Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (4794 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (227 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (43 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1583 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (66 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1666 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (47 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (8 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (84 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (16 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (356 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (6 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (663 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (29 entries)

Global Index

A

Abelian [section, in Infotheo.Rbigop]
Abelian.op [variable, in Infotheo.Rbigop]
_ * _ [notation, in Infotheo.Rbigop]
*%M [notation, in Infotheo.Rbigop]
AboutCasts [section, in Infotheo.linearcode]
AboutCasts.R [variable, in Infotheo.linearcode]
'M_ ( _ , _ ) (type_scope) [notation, in Infotheo.linearcode]
AboutCasts2 [section, in Infotheo.linearcode]
AboutCasts2.F [variable, in Infotheo.linearcode]
AboutFinSet [section, in Infotheo.linearcode]
AboutFinSet.A [variable, in Infotheo.linearcode]
AboutF2 [section, in Infotheo.f2]
AboutPermPid [section, in Infotheo.ssralg_ext]
AboutPermPid.R [variable, in Infotheo.ssralg_ext]
AboutPoly [section, in Infotheo.poly_ext]
AboutPoly.R [variable, in Infotheo.poly_ext]
AboutRank [section, in Infotheo.ssralg_ext]
AboutRank.F [variable, in Infotheo.ssralg_ext]
AboutRingType [section, in Infotheo.ssralg_ext]
AboutRingType.F [variable, in Infotheo.ssralg_ext]
AboutRowTuple [section, in Infotheo.ssralg_ext]
AboutRowTuple.A [variable, in Infotheo.ssralg_ext]
AboutRowTuple.B [variable, in Infotheo.ssralg_ext]
acyclic [definition, in Infotheo.subgraph_partition]
acyclic_equiv [lemma, in Infotheo.subgraph_partition]
acyclic_tanner_rel.Hacyclic [variable, in Infotheo.tanner_partition]
`F( _ , _ ) [notation, in Infotheo.tanner_partition]
`V( _ , _ ) [notation, in Infotheo.tanner_partition]
`F [notation, in Infotheo.tanner_partition]
`V [notation, in Infotheo.tanner_partition]
acyclic_tanner_rel.H [variable, in Infotheo.tanner_partition]
acyclic_tanner_rel.n [variable, in Infotheo.tanner_partition]
acyclic_tanner_rel.m [variable, in Infotheo.tanner_partition]
acyclic_tanner_rel [section, in Infotheo.tanner_partition]
acyclic' [definition, in Infotheo.subgraph_partition]
addb_seq_map [lemma, in Infotheo.hamming]
addb_seq_cat [lemma, in Infotheo.hamming]
addb_tri_ine [lemma, in Infotheo.hamming]
addb_seq_com [lemma, in Infotheo.hamming]
addb_seq [definition, in Infotheo.hamming]
addb_nseq [lemma, in Infotheo.hamming]
additive_syndrome [lemma, in Infotheo.linearcode]
addRA [lemma, in Infotheo.Rssr]
addRC [lemma, in Infotheo.Rssr]
addR_addoid [definition, in Infotheo.Rbigop]
addR_comoid [definition, in Infotheo.Rbigop]
addR_monoid [definition, in Infotheo.Rbigop]
addR0 [definition, in Infotheo.Rssr]
add_rv [definition, in Infotheo.proba]
add0R [definition, in Infotheo.Rssr]
aep [lemma, in Infotheo.aep]
AEP [section, in Infotheo.aep]
aep [library]
aep_bound_decreasing [lemma, in Infotheo.aep]
aep_bound_pos [lemma, in Infotheo.aep]
aep_bound [definition, in Infotheo.aep]
aep_k0_constant.P [variable, in Infotheo.aep]
aep_k0_constant.A [variable, in Infotheo.aep]
aep_k0_constant [section, in Infotheo.aep]
