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Verification of Security Properties of Software

Generally speaking,

I Software security is difficult to define

I Many unclear notions (e.g., “privacy”)

I Often many details (e.g., technical details)

I Pencil-and-paper verifications/proofs are difficult to check

I Many abbreviations (e.g., “We see that. . . ”)

I Often many cases (e.g., lengthy enumerations)

There is a need for:

1. Mathematical definitions of what to verify

2. Computer means to do (or at least check) verifications



Formal Verification

I Appropriate in the case of critical systems

I Formal verification consists of:

1. A mathematical model M of the system

2. A property ϕ expressed in a formal logic

3. Techniques to prove and check that M satisfies ϕ

I There are mainly two approaches:

I Proof-assistants

+ Very expressive (infinite models handled by induction)
− Requires human interaction

I Model-checking

+ Automatic proof
− Finite models only (unless safe abstractions are made)



Proof-assistants

I A proof-assistant consists of:

I A language for writing mathematical models M,
statements ϕ, and proofs that M satisfies ϕ

I An automatic way to check proofs

I An interactive way to build proofs
Automatic discovery of proofs for simple statements only

I Worthwhile if the cost of mistakes is extremely high
E.g., critical parts of microprocessor design



The Coq Proof-assistant [INRIA, 1984–2006]

I A programming language with powerful types...

I Inductive/coinductive types for finite/infinite data structures
Lists, trees, streams, etc.

I Dependent types
The output-type of a function can vary according to its argument

I ...for writing models, properties, and proofs:

I Properties are types

I Proofs are programs (Heyting semantics)
In particular, proof-checking = type-checking

I Remarkable achievements:

I Verification of virtual machines for smartcards
[Trusted Logic, 2003]

I The four color theorem [Gonthier and Werner, 2004]



The Four Color Theorem

Four colors are enough to color
any geographical map in such
a way that no neighboring two
countries are of the same color.

I The proof requires the
verification of many cases

I Long history:

1853 first statement
1976 first proof, using a computer
2004 certified proof in Coq

I Practical application:
reduce the number of used

broadcasting frequencies for mobile

phones



Verification of Functional Programs in Coq

General approach:

I Mathematical model M: a function in the Coq language

I Property ϕ: a statement in the Coq language

I Verification that M satisfies ϕ: by interactive proof

Demo



Verification of Imperative Programs in Coq

I Problem: the Coq language is not imperative
Imperative programs cannot be represented directly

I Solution: use the Coq language to model imperative programs
This amounts to formalization of their semantics

I General approach:

I Mathematical model M:
the formal model of an imperative program

I Property ϕ: a statement in the Coq language

I Verification that M satisfies ϕ: by interactive proof



Verification of Imperative Programs
Hoare Logic (1/2)

Empty statement axiom

{P} skip {P}

Assignment axiom schema

{P[E/x ]} x :=E {P}

Example: {x + 5 < 20} x :=x + 5 {x < 20}

Sequence rule
{P} C {Q} {Q} D {R}

{P} C ;D {R}



Verification of Imperative Programs
Hoare Logic (2/2)

Conditional rule
{E ∧ P} C {Q} {¬E ∧ P} D {Q}
{P} if E then C else D endif {Q}

While rule
{E ∧ Inv } C { Inv }

{ Inv } while E do C done {¬E ∧ Inv }

Rule of consequence

P ⇒ P ′ {P ′} C {Q ′} Q ′ ⇒ Q

{P} C {Q}



Verification of Imperative Programs
Example

{a > 0 ∧ b > 0}
x :=a; y :=b;

{ x > 0 ∧ y > 0 ∧ gcd(x , y) = gcd(a, b) }
while x 6= y do
{x 6= y ∧ x > 0 ∧ y > 0 ∧ gcd(x , y) = gcd(a, b)}
if x < y then
{x < y ∧ x > 0 ∧ y > 0 ∧ gcd(x , y) = gcd(a, b)}
y :=y − x
{x > 0 ∧ y > 0 ∧ gcd(x , y) = gcd(a, b)}

else
{x > y ∧ x > 0 ∧ y > 0 ∧ gcd(x , y) = gcd(a, b)}
x :=x − y
{x > 0 ∧ y > 0 ∧ gcd(x , y) = gcd(a, b)}

endif
{x > 0 ∧ y > 0 ∧ gcd(x , y) = gcd(a, b)}

done

{x = y ∧ x > 0 ∧ y > 0 ∧ gcd(x , y) = gcd(a, b) }

The conclusion implies that x = gcd(a, b)



