating procedures where one parameter is optimized
with fixing the other parameter and vice versa.

In this section, we derive a solution for each alternating
procedure with respect to a mixed coordinate introduced by
Amari[5]. We focus only on the e-PCA case. The m-flat case
can be obtained straightforwardly.

First, let us consider the optimization of W with fixing U .
In this case, each w(i) can be optimized independently. We
consider the bases U ∗ = (uh+1, . . . ,un) of the complement
space of the column space of U , where we assume U has a
full rank. Then θ can be written in the form

θ = (U U∗)
( w

w∗
)

+ u0, (6)

where w∗ is a coefficient vector for U ∗. On the submanifold
M spanned by U , w∗ is equal to 0. If U is full-rank, (U U ∗)
is invertible and ( w

w∗

)
=
(
V

V ∗

)
(θ − u0), (7)

where V and V ∗ are a partition of (U U ∗)−1.
Since the new coordinate system (w,w∗) is a linear func-

tion of θ, (w,w∗) is also a natural coordinate of p(x). We can
easily show that the corresponding dual parameter of (w,w ∗)
is given by

( v

v∗
)

=
(
U�

U∗�

)
η,

where v is dual to w and v∗ is dual to w∗.
Let us introduce the mixed coordinate system [v; w ∗].
Proposition 2 (Amari[5]): Any point in S is uniquely rep-

resented by the mixed coordinate β = [v; w∗]. The m-
projection of the point onto the submanifold M spanned by
U is expressed by the mixed coordinate as

β̂ = [v;0], (8)

i.e., the dual coordinate part v is the same as β and the natural
coordinate part w∗ is 0. �

From this proposition, the m-projection of θ (i) onto M
spanned by U satisfies the equations

V ∗(θ̂
(i) − u0) = 0, U�η̂(i) = η(i), (9)

where η(i) is η(θ(i)) and η̂(i) = η(θ̂
(i)

).
Similarly, the case of the optimization of U with fixing W

can be formalized. However, in this case, all columns of U are
coupled, and we have to consider the product space U ⊂ S n

of the whole samples.

A similar equation to (6) is given by

⎛
⎜⎝

θ(1)

...
θ(n)

⎞
⎟⎠ = (A A∗)

⎛
⎜⎜⎜⎜⎜⎝

u1

...
uh

u0

u∗

⎞
⎟⎟⎟⎟⎟⎠ , (10)

where A is a matrix which depends only on W , and A∗ spans
the complement space of the column space of A. We assume
A has a full rank, which means all w(i) are located in general
positions without any collinearity.

Equations (6) and (10) are not always analytically solvable
in general. In such a case, we can use a gradient descent al-
gorithm or Newton-type method described in the next section.

V. ITERATIVE ALGORITHM

If a closed form solution is not available, we need to use
an iterative method.

First let us derive a simple gradient type algorithm for the e-

PCA. Suppose we have a current candidate θ̃
(i)

= θ(w̃(i);U)
of the m-projection point θ̂

(i)
. The m-divergence is expressed

explicitly as

k(θ(i),θ(w̃(i);U)) = (θ(i) − θ̃
(i)

)�η(i) − ψ(θ(i)) + ψ(θ̃
(i)

).
(11)

Using a useful relation η = ∂ψ(θ)/∂θ, we easily get the
derivative of L(U,W ) by

∂L(U,W )

∂w
(i)
j

= u�
j (η̃(i) − η(i)) (12)

∂L(U,W )
∂uj

=
n∑

i=1

w
(i)
j (η̃(i) − η(i)) (13)

where η̃(i) denotes η(θ̃
(i)

). The derivative by u0 is given by
n(η̃(i)−η(i)). We can see clear duality between the derivatives
by U and W . This is related to the gradient flow of the
alternating procedures that appears in the EM algorithm[6],
[3]. In a simple gradient algorithm, w (i)

j and uj are modified
slightly to the opposite direction given by (12) and (13).

In the next step, we consider a higher order algorithm. Here
we describe only the case of optimizing W with fixing U . The
case of optimizing U can be derived in a similar way.