aep_sigma2_pos [lemma, in Infotheo.aep]
aep_sigma2 [definition, in Infotheo.aep]
AEP.A [variable, in Infotheo.aep]
AEP.epsilon [variable, in Infotheo.aep]
AEP.Hepsilon [variable, in Infotheo.aep]
AEP.n [variable, in Infotheo.aep]
AEP.P [variable, in Infotheo.aep]
Algo [section, in Infotheo.ldpc_algo]
AlgoProof [section, in Infotheo.ldpc_algo_proof]
AlgoProof.alpha' [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.B [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.beta' [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.C [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.C_not_empty [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.d [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.H [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.Hvb [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.id' [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.m [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.n [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.n' [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.p01 [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.rW [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.tanner_connected [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.tanner_acyclic [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.tn_tree' [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.vb [variable, in Infotheo.ldpc_algo_proof]
AlgoProof.W [variable, in Infotheo.ldpc_algo_proof]
`F [notation, in Infotheo.ldpc_algo_proof]
`F( _ , _ ) [notation, in Infotheo.ldpc_algo_proof]
`V [notation, in Infotheo.ldpc_algo_proof]
`V( _ , _ ) [notation, in Infotheo.ldpc_algo_proof]
Algo.id [variable, in Infotheo.ldpc_algo]
Algo.tn_tree' [variable, in Infotheo.ldpc_algo]
all_stopsets_in_erasure_idx_in_SumProdBEC [lemma, in Infotheo.stopping_set]
all_sort [lemma, in Infotheo.arg_rmax]
alpha [definition, in Infotheo.ldpc]
alpha [definition, in Infotheo.ldpc_algo]
alphal [definition, in Infotheo.stopping_set]
alphal_blank [lemma, in Infotheo.stopping_set]
alphal_iter [lemma, in Infotheo.stopping_set]
alphal_stable [lemma, in Infotheo.stopping_set]
alphas [definition, in Infotheo.bch]
alpha_fun [definition, in Infotheo.ldpc]
alpha_two_successors [lemma, in Infotheo.ldpc]
alpha_one_successor [lemma, in Infotheo.ldpc]
alpha_inva [lemma, in Infotheo.ldpc]
alpha_beta_sect.y [variable, in Infotheo.ldpc]
alpha_beta_sect.W [variable, in Infotheo.ldpc]
alpha_beta_sect.B [variable, in Infotheo.ldpc]
`F( _ , _ ) [notation, in Infotheo.ldpc]
`V( _ , _ ) [notation, in Infotheo.ldpc]
`F [notation, in Infotheo.ldpc]
`V [notation, in Infotheo.ldpc]
alpha_beta_sect.H [variable, in Infotheo.ldpc]
alpha_beta_sect.n [variable, in Infotheo.ldpc]
alpha_beta_sect.n' [variable, in Infotheo.ldpc]
alpha_beta_sect.m [variable, in Infotheo.ldpc]
alpha_beta_sect [section, in Infotheo.ldpc]
alpha_beta_tag_of_id [lemma, in Infotheo.ldpc_algo_proof]
alpha_comoid [definition, in Infotheo.ldpc_algo_proof]
alpha_monoid [definition, in Infotheo.ldpc_algo_proof]
alpha_com_law [definition, in Infotheo.ldpc_algo_proof]
alpha_law [definition, in Infotheo.ldpc_algo_proof]
alpha_opC [lemma, in Infotheo.ldpc_algo_proof]
alpha_opA [lemma, in Infotheo.ldpc_algo_proof]
alpha_def [lemma, in Infotheo.ldpc_algo_proof]
alpha_def_sub [lemma, in Infotheo.ldpc_algo_proof]
alpha_star_c [lemma, in Infotheo.stopping_set]
alpha_star_c_S [lemma, in Infotheo.stopping_set]
alpha_star_c_0 [lemma, in Infotheo.stopping_set]
alpha_beta [definition, in Infotheo.stopping_set]
