

A Formal Model of A New Linear Time Correctness Condition for Multiplicative Linear Logic

Satoshi Matsuoka

AIST

Motivation

- Can specify many computational problems by Linear Logic formulas
- Be able to specify many NP-complete problems using MLL formulas
- Can Use Proof Search as Problem Solving
- Proof Net Construction: a method of LL Proof Search
 - ✓ Construct a proof structure associated with the input specification formula,
 - and then check whether it is a proof net using a *correctness* condition
 - ✓ Efficient (Linear Time) Correct Condition is a Key

Brief History of CCs of MLL proof nets

• 1987: Girard

Introduction of Proof Nets

Long Trip Condition for unit-free Multiplicative Linear Logic (MLL)

• 1989: Danos & Regnier

Acyclic & Connected Condition over DR-graphs

• 1999: Guerrini

The First Linear Time Correctness Condition based on Danos's Contractability Condition

• 2000: Murawski & Ong

Another Linear Time Correctness Conditions based on Lamarche's Condition of IMLL proof nets

• 2007: de Naurois & Mogbil

New Correctness Condition Establishing NL-completeness: we only need just one DR-graph

Our result

- A new linear time correctness condition based on de Naurois & Mogbil's work
- Introduction of deNM-trees
- Rewriting system over deNM-trees with three rewrite rules
- Use of union-find data structures in order to establish linear time termination
- Introduction of deadlock prevention mechanism in order to establish completeness of the algorithm
- Easy to implement (in Proof Net Calculator)
- A formal model (a finite transition system) based on the implementation

The system MLL MLL formulas: $A ::= p | p^{\perp} | A \otimes B | A \otimes B$ negation : $(p^{\perp})^{\perp} := p, \quad (A \otimes B)^{\perp} := B^{\perp} \otimes A^{\perp}, \quad (A \otimes B)^{\perp} := B^{\perp} \otimes A^{\perp}$

Inference rules:

ID

$$\vdash A, A^{\perp}$$

 $\otimes \qquad \stackrel{\vdash \Sigma_1, A}{\vdash \Sigma_1, \Sigma_2, A \otimes B}$
 $\vdash \Sigma, A, B$

$$\mathcal{B} \qquad \frac{\vdash \mathcal{D}, \mathcal{A}, \mathcal{D}}{\vdash \Sigma, \mathcal{A} \mathcal{B} \mathcal{B}}$$

 $\begin{array}{ll} \mathrm{Cut} & \frac{\vdash \Sigma_1, A & \vdash A^{\perp}, \Sigma_2}{\vdash \Sigma_1, \Sigma_2} & \mathrm{Cut} \text{ is almost } \otimes \\ \Sigma, \Sigma_1, \Sigma_2 & \text{ are multisets of MLL formulas} \end{array}$

MLL proof structures

- A set of links
- Satisfying two conditions:
- 1. any formula (occurrence) is a conclusion of exactly one link
- 2. any formula (occurrence) is at most one premise of a link

MLL Proof Nets

- Abstract formal proofs of Multiplicative Linear Logic
- Sequentializable MLL proof structures

Definition of Proof Nets: Sequentializability

A DR-switching S for a proof structure Θ

- A function from the set of par-links in Θ to {Left, Right}

The DR graph $\Theta\,S$ induced by DR-switching S

A Graph-theretic characterization of proof nets

- Theorem (Girard, Danos-Regnier) A MLL proof structure Θ is a MLL proof net iff
 - for any DR-switching S for Θ ,
 - the DR-graph ΘS is acyclic and connected

Our new linear time correctness condition

- 1. Given an MLL proof structure Θ
- 2. Select a DR-switching S for Θ
- 3. If the DR-graph $S(\Theta)$ is not acyclic and connected, then Θ is not a proof net
- 4. Otherwise, construct the deNM-tree T for Θ and S,
 - 1. check whether or not T can reduce to *exactly one* node deNM-tree using three rewrite rules
 - 2. If it succeeds, then Θ is a proof net
 - 3. Otherwise, not a proof net

deNM-trees

• Trees consisting of the following two types of nodes:

labeled-node

S is a set of labels $| L \text{ or } r L \text{ where } L \text{ is a } \mathcal{B}$ -link

% -node (degree 1) % -node (degree 2)

Example 1: An MLL proof net

PN-1.txt

Example 1: its deNM-tree

Rewriting System

- Rewriting System over deNM-trees
- Only three rewrite rules
- Choose an active (labeled) node arbitrarily

Three rewrite rules

Example 1: its deNM-tree

Example 1: the reduced one node deNM-tree

Example 2: An MLL proof structure, but not PN

nonPN-1.txt

Example 2: its deNM-tree

Example 2: the reduced deNM-tree

Remark

- Any naïve implementation has worst cases terminating in quadratic time
- Need of more sophisticated data structures: union-find data structures

Union-Find Data Structures

- Maintenance of a partition on a finite set $S = \{a_1, a_2, \dots, a_n\}$:
 - Each partition (subset) S_a of S has the representative element a
 - union(*a*, *b*): makes the union set $S_a \cup S_b$, where

S_a (resp. S_b) is the current subset including a (resp. b)

- find(*a*): return the representative element *b* of S_b that includes *a*
- Can check whether two elements *a* and *b* belong to the same partition
- Runs in almost linear time (in the sense of amortized cost)
- Runs in linear time over special cases, especially over *trees*

Our finite transition system

- States $\langle a, N, n, P, S_{\text{elim}}, \text{num}_{\text{labeled}}, \text{num}_{\aleph} \rangle$
 - $\checkmark a\,$ denotes the current active node
 - $\checkmark N_i$ maintains the information about labeled node i
 - $\checkmark \eta_i$ denotes the representative element of the partition including *i*
 - $\checkmark P_j^{"}$ maintains the information about % -node j
 - √etc.

Our transition system (Cont.)

- Four transition rules:
 - ∞ -elimination rewrite rule is divided into two transition rules
- Use of union-find data structures
- ✓ union operation in union transition rule
- \checkmark find operation in two $\ensuremath{\boxtimes}$ -elimination transition rules for the elimination condition
- ✓ find operation in local jump transition rule in order to find the next active node
- Each transition rule only uses *constant number* of Union-Find operations
 - *⇒ Linear time termination*

Deadlock prevention mechanism

- Without it, we would judge that correct proof nets were not: can not establish completeness of the algorithm
- Realized by *queue data structures* and *union-find data structures*
- ✓Indices for not yet eliminated ≫-nodes are maintained in queues
- Its correctness (deadlock freedom) can be stated by a liveness property:

"Indices for not yet eliminated >> nodes *must* be always in some queues"

Additional Results

- (Yet another) linear time sequentialization algorithm Easy to implement
 The basic idea is to repeat linear time CC twice
- Linear time algorithm for automated generation of planar proof nets

can be reduced to decremental graph connectivity problem

Our implementation

Can be downloaded from

https://staff.aist.go.jp/s-matsuoka/PNCalculator/index.html

as a software package called *Proof Net Calculator*

Future Work

- Incorporation of backtracking mechanism
 Seeking elegant (verifiable) implementation
- Semi-persistent data structures?
- Extensions to other fragments and/or variants of LL

Thank you