
A Linear Time Algorithm for
Automatic Generation of

Multiplicative Planar Proof
Nets

Satoshi Matsuoka
AIST

Motivation
• Discovery of a new linear time correctness condition for MLL

proof nets
• Efficient implementation (in Proof Net Calculator)
• Found a theory bug in the first implementation: may result in deadlock
• The second implementation seems correct: adding a deadlock prevention

mechanism
• Formal verification (not yet, but seems to be OK by using an easy

state machine encoding)
• Testing using test data
• Effective test data generation: automatic generation of MLL proof

nets

The system MLL
MLL formulas:

Inference rules:

are multisets of MLL formulas

MLL Proof Nets
• Abstract formal proofs of formulas of Multiplicative Linear

Logic
• A subset of the set of MLL proof structures
• Sequentializable MLL proof structures

Links

p p

A B
&

A B

A B

A B
Tensor-Links

Par-Links

ID-Links

Multiplicative-
Links

conclusions

premises

MLL proof structure
• A set of links
• Satisfying two conditions

Cond. (1): any formula (occurrence) is a
conclusion of exactly one link

Cond.(2): any formula (occurrence) does not
become a premise of more than one link

MLL proof structures (but not MLL
proof nets)

MLL Proof Structure(also MLL proof
net)

1=

Definition of Proof Nets:
Sequentializability

A DR-switching S for a proof
structure 
• A function from the set of par-links in  to {L, R}

The DR graph ΘS induced by DR-
switching S

A Graph-theretic characterization of proof nets
• Theorem (Girard, Danos-Regnier)

A MLL proof structure  is a MLL proof net
iff
for any DR-switching S for ,
the DR-graph S is acyclic and connected

A DR-graph of 1

Another DR-graph of 1

An MLL proof structure (But not an
MLL proof net)

2=

A DR graph for 2

Another DR-graph for 2

A new linear time correctness condition
• Given an MLL proof structure 
• Select a DR-switching S for 
• If the DR-graph S() is not acyclic and connected then  is not a

proof net
• Otherwise, construct the deNM-tree T for  and S,

1. check whether or not T can reduce to one node using three rewrite rules
2. If it succeeds, then  is a proof net
3. Otherwise, not a proof net

• To establish linear time termination, must use union-find data
structure

deNM-trees
• Trees consisting of the following two types of nodes:

S is a set of labels lL or rL where L is a -link
&

Three rewrite rules

-elimination

union

&

local jump

Example 1: An MLL proof net

Example 1: its deNM-tree (by extremely left
switching)

Example 2: An MLL proof structure, but not PN

Example 2: its deNM-tree (by extremely left
switching)

Example 2: the reduced deNM-tree

Union-Find Data Structure
• Dynamic operations on a finite set S = {a1, a2, …, an}:

• Make-Set(x): creates the singleton set {x}
• Union(x, y): makes the union set Sx ∪Sy, where

Sx (resp. Sy) is the current subset including x (resp. y)
• Find-Set(x): return the representative element of Sx

• Can check whether or not two elements x and y belong to the
same subset of S currently

• Runs in almost linear time (in practical sense)
• Runs in linear time over special cases, especially over planar

graphs

A new linear time correctness condition
• Found bugs twice (at this moment)
• The first bug was a trivial mistake
• Then the algorithm was implemented
• The second bug was a subtle one:

found it through a comparison test with an existing
quadratic correctness condition

• Hope that the current one is the last one
• Would like to confirm its correctness through tests

The goal
• Generation of a number of MLL proof structures but not

proof nets
• The implementation must answer “no” for these
• This part is relatively easy

• Generation of a number of MLL proof nets
• The implementation must answer “yes” for these
• This part is not so easy, especially for generating big proof nets

Generation of general MLL proof structures
1. Generation of one-conclusion pre proof structure P
2. Assignment of multiplicative links to P

One-conclusion pre proof structure
• binary tree with even-number leaves

plus
• fixpoint free involution over the leaves

• Can be easily extended to connected multi-conclusion pre
proof structures

Binary tree with even-number leaves

A simple observation about binary tree with
even-number leaves
• When a binary tree has 2n leaves, the tree has 2n-1 internal

nodes

fixpoint free involution over an even cardinal set

One conclusion pre proof structure

One conclusion proof structure
• One conclusion pre proof structure

plus
• An assignment of { , } to the internal nodes
• An assignment of {+, -} to the leaves
• An assignment of an appropriate fixpoint involution

&

A necessary condition for a one conclusion
MLL proof net
• num = num

• num = num + 1

ID &

ID

Random generation of MLL proof structures
• Generate a random binary tree with even-number leaves
• Generate an assignment of multiplicative links to internal

nodes satisfying the necessary condition
• Generate an appropriate fixpoint free involution with polarity

• Can generate MLL proof structures, but very few MLL proof
nets

Inductive definition of MLL proof nets

Use of ind. def. of MLL PNs for test data gen.
• Closely related to Galton-Watson branching processes

Proof Net Generation from connected multi-
conclusion pre proof structures (connected pre
PSʼs)

Gen() = halt

)

= let n be and
… …

Gen(
n

&

… …
Gen(

…
Gen(

n


= let n be and

)

Gen(

…
) Gen(

…
)and

)

Remarks
• A forest can be linear-ordered in a bottom up manner by

topological sort in linear time
• Naïve implementation of the Gen procedure is quadratic:

connected check at each recursive step
• We have found a linear time Gen procedure:

but in the special case, i.e., in the planar case

Planar pre proof structure

Quiz
• Can you find a solution?
• Hint: use of union-find data structure

Our solution
• Get attention to faces
• Observations:

1. Each internal node has at most three faces
2. Each conclusive internal node has (necessarily not different) two

(up and down) faces

Case 1: removal of conclusion node results in
two connected components

The up face is the same as the down face f1

f2

In this case, Find-Set(f1) == Find-Set(f2)

Case 2: Otherwise

f1

f2

In this case, Find-Set(f1) != Find-Set(f2)The up face is not the same as the down face

Case 2: Otherwise (Cont.)

Execute Union(f1, f2)

Question
• How can we assign faces to a pre proof structure?

Our answer
• Use of union-find data structure

Step 1: Assign numbers to the regions in an
input binary tree

0

1

2

3

3

4

5 6

7 8
9

10

11

12

14 15 1613

Step 2: Assign polarities to the leaves

0

1

2

3

3

4

5 6

7 8
9

10

11

12

13 14 16
+ - -+ -++ + ---- -+ + ++ -

Positive leaf must connect to negative leaf in order to be planar (necessary
condition)

15

Step 3: applying union operation to regions

0

1

2

3

3

4

5 6

7 8
9

10

11

12

13 14 16
+ - -+ -++ + ---- -+ + ++ -

15

Execute Union(3, 12) and Union(11, 16)

Left region of left conclusion is unified to right region of right conclusion

Right region of left conclusion is unified to left region of right conclusion

Open Question
• Generalization to the non-planar case

• A special case to a general open question (decremental graph
connectivity problem)

• Already in quadratic time
• Embedding into general surfaces and applying similar methods in

linear time?