alpha_non_trivial [definition, in Infotheo.cyclic_decoding]
alpha_beta [definition, in Infotheo.ldpc_algo]
alpha_op [definition, in Infotheo.ldpc_algo]
alpha0 [definition, in Infotheo.ldpc_erasure]
alt_ham_detect_ub [lemma, in Infotheo.hamming_code]
alt_ham_detect [definition, in Infotheo.hamming_code]
another_Fgraph_injective [lemma, in Infotheo.tanner_partition]
Anot0 [lemma, in Infotheo.success_decode_bound]
antisymmetric_le_rank [lemma, in Infotheo.ssr_ext]
apply_seqs_but1 [lemma, in Infotheo.ldpc_algo_proof]
apply_seq [definition, in Infotheo.ldpc_algo]
approx [definition, in Infotheo.ldpc_erasure]
approx_alpha0 [lemma, in Infotheo.ldpc_erasure]
approx_Sum_Prod [lemma, in Infotheo.ldpc_erasure]
arg_rmax2 [lemma, in Infotheo.arg_rmax]
arg_rmaxP [lemma, in Infotheo.arg_rmax]
arg_rmax [definition, in Infotheo.arg_rmax]
arg_maxordP [lemma, in Infotheo.arg_rmax]
arg_maxord [definition, in Infotheo.arg_rmax]
arg_minordP [lemma, in Infotheo.arg_rmax]
arg_minord [definition, in Infotheo.arg_rmax]
arg_rmax [library]
a_exp_inj [lemma, in Infotheo.cyclic_decoding]
a_exp_inj_helper [lemma, in Infotheo.cyclic_decoding]


B

BCH [definition, in Infotheo.bch]
bch [library]
BCH_linear [definition, in Infotheo.bch]
BCH_cyclic.t [variable, in Infotheo.bch]
BCH_cyclic.a [variable, in Infotheo.bch]
BCH_cyclic.n [variable, in Infotheo.bch]
BCH_cyclic.F [variable, in Infotheo.bch]
BCH_cyclic [section, in Infotheo.bch]
BCH_PCM [definition, in Infotheo.bch]
BCH_def.t_n [variable, in Infotheo.bch]
BCH_def.t [variable, in Infotheo.bch]
BCH_def.nonzero_alphas [variable, in Infotheo.bch]
BCH_def.uniq_alphas [variable, in Infotheo.bch]
BCH_def.alphas [variable, in Infotheo.bch]
BCH_def.n [variable, in Infotheo.bch]
BCH_def.F [variable, in Infotheo.bch]
BCH_def [section, in Infotheo.bch]
BDDecoding_m.encode_decode [projection, in Infotheo.mceliece]
BDDecoding_m.Hbdd_err_cor [projection, in Infotheo.mceliece]
BDDecoding_m.bdd_err_cor [projection, in Infotheo.mceliece]
BDDecoding_m.decoding [record, in Infotheo.mceliece]
BDDecoding_m.Decoding [constructor, in Infotheo.mceliece]
BDDecoding_m [module, in Infotheo.mceliece]
bdist [definition, in Infotheo.proba]
bdist_sect.Hp [variable, in Infotheo.proba]
bdist_sect.p [variable, in Infotheo.proba]
bdist_sect.HA [variable, in Infotheo.proba]
bdist_sect.A [variable, in Infotheo.proba]
bdist_sect [section, in Infotheo.proba]
BEC_receivable [definition, in Infotheo.ldpc_erasure]
behead_zip [lemma, in Infotheo.ssr_ext]
beta [definition, in Infotheo.ldpc]
beta [definition, in Infotheo.ldpc_algo]
betal [definition, in Infotheo.stopping_set]
betal_star_inv3 [lemma, in Infotheo.stopping_set]
betal_star_inv2 [lemma, in Infotheo.stopping_set]
betal_star_inv [lemma, in Infotheo.stopping_set]
beta_fun [definition, in Infotheo.ldpc]
beta_one_successor [lemma, in Infotheo.ldpc]
beta_inva [lemma, in Infotheo.ldpc]
beta_inva_helper [lemma, in Infotheo.ldpc]
beta_comoid [definition, in Infotheo.ldpc_algo_proof]
beta_monoid [definition, in Infotheo.ldpc_algo_proof]
beta_com_law [definition, in Infotheo.ldpc_algo_proof]
beta_law [definition, in Infotheo.ldpc_algo_proof]
beta_right_id [lemma, in Infotheo.ldpc_algo_proof]
beta_left_id [lemma, in Infotheo.ldpc_algo_proof]
beta_opC [lemma, in Infotheo.ldpc_algo_proof]
beta_opA [lemma, in Infotheo.ldpc_algo_proof]
beta_def [lemma, in Infotheo.ldpc_algo_proof]
beta_star_c [lemma, in Infotheo.stopping_set]
beta_op [definition, in Infotheo.ldpc_algo]
beta0 [definition, in Infotheo.stopping_set]