Application to Software Security

I Memory management in C

I Buffer overflows

I Security issues on multi-users systems

I Implementation of cryptographic devices (smartcards)

I Efficient arithmetic on large integers



Buffer Overflow

I A dangerous program:

for (c1=buf, c2=str; (*c1++ = *c2++)!=0; );

I The buffer may be smaller than the string:

X X C O D E A B C D E ∅

c1 c2

I How can we prevent such bugs using formal verification?



Verification of Memory Management
Separation Logic (1/2)

I Hoare logic with a notion of mutable memory [Reynolds, 2002]

I Singleton heap:

h |= (E 7→ E ′) iff dom(h)=E ∧ h(E ) = E ′

I Memory accesses:

Mutation

{E 7→?} [E ] := E ′ {E 7→ E ′}

Example:

?

x

{ }
4

x

{ }
[x ] := 4

is written {(x 7→?)} [x] := 4 {(x 7→ 4)}

Lookup

{E 7→ E ′} x := [E ] {E 7→ E ′ ∧ x = E ′}



Verification of Memory Management
Separation Logic (2/2)

I Compositional reasoning using a logic extension

I Compound heap:

h |= P ? Q iff
∃h1, h2 s.t. h1⊥h2 ∧ h1 ] h2 =h ∧ h1 |=P ∧ h2 |=Q

I Frame Rule

{P}C{Q} ∧modified(C ) ∩ free(R) = ∅
{P ? R}C{Q ? R}

Example:

2

x

{ }
4 2

x

{ }
[x ] := 4

is written
{(x 7→ p) ? (p 7→ 2)} [x] := 4 {(x 7→ 4) ? (p 7→ 2)}



Verification of Memory Management
Example: Buffer Overflow

{buf Z⇒ B0 · · ·Bn−1 ? str Z⇒ S0 · · ·Sm−1}
c1 := buf ; c2 := str ; tmp := [c2];{

buf Z⇒ S0 · · ·Si−1Bi · · ·Bn−1 ? str Z⇒ S0 · · ·Sm−1∧
c1=buf +i ∧ c2=str+i ∧ tmp=Si

}
while tmp 6= 0 do

[c1] := tmp;
c1 := c1 + 1;
c2 := c2 + 1;
tmp := [c2]

done;{
tmp=0 ∧ buf Z⇒ S0 · · ·Si−1Bi · · ·Bn−1 ? str Z⇒ S0 · · ·Sm−1∧

c1=buf +i ∧ c2=str+i ∧ tmp=Si

}
[c1] := tmp
{buf Z⇒ S0 · · ·Sm−1 ? T ? str Z⇒ S0 · · ·Sm−1}

Possible only if n ≥ m



Memory Management and Multi-users Systems

I Security issue: privacy of the data of users

I Example: memory management in O.S. [Marti et al., 2006]

I Dynamically memory uses linked lists:
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I Separation property:
“Newly allocated blocks do not override old ones”

I Related problem found during verification of existing code:
I Memory exhaustion:
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Verification of the Implementation of Cryptosystems

I Algorithms and their implementation must be certified

I Cryptographic devices require low-level programming

I In low-level languages, properties depend on physical data:

I Counter-intuitive arithmetic properties

I Machine integers wrap around (integer overflow)

I Confusing conversions:

unsigned int u;
...
if (u > -1) ... /* always false! */

I The sign of the remainder of an integer depends on its size

I Unsafe casts
I Ariane 5 bug:

Conversion from 64-bit floating-point to 16-bit signed integer



Formalization of Machine Integers in Coq (1/2)

I A machine integer is a list of bits
I Examples:

i::i::i::i::nil stands for (1111)
o::o::o::i::nil stands for (0001)

I Hardware circuitry is a set of recursive functions

I Example: “strictly less than”

Fixpoint listbit_lt (a b:list bit) {struct a} : bool :=
match a with

o::tla => match b with
o::tlb => listbit_lt tla tlb

| i::_ => true
| _ => false
end

| i::tla => match b with
o::_ => false

| i::tlb => listbit_lt tla tlb
| _ => false

end
| _ => false
end.