Suppose the current candidate θ̃
(i)

is close to the optimal

value θ̂
(i)

, i.e., θ̂
(i)

= θ̃
(i)

+ dθ for small dθ. Then (10) can
be written as

V ∗(θ̃
(i)

+ dθ − u0) = 0, U�(η̃(i) + dη) = η(i), (14)

where dη = η̂(i)− η̃(i). By using the relation ∂η/∂θ = G(θ)
where G(θ) is a matrix of the metric (2), we have

dη = G(θ̃
(i)

)dθ + o(|dθ|). (15)



Neglecting small order terms, we have a linear equation for
dθ, (

V ∗

U�G(θ̃
(i)

)

)
dθ =

(
u0 − V ∗θ̃

(i)

η(i) − U�η̃(i)

)
. (16)

Since we used the approximation, we should update θ̃
(i)

slightly to the direction obtained by the above equation for
stable convergence.

This algorithm behaves like Newton method that is a
second-order algorithm and faster than the simple gradient al-
gorithm. In practical applications, however, the simple gradient
algorithm is much simpler for implementation. In particular,
since optimizing U with fixing W requires a calculation of
inverse of large matrix, we apply the simple gradient algorithm
in simulations.

We need to control these algorithms so that they do not
exceed the domain of W and U . In such a case, we need to
change the learning constant sufficiently small.

VI. PARAMETER INITIALIZATION

The algorithm described in the previous section is not
guaranteed to converge to the global optimum, although each
alternating procedure converges to the global optimum. There-
fore, it is important to get a good initial solution. A simple
idea is to take the solution of the original PCA in θ space in
the case of e-PCA. However, we can obtain a better solution,
because we have information of Riemannian metric g jk(θ) for
θ coordinate (e-metric).

Since it is easy to calculate the metric values at sample
points, let us assume a locally constant metric around the
sample points[1]. Then the distance between a sample point
θ(i) and another point θ is given by (θ − θ (i))�G(θ(i))(θ −
θ(i)). Let θ̃

(i)
= θ(w̃(i);U) be the projection point which

minimizes this distance. Then w̃(i) can be expressed explicitly
as a function of U and θ(i) under the assumption. Using this
fact, we obtain a naive extension of PCA that minimizes the
reconstruction error measured with the metric

∑n
i=1(θ̃

(i) −
θ(i))�G(θ(i))(θ̃

(i) −θ(i)). However, an efficient algorithm is
not known to minimize this cost, and in fact it may have many
local optima.

Therefore, we simplify the problem further by replacing
G(θ(i)) by λ(i)G† which is an essentially constant metric
except for the scale factor λ(i) ∈ R, i.e., the cost function
is written by

n∑
i=1

λ(i)(θ̃
(i) − θ(i))�G†(θ̃

(i) − θ(i)), (17)

which can be solved by the original PCA for the transformed
sample ξ(i) =

√
λ(i)G†1/2

θ(i). The constant shift u0 is given
by the weighted sum u0 =

∑n
i=1 λ

(i)θ(i)/
∑n

i=1 λ
(i). Letting

K be a matrix with the first h principal directions of ξ (i), we
get initial solutions,

U = G†−1/2
K, w̃(i) =

1√
λ(i)

K�ξ(i). (18)

Specifically, in this paper, we take the average metric G† =∑n
i=1G(θ(i)), and λ(i) = det(G(θ(i))).

Note that θ̃
(i)

does not always belong to the domain M.
In such a case, we need to define some projection operator
which maps a point w(i) ∈ R

h onto M.
This initialization method would work well when the princi-

pal directions ofGi are not so different. Otherwise, the original
PCA sometimes may give a better solution.

VII. A SIMPLE CASE: FINDING A CENTER

The 0-dimensional subspace fitting is the most simple
example of submanifold fitting. In this case, only we need
to find is u0 that minimizes the sum of e- or m-divergence.
Intuitively, it is a center or representative point of samples.

Let e-center (m-center) be a point that minimizes the sum
of e-divergence (m-divergence). We can easily show that e-
center (m-center) is given by the arithmetic mean of samples
in e-coordinate (m-coordinate),

θ̂ =
1
n

n∑
i=1

θ(i), (η̂ =
1
n

n∑
i=1

η(i)), (19)

Unlike PCA, the e-PCA and m-PCA do not have hierar-
chical structure, i.e., a higher dimensional submanifold does
not include a lower dimensional submanifold. Therefore, e-
center (or m-center) is not included in higher dimensional
submanifold.