beta0_blank_star [lemma, in Infotheo.stopping_set]
bigcup_succ_set0 [lemma, in Infotheo.tanner]
bigcup_set0 [lemma, in Infotheo.tanner]
bigcup_Fgraph_set0 [lemma, in Infotheo.tanner]
bigminn_min [lemma, in Infotheo.Rbigop_max]
bigrmax_max [lemma, in Infotheo.Rbigop_max]
bigrmax_max_seq [lemma, in Infotheo.Rbigop_max]
bigrmax_eqi [lemma, in Infotheo.Rbigop_max]
bigrmax_perm [lemma, in Infotheo.Rbigop_max]
bigrmax_cat [lemma, in Infotheo.Rbigop_max]
bigrmax_undup [lemma, in Infotheo.Rbigop_max]
bigrmax_sect.s [variable, in Infotheo.Rbigop_max]
bigrmax_sect.F [variable, in Infotheo.Rbigop_max]
bigrmax_sect.A [variable, in Infotheo.Rbigop_max]
bigrmax_sect [section, in Infotheo.Rbigop_max]
big_beta_mul [lemma, in Infotheo.ldpc_algo_proof]
big_beta [lemma, in Infotheo.ldpc_algo_proof]
big_alpha [lemma, in Infotheo.ldpc_algo_proof]
big_enum_in [definition, in Infotheo.degree_profile]
big_enum_in_cond [lemma, in Infotheo.degree_profile]
big_enum_in_nocond [lemma, in Infotheo.degree_profile]
big_rmax_bigminn_vec [lemma, in Infotheo.Rbigop_max]
big_rmax_bigminn_helper_vec [lemma, in Infotheo.Rbigop_max]
big_rmax_bigminn [lemma, in Infotheo.Rbigop_max]
big_rmax_bigminn_helper [lemma, in Infotheo.Rbigop_max]
big_cat_tuple_seq [lemma, in Infotheo.channel_coding_direct]
big_cat_tuple [lemma, in Infotheo.channel_coding_direct]
big_head_behead_tuple [lemma, in Infotheo.channel_coding_direct]
big_head_behead_P_tuple [lemma, in Infotheo.channel_coding_direct]
big_tcast [lemma, in Infotheo.Rbigop]
big_head_behead [lemma, in Infotheo.Rbigop]
big_head_behead_P [lemma, in Infotheo.Rbigop]
big_head_rbehead_P_set [lemma, in Infotheo.Rbigop]
big_head_big_behead [lemma, in Infotheo.Rbigop]
big_head_rbehead [lemma, in Infotheo.Rbigop]
big_singl_tuple [lemma, in Infotheo.Rbigop]
big_sums_tuples.A [variable, in Infotheo.Rbigop]
big_sums_tuples [section, in Infotheo.Rbigop]
big_singl_rV [lemma, in Infotheo.Rbigop]
big_sums_rV2.A [variable, in Infotheo.Rbigop]
big_sums_rV2 [section, in Infotheo.Rbigop]
big_sums_rV.A [variable, in Infotheo.Rbigop]
big_sums_rV [section, in Infotheo.Rbigop]
big_sum_rV [section, in Infotheo.Rbigop]
big_sums_prods.B [variable, in Infotheo.Rbigop]
big_sums_prods.A [variable, in Infotheo.Rbigop]
big_sums_prods [section, in Infotheo.Rbigop]
big_Rabs [lemma, in Infotheo.Rbigop]
binary_rsum_1 [lemma, in Infotheo.ldpc]
binary_entropy_function [library]
binary_symmetric_channel [library]
binomial_theorem [lemma, in Infotheo.hamming]
BinPos_nat_of_P_nat_of_pos [lemma, in Infotheo.natbin]
bin_ent_1eq0 [lemma, in Infotheo.binary_entropy_function]
bin_ent_0eq0 [lemma, in Infotheo.binary_entropy_function]
bin_of_nat_rev7 [lemma, in Infotheo.natbin]
bin_of_nat_7 [lemma, in Infotheo.natbin]
bin_of_nat_two_pow [lemma, in Infotheo.natbin]
bin_of_nat_nat_of_pos_not_0 [lemma, in Infotheo.ssr_ext]
bin_of_nat_inj [lemma, in Infotheo.ssr_ext]
bin2nat_rVK [lemma, in Infotheo.hamming]
bin2nat_rV_ord0 [lemma, in Infotheo.hamming]
bin2nat_rV_tr [lemma, in Infotheo.hamming]
bin2nat_cV_0 [lemma, in Infotheo.hamming]
bin2nat_cV [definition, in Infotheo.hamming]
bin2nat_rV_inv_0 [lemma, in Infotheo.hamming]
bin2nat_rV_0 [lemma, in Infotheo.hamming]
bin2nat_rV_up [lemma, in Infotheo.hamming]
bin2nat_rV [definition, in Infotheo.hamming]
bipart [definition, in Infotheo.partition_inequality]
bipartite_cycle_even [lemma, in Infotheo.subgraph_partition]
bipart_lem.Q_A [variable, in Infotheo.partition_inequality]
bipart_lem.P_A [variable, in Infotheo.partition_inequality]
bipart_lem.P_dom_by_Q [variable, in Infotheo.partition_inequality]