Formalization of Machine Integers in Coq (2/2)

I Signed integers in two’s complement notation:

I Definitions:

(an . . . a0)u = an2
n + · · ·+ a0

(an . . . a0)s = −an2
n + an−12

n−1 + · · ·+ a0

I Examples:

I (0001)u = (0001)s but (1111)u 6= (1111)s

I In Coq:
[[ o::o::o::i::nil ]]u = 1

[[ o::o::o::i::nil ]]s = 1

[[ i::i::i::i::nil ]]u = 15

[[ i::i::i::i::nil ]]s = -1

I We retrieve the “expected” properties:
I −1 6< 1

I In Coq:
listbist lt (i::i::i::i::nil) (o::o::o::i::nil) = false



Verification of Efficient Arithmetic on Large Integers

Formalization of machine integers is necessary because of:

I Target functions in assembly

I Resource constraints

I Application-specific extensions (e.g., SmartMIPS)

I Specifications at the bit-level

I Carries and flags



Formal Verification of the Modular Multiplication in Coq

I Specification of the Montgomery algorithm:
X ,Y ,M such that |X |, |Y |, |M| = k and X ,Y < M
Z such that |Z | = k + 1 and Z = 0
α such that α ∗M0 ≡ −1[β]


montgomery X Y M Z α{

βk ∗ Z ≡ X ∗ Y [M] and Z < 2 ∗M
}

I Example: 105 ∗ 39796 ≡ 5792 ∗ 1229 [72639]
I Basic idea: zero the least significant word of partial products

0 0 0 0 0 0 5 8 3 5 7 0
0 0 0 0 0 6 5 0 5 3 0 0
0 0 0 0 5 0 9 4 9 0 0 0
0 0 0 3 4 7 6 5 0 0 0 0
0 0 3 9 7 9 6 0 0 0 0 0

I Verification of a SmartMIPS implementation in Coq using
machine integers and Hoare logic [Affeldt and Marti, 2006]



Other Applications of Proof-assistants to
Software Security

I Proof-carrying code [Hamid et al., 2002]

I Mobile code sent with its safety proof

I Security protocols [Paulson, 1998]

I Inductive proofs in the Isabelle proof assistant

I Internet applications

I Mail server using a Coq implementation of
the π-calculus and temporal logic [Affeldt et al., 2005]



Model-checking

I The system is represented by a transition system, i.e.,
a directed graph where:

I Nodes represent states
I Edges represent changes of states

I Verification is done by exploring the transition system

I The transition system should be finite
(not necessarily the model)

I Execution paths can be infinite (cycles)

I Mainly two families of specifications:

1. State properties: reachability of a particular state
2. Path properties: feasible of particular executions



Verification of State Properties

Example of state properties:

I Deadlocks (absence of successors)

I Satisfaction/violation of assertions

Reachable(Init) ∩ Bad = ∅



Specification of Path Properties

Path properties are better expressed with temporal logics

I A path is a sequence of states:

0 1 2 3 4 5 6

I Sample path properties

I Stability: “There will be a state from which ϕ is always true.”

0 1 2 3
ϕ

4
ϕ

5
ϕ

6
ϕ

Linear Temporal Logic (LTL) notation: ♦�ϕ

I Response:
”Always, whenever there is a request, there will be eventually a reply.”