VIII. A SPECIAL CASE: DIMENSION REDUCTION OF

RANDOM VARIABLES

Collins et al.[7] proposed a generalization of PCA for
random samples generated from an exponential family. We
show that this generalization is a special case of the e-PCA

Suppose we have random samples x(1),x(2), . . . ,x(n),
where the sample x(i) is generated from unknown different
distribution p(x; θ(i)) belonging to the exponential family.
Even though we have only one sample for each parameter,
each sample can be located as a point on the space of the
exponential family by η (i) = F(x(i)). In order to reduce the
dimensionality of x, they consider only the case Fj(x) = xj .
However, the restriction can be loosen such as the number of
sufficient statistics is less than or equal to the dimensionality
of x. They propose a method to find a linear submanifolds in
e-coordinate. Therefore, their framework can be regarded as
a special case of e-PCA where each point is calculated from
only one sample.

This method is equivalent to the original PCA in the follow-
ing case: the exponential family is a space of mean parameter
of Gaussian distribution with a unit variance, N [µ, I ]. This
space is equivalent to the Euclidean space, whose metric is
used for calculating reconstruction errors.

Note that x(i) are not samples from a fixed parameter.
Therefore, it cannot be applied to the case that x (i)’s are
samples from a fixed distribution p(x; θ).



IX. AN EXAMPLE: 1D NORMAL DISTRIBUTION

Here we give numerical results for one dimensional normal
distribution N (µ, σ2), a typical example of the exponential
family.

First we summarize definitions of variables that are neces-
sary for implementation. The density function of the normal
distribution is written as

p(x;µ, σ2) = exp{− (x− µ)2

2σ2
− 1

2
log(2πσ2)}. (20)

Therefore, letting F1(x) = x2, F2(x) = x, we have the natural
parameters

θ1 = − 1
2σ2

, θ2 =
µ

σ2
, (21)

and the expectation parameters

η1 = µ2 + σ2, η2 = µ. (22)

The domain of parameters S is θ1 < 0 for θ coordinate and
η1 > η2

2 for η coordinate. The coordinate transforms are
θ1(η) = −1/2(η1 − η2

2), θ2(η) = η2/η1 − η2
2, η1(θ) =

θ2
2/4θ12 − 1/2θ1, η2(θ) = −θ2/2θ1. The e-metric and m-

metric matrices are given by

G(θ) = − 1
2θ13

(
θ2

2 − θ1 −θ1θ2
−θ1θ2 θ1

2

)
, (23)

G−1(θ(η)) =
1

(η1 − η2
2)2

(
1/2 −η2

−η2 η1 + η2
2

)
. (24)

First, let us consider the 0-dimensional fitting. The e-center is
given by solving the following equation for σ̂ 2 and µ̂,

θ̂1 = − 1
2σ̂2

= − 1
n

n∑
i=1

1
2(σ(i))2

, (25)

θ̂2 =
µ̂

2σ̂2
=

1
n

n∑
i=1

µ(i)

2(σ(i))2
. (26)

Similarly, the m-center is given by solving

η̂1 = σ̂2 + µ̂2 =
1
n

n∑
i=1

(σ(i)2 + µ(i)2), (27)

η̂2 = µ̂ =
1
n

n∑
i=1

µ(i). (28)

Next let us consider one dimensional fitting (h = 1). In this
special example, the projection of sample points to the sub-
manifold M can be obtained in a closed form by the method
described in sec. IV. Therefore, we only use the gradient
descent method to optimize U . The domain of the bases U
is given by the condition that the line of the submanifold
intersects the domain M. In the case of e-PCA, almost all
flat submanifold intersects the domain unless u1 ∝ (0, 1)�

and (u0)1 ≥ 0. In the case of m-flat submanifold fitting,
the condition can be written by the existence of solution
of a quadratic equation. If the gradient algorithm exceeds
the domain U , we project the bases to some close point in
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Fig. 2. The e-PCA: circles represent sample points, + represents e-center,
× represents m-center. (a) and (b) are the initial solution obtained by the
extension of PCA. (c) and (d) are the solution after 1000 steps of gradient
descent learning. (a) and (c) are plotted in θ space and (b) and (d) are in η
space

the domain (we cannot project to the boundary, because the
domain is an open set in this case).