bipart_lem.Q [variable, in Infotheo.partition_inequality]
bipart_lem.P [variable, in Infotheo.partition_inequality]
bipart_lem.cov [variable, in Infotheo.partition_inequality]
bipart_lem.dis [variable, in Infotheo.partition_inequality]
bipart_lem.A_ [variable, in Infotheo.partition_inequality]
bipart_lem.A [variable, in Infotheo.partition_inequality]
bipart_lem [section, in Infotheo.partition_inequality]
bipart_pmf [definition, in Infotheo.partition_inequality]
bipart_sect.P [variable, in Infotheo.partition_inequality]
bipart_sect.cov [variable, in Infotheo.partition_inequality]
bipart_sect.dis [variable, in Infotheo.partition_inequality]
bipart_sect.A_ [variable, in Infotheo.partition_inequality]
bipart_sect.A [variable, in Infotheo.partition_inequality]
bipart_sect [section, in Infotheo.partition_inequality]
bitseq_F2col [definition, in Infotheo.ssralg_ext]
bitseq_F2row [definition, in Infotheo.ssralg_ext]
bitseq_to_col [definition, in Infotheo.ssralg_ext]
bitseq_to_rowK [lemma, in Infotheo.ssralg_ext]
bitseq_to_row [definition, in Infotheo.ssralg_ext]
bitseq2N [definition, in Infotheo.natbin]
bitseq2NK [lemma, in Infotheo.natbin]
bitseq2N_nat2bin [lemma, in Infotheo.natbin]
bitseq2N_0 [lemma, in Infotheo.natbin]
bitseq2N_true [lemma, in Infotheo.natbin]
bitseq2N_up [lemma, in Infotheo.natbin]
bitseq2N_nseq_false [lemma, in Infotheo.natbin]
bitseq2N_false [lemma, in Infotheo.natbin]
bitseq2positive [definition, in Infotheo.natbin]
bitseq2positive_nseq_false [lemma, in Infotheo.natbin]
bitseq2positive_up [lemma, in Infotheo.natbin]
blank [definition, in Infotheo.ldpc_erasure]
blank_to_star [definition, in Infotheo.ldpc_erasure]
bool_of_F2_add_xor [lemma, in Infotheo.f2]
bool_of_F2K [lemma, in Infotheo.f2]
bool_of_F2 [definition, in Infotheo.f2]
bool_of_kind [definition, in Infotheo.ldpc_algo]
bound_card_jtype [lemma, in Infotheo.jtypes]
BSC [module, in Infotheo.binary_symmetric_channel]
bsc_post [lemma, in Infotheo.ldpc]
bsc_prob_prop [lemma, in Infotheo.decoding]
BSC_capacity [lemma, in Infotheo.binary_symmetric_channel]
bsc_capacity_theorem.p_01 [variable, in Infotheo.binary_symmetric_channel]
bsc_capacity_theorem.p_01' [variable, in Infotheo.binary_symmetric_channel]
bsc_capacity_theorem.p [variable, in Infotheo.binary_symmetric_channel]
bsc_capacity_theorem.card_A [variable, in Infotheo.binary_symmetric_channel]
bsc_capacity_theorem.A [variable, in Infotheo.binary_symmetric_channel]
bsc_capacity_theorem [section, in Infotheo.binary_symmetric_channel]
bsc_out_H_half' [lemma, in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.p_01 [variable, in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.p_01' [variable, in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.p [variable, in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.P [variable, in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.card_A [variable, in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.A [variable, in Infotheo.binary_symmetric_channel]
bsc_capacity_proof [section, in Infotheo.binary_symmetric_channel]
BSC.BSC_sect.p_01 [variable, in Infotheo.binary_symmetric_channel]
BSC.BSC_sect.p [variable, in Infotheo.binary_symmetric_channel]
BSC.BSC_sect.card_A [variable, in Infotheo.binary_symmetric_channel]
BSC.BSC_sect.A [variable, in Infotheo.binary_symmetric_channel]
BSC.BSC_sect [section, in Infotheo.binary_symmetric_channel]
BSC.c [definition, in Infotheo.binary_symmetric_channel]
BSC.f [definition, in Infotheo.binary_symmetric_