0 1 2 3 4 5 6
Request Request Reply

LTL notation: �(Request → ♦Reply)



Application to Software Security
Example

A simple client-server application:

I The server serves up-to-date files

I The client wants the latest version

We want to verify that:

I After a session, the client has an up-to-date file

I LTL notation: �♦(client version = server version)

For concreteness, we will use the Spin model-checker



Overview of the Basic Model

In Spin, transition systems are written
using concurrent processes, communicating via channels

/********************
global definitions

********************/
typedef Message {
int file_version;
mtype signature

}

mtype = { client_key, server_key }

chan server_chan =
[0] of { Message, chan };

int client_version = 100;
int server_version = 102;

/*********************
processes skeletons

*********************/
proctype client () {
/* next slides */

}

proctype server (int version_number) {
/* next slides */

}

init {
run client ();
run server (server_version)

}

/********************
property to verify

********************/
[] (<> (client_version == server_version))



Model of the Client

Promela code:

proctype client () {

/* request construction */
Message req;
req.file_version = client_version;
req.signature = client_key;

/* request to the server */
chan reply_server = [0] of { Message };
server_chan ! req, reply_server;

/* response from the server */
Message res;
reply_server ? res;

/* signature and version checks */
assert (res.signature == server_key);
assert (res.file_version >= client_version);
client_version = res.file_version

}

Transition system:

line 16 

line 17 

line 20 

line 23 

line 25 

line 26 

line 27 

end

 -end- [(257,9)]

 server_chan!req.file_version,req.signature,reply_server [(1,2)]

 reply_server?res.file_version,res.signature [(2,3)]

 assert((res.signature==server_key))

 req.file_version = client_version

 client_version = res.file_version

 req.signature = client_key



Model of the Server

Promela code:

proctype server (int version_number) {

/* response construction */
Message res;
res.file_version = version_number;
res.signature = server_key;

/* repeatedly answers response */
Message req;
chan reply;
do
:: server_chan ? req, reply; reply ! res
od

}

Transition system:

line 32 

line 37 

line 38 

 reply!res.file_version,res.signature [(3,2)]

 server_chan?req.file_version,req.signature,reply [(1,3)]

 res.file_version = version_number



Verification of the Property for the Basic Model

I The property also can be represented as a transition system:

/********************
property to verify

********************/
[] (<> (client_version == server_version))

→

never { /* !([] <> p) */
T0_init:
if
:: (! ((p))) -> goto accept_S4
:: (1) -> goto T0_init
fi;

accept_S4:
if
:: (! ((p))) -> goto accept_S4
fi;

}

I The resulting transition system loops as long as p is false

I Transition systems can be composed into a global one
(product of automata)

I Verification amounts to look for a cycle in the global system



Model of the DNS

Usually, internet connections rely on a DNS:
/******************

model of the DNS
******************/

chan server_chan = [0] of { Message, chan };
chan dns_chan = [0] of { mtype, chan }

mtype = { server_ip }

proctype dns () {
mtype ip;
chan reply;
do
:: dns_chan ? ip, reply; reply ! server_chan
od

}

Corresponding change in the client model:

/* request to the server */
chan reply_server = [0] of { Message };
server_chan ! req, reply_server;

→

/* internet connection */
chan socket = [0] of { Message, chan };
chan reply_dns = [0] of { chan };
dns_chan ! server_ip, reply_dns;
reply_dns ? socket;

/* request to the server */
chan reply_server = [0] of { Message };
socket ! req, reply_server;



An Attack found by Model-checking

A spoofed DNS can invalidate �♦(client version = server version):

/************************
model of a spoofed DNS

************************/
chan server_chan = [0] of { Message, chan };
chan bad_server_chan = [0] of { Message, chan };
chan dns_chan = [0] of { mtype, chan }

mtype = { server_ip, bad_server_ip }

proctype dns () {
mtype ip;
chan reply;
do
:: dns_chan ? ip, reply;
if
:: true -> reply ! server_chan
:: true -> reply ! bad_server_chan
fi

od
}

Counter-example:

⇒ The application is vulnerable to replay attacks
It is possible to enforce a downgrade despite encryption



Applications to Software Security

We have applied model-checking to verification of:

I An existing web-application

I An embedded operating system [Marti et al., 2006]

BTW, verification of crytographic protocols are carried out similarly



Conclusion

In this talk, we had:

I An introduction to formal verification

I Proof-assistants

I Model-checking

I Application to software security

I Memory management in C

I Implementation of cryptographic devices

I Verification of internet applications

The slides and the examples are available at

http://staff.aist.go.jp/reynald.affeldt/isss2006/.

http://staff.aist.go.jp/reynald.affeldt/isss2006/
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