
A Formal Model of A New 
Linear Time Correctness 

Condition for  Multiplicative 
Linear Logic

Satoshi Matsuoka
AIST



Motivation
• Can specify many computational problems by Linear Logic 

formulas
• Be able to specify many NP-complete problems using MLL 

formulas
• Can Use Proof Search as Problem Solving
• Proof Net Construction:  a method of LL Proof Search
 Construct a proof structure associated with the input specification 

formula,
and then check whether it is a proof net using a correctness 

condition 
Efficient (Linear Time) Correct Condition is a Key



Brief History of CCs of MLL proof nets
• 1987: Girard

Introduction of Proof Nets
Long Trip Condition for unit-free Multiplicative Linear Logic (MLL)

• 1989: Danos & Regnier
Acyclic & Connected Condition over DR-graphs

• 1999: Guerrini
The First Linear Time Correctness Condition based on Danos’s
Contractability Condition

• 2000: Murawski & Ong
Another Linear Time Correctness Conditions based on Lamarche’s 
Condition of IMLL proof nets

• 2007: de Naurois & Mogbil
New Correctness Condition Establishing NL-completeness: we only need 
just one DR-graph  



Our result
• A new linear time correctness condition based on de Naurois & 

Mogbil‘s work
• Introduction of deNM-trees
• Rewriting system over deNM-trees with three rewrite rules
• Use of union-find data structures in order to establish linear time 

termination
• Introduction of deadlock prevention mechanism in order to 

establish completeness of the algorithm
• Easy to implement  (in Proof Net Calculator)
• A formal model (a finite transition system) based on the 

implementation



The system MLL
MLL formulas:

Inference rules:

are multisets of MLL formulas



Links

p p

A B
&

A B

A B

A B
Tensor-Links

Par-Links

ID-Links

Multiplicative-
Links

conclusions

premises



MLL proof structures
• A set of links
• Satisfying two conditions:
1. any formula (occurrence) is a conclusion of exactly one link
2. any formula (occurrence) is at most  one premise of a link



MLL Proof Nets
• Abstract formal proofs of Multiplicative Linear Logic 
• Sequentializable MLL proof structures



Definition of Proof Nets: 
Sequentializability



A DR-switching S for a proof 
structure Θ
• A function from the set of par-links in Θ to {Left, 

Right}



The DR graph ΘS induced by DR-
switching S



A Graph-theretic characterization of proof nets
• Theorem (Girard, Danos-Regnier)

A MLL proof structure Θ is a MLL proof net
iff
for any DR-switching S for Θ, 
the DR-graph ΘS is acyclic and connected



Our new linear time correctness condition
1. Given an MLL proof structure Θ
2. Select a DR-switching S for Θ
3. If the DR-graph S(Θ) is not acyclic and connected, then Θ

is not a proof net
4. Otherwise, construct the deNM-tree T for Θ and S, 

1. check whether or not T can reduce to exactly one node deNM-tree 
using three rewrite rules

2. If it succeeds, then Θ is a proof net
3. Otherwise, not a proof net



deNM-trees
• Trees consisting of the following two types of nodes:

S is a set of labels lL or rL where L is a     -link 
& 



Example 1: An MLL proof net



Example 1: its deNM-tree 



Rewriting System 
• Rewriting System over deNM-trees
• Only three rewrite rules
• Choose an active (labeled) node arbitrarily



Three rewrite rules

-elimination

union

&

local jump



Example 1: its deNM-tree 



Example 1: the reduced one node deNM-tree



Example 2: An MLL proof structure, but not PN



Example 2: its deNM-tree

active



Example 2: the reduced deNM-tree

active
active



Remark 
• Any naïve implementation has worst cases terminating in 

quadratic time
• Need of more sophisticated data structures: union-find data 

structures



Union-Find Data Structures
• Maintenance of a partition on a finite set S = {a1, a2, …, an}:

• Each partition (subset) Sa of S has the representative element a
• union(a, b): makes the union set Sa ∪Sb, where

Sa (resp. Sb) is the current subset including a (resp. b)
• find(a): return the representative element b of Sb that includes a

• Can check whether  two elements a and b belong to the 
same partition

• Runs in almost linear time (in the sense of amortized cost)
• Runs in linear time over special cases, especially over trees



Our finite transition system 
• States
 denotes the current active node
 maintains the information about labeled node i
 denotes the representative element of the partition including i
 maintains the information about     -node j
etc.



Our transition system (Cont.)
• Four transition rules:

-elimination rewrite rule is divided into two transition rules
• Use of union-find data structures
union operation in union transition rule
find operation in  two    -elimination transition rules for the elimination 

condition
find operation in local jump transition rule in order to find the next active node
• Each transition rule only uses constant number of Union-Find operations

⇒ Linear time termination



Deadlock prevention mechanism
• Without it, we would judge that correct proof nets were not:

can not establish completeness of the algorithm
• Realized by queue data structures and union-find data 

structures
Indices for not yet eliminated    -nodes are maintained in 

queues
• Its correctness (deadlock freedom) can be stated by a 

liveness property:
“Indices for not yet eliminated    -nodes must be always 
in some queues”



Additional Results
• (Yet another) linear time sequentialization algorithm

Easy to implement
The basic idea is to repeat linear time CC twice

• Linear time algorithm for automated generation of planar 
proof nets

can be reduced to decremental graph connectivity 
problem



Our implementation 
• Can be downloaded from 

https://staff.aist.go.jp/s-matsuoka/PNCalculator/index.html

as a software package called Proof Net Calculator

https://staff.aist.go.jp/s-matsuoka/PNCalculator/index.html


Future Work
• Incorporation of backtracking mechanism

Seeking elegant (verifiable) implementation
• Semi-persistent data structures?
• Extensions to other fragments and/or variants of LL



Thank you


	A Formal Model of A New Linear Time Correctness Condition for  Multiplicative Linear Logic
	Motivation
	Brief History of CCs of MLL proof nets
	Our result
	The system MLL
	Links
	MLL proof structures
	MLL Proof Nets
	Definition of Proof Nets: Sequentializability
	A DR-switching S for a proof structure Q
	The DR graph ΘS induced by DR-switching S
	A Graph-theretic characterization of proof nets
	Our new linear time correctness condition
	deNM-trees
	Example 1: An MLL proof net
	Example 1: its deNM-tree 
	Rewriting System 
	Three rewrite rules
	Example 1: its deNM-tree 
	Example 1: the reduced one node deNM-tree
	Example 2: An MLL proof structure, but not PN
	Example 2: its deNM-tree
	Example 2: the reduced deNM-tree
	Remark 
	Union-Find Data Structures
	Our finite transition system 
	Our transition system (Cont.)
	Deadlock prevention mechanism
	Additional Results
	Our implementation 
	Future Work
	Thank you