In numerical simulations, we generated 10 points randomly
from θ1 = ε1 and θ2 = θ1 + ε2, where ε1 is generated
randomly from the uniform distribution on [−1.5,−0.5) and
ε2 from the normal distribution N(0, 0.52). First we initialized
the parameter values by the extension of PCA described in
sec. VI. Then we applied the gradient algorithm for 100 steps
by taking learning rate 0.01.

The result of e-PCA is shown in Fig. 2. In those figures,
e-center and m-center are marked by ‘+’ and ‘×’ respectively.
The upper figures ((a) and (b)) represent the initial solution
which are plotted in θ space ((a)) and η space ((b)). In those
figures, the samples (represented by circles) and the projection
points are connected by the m-geodesic which are straight lines
in η coordinate but not straight in θ coordinate. The solution
after learning is shown in (c) and (d). In this example, apparent
superiority of the proposed initialization method was not clear
because deviance of Gi is larger than the difference between
Gi and I .

Fig. 3 shows similar figures for m-flat submanifold fitting
for the same dataset. We see that the fitting curve is very
different from the e-PCA case.

The behavior of cost functions are given in Fig. 4. It seems
to decrease quickly in spite of the simple gradient algorithm.

X. MODELS WITH HIDDEN VARIABLES

The framework described in this paper is not applicable
directly to more complex models such as hidden Markov
models (HMM) and mixture models, because they are not
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Fig. 3. The m-PCA. The arrangement follows Fig. 2
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Fig. 4. The behavior of cost function through learning. The cost functions
are the sum of m-divergence for e-PCA, and e-divergence for m-PCA.

members of exponential family but a curved exponential
family.

However, such models can often be regarded as an expo-
nential family by introducing hidden random variables, i.e.,
even if p(x; θ) is not belonging to an exponential family,
p(x, z; θ) can be an exponential family, where z is a hidden
variable. Therefore, we can apply our framework in the space
of p(x, z; θ). This replacement is possible because we have a
set of parameters not random variables. Therefore, it does not
affect the inference.

XI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we gave an information geometrical view to
the submanifold fitting. We proposed fitting algorithm for two
kinds of dual flat submanifolds. It raises a question about
which submanifold we should choose. If we only consider the
projection of one point, the m-projection is more natural from
a statistical point of view. The m-projection θ̂ of θ is equal to
the maximum likelihood estimation of θ. However, it is also
known e-projection is also first-order efficient, therefore the

difference is expected to be slight in the sense of asymptotic
statistics. Therefore, in practical applications, we can choose
a model which has better goodness of fit.

In this paper, we are only concerned with submanifold
fitting. However, we can directly apply the submanifold fitting
to the classification problem like as the original PCA is applied
to the subspace method. We may also consider extension to
classification methods other than the subspace method, such
as logistic regression, linear discriminant analysis, and large
margin classifiers. For that purpose, we need to define different
cost functions to optimize the bases U , though it has been
the same both for U and W in this paper for simplicity.
In particular, when the cost function is a nonlinear function
of divergence as the cost function, the resulting gradient
algorithm is essentially similar to the case of e- and m-PCA.

Another direction is to extend the framework to nonflat
submanifold fitting. Recently, the nonlinear surface fitting in
the Euclidean or functional space has been extensively studied
from various approaches, such as kernel PCA[10], principal
surface[8], ISOMAP[15] and locally linear embedding[13].
The extension of those methods to a Riemannian space will
give more natural fitting in some applications, and it remains
as future works.

REFERENCES

[1] S. Akaho, SVM that maximizes the margin in the input space, Proc. of
ICONIP 2002 (2002)

[2] S. Amari, Differential Geometrical Methods in Statistics, Springer-
Verlag (1985)

[3] S. Amari, Information geometry of the EM and em algorithms for neural
networks, Neural Networks, 8 (1995)

[4] S. Amari, H. Nagaoka, Methods of Information Geometry, AMS and
Oxford university press (2000)

[5] S. Amari, Information Geometry on Hierarchy of Probability Distribu-
tions, IEEE Trans. on Information Theory, 47 (2001)
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