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Motivation
• Can specify many computational problems by Linear Logic 

formulas
• Be able to specify many NP-complete problems using MLL 

formulas
• Can Use Proof Search as Problem Solving
• Proof Net Construction:  a method of LL Proof Search
 Construct a proof structure associated with the input specification 

formula,
and then check whether it is a proof net using a correctness 

condition 
Efficient (Linear Time) Correct Condition is a Key



Brief History of CCs of MLL proof nets
• 1987: Girard

Introduction of Proof Nets
Long Trip Condition for unit-free Multiplicative Linear Logic (MLL)

• 1989: Danos & Regnier
Acyclic & Connected Condition over DR-graphs

• 1999: Guerrini
The First Linear Time Correctness Condition based on Danos’s
Contractability Condition

• 2000: Murawski & Ong
Another Linear Time Correctness Conditions based on Lamarche’s 
Condition of IMLL proof nets

• 2007: de Naurois & Mogbil
New Correctness Condition Establishing NL-completeness: we only need 
just one DR-graph  



Our result
• A new linear time correctness condition based on de Naurois & 

Mogbil‘s work
• Introduction of deNM-trees
• Rewriting system over deNM-trees with three rewrite rules
• Use of union-find data structures in order to establish linear time 

termination
• Introduction of deadlock prevention mechanism in order to 

establish completeness of the algorithm
• Easy to implement  (in Proof Net Calculator)
• A formal model (a finite transition system) based on the 

implementation



The system MLL
MLL formulas:

Inference rules:

are multisets of MLL formulas
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MLL proof structures
• A set of links
• Satisfying two conditions:
1. any formula (occurrence) is a conclusion of exactly one link
2. any formula (occurrence) is at most  one premise of a link



MLL Proof Nets
• Abstract formal proofs of Multiplicative Linear Logic 
• Sequentializable MLL proof structures



Definition of Proof Nets: 
Sequentializability



A DR-switching S for a proof 
structure Θ
• A function from the set of par-links in Θ to {Left, 

Right}



The DR graph ΘS induced by DR-
switching S



A Graph-theretic characterization of proof nets
• Theorem (Girard, Danos-Regnier)

A MLL proof structure Θ is a MLL proof net
iff
for any DR-switching S for Θ, 
the DR-graph ΘS is acyclic and connected



Our new linear time correctness condition
1. Given an MLL proof structure Θ
2. Select a DR-switching S for Θ
3. If the DR-graph S(Θ) is not acyclic and connected, then Θ

is not a proof net
4. Otherwise, construct the deNM-tree T for Θ and S, 

1. check whether or not T can reduce to exactly one node deNM-tree 
using three rewrite rules

2. If it succeeds, then Θ is a proof net
3. Otherwise, not a proof net



deNM-trees
• Trees consisting of the following two types of nodes:

S is a set of labels lL or rL where L is a     -link 
& 



Example 1: An MLL proof net



Example 1: its deNM-tree 



Rewriting System 
• Rewriting System over deNM-trees
• Only three rewrite rules
• Choose an active (labeled) node arbitrarily



Three rewrite rules

-elimination

union

&

local jump



Example 1: its deNM-tree 



Example 1: the reduced one node deNM-tree



Example 2: An MLL proof structure, but not PN



Example 2: its deNM-tree

active



Example 2: the reduced deNM-tree

active
active



Remark 
• Any naïve implementation has worst cases terminating in 

quadratic time
• Need of more sophisticated data structures: union-find data 

structures



Union-Find Data Structures
• Maintenance of a partition on a finite set S = {a1, a2, …, an}:

• Each partition (subset) Sa of S has the representative element a
• union(a, b): makes the union set Sa ∪Sb, where

Sa (resp. Sb) is the current subset including a (resp. b)
• find(a): return the representative element b of Sb that includes a

• Can check whether  two elements a and b belong to the 
same partition

• Runs in almost linear time (in the sense of amortized cost)
• Runs in linear time over special cases, especially over trees



Our finite transition system 
• States
 denotes the current active node
 maintains the information about labeled node i
 denotes the representative element of the partition including i
 maintains the information about     -node j
etc.



Our transition system (Cont.)
• Four transition rules:

-elimination rewrite rule is divided into two transition rules
• Use of union-find data structures
union operation in union transition rule
find operation in  two    -elimination transition rules for the elimination 

condition
find operation in local jump transition rule in order to find the next active node
• Each transition rule only uses constant number of Union-Find operations

⇒ Linear time termination



Deadlock prevention mechanism
• Without it, we would judge that correct proof nets were not:

can not establish completeness of the algorithm
• Realized by queue data structures and union-find data 

structures
Indices for not yet eliminated    -nodes are maintained in 

queues
• Its correctness (deadlock freedom) can be stated by a 

liveness property:
“Indices for not yet eliminated    -nodes must be always 
in some queues”



Additional Results
• (Yet another) linear time sequentialization algorithm

Easy to implement
The basic idea is to repeat linear time CC twice

• Linear time algorithm for automated generation of planar 
proof nets

can be reduced to decremental graph connectivity 
problem



Our implementation 
• Can be downloaded from 

https://staff.aist.go.jp/s-matsuoka/PNCalculator/index.html

as a software package called Proof Net Calculator

https://staff.aist.go.jp/s-matsuoka/PNCalculator/index.html


Future Work
• Incorporation of backtracking mechanism

Seeking elegant (verifiable) implementation
• Semi-persistent data structures?
• Extensions to other fragments and/or variants of LL



Thank you
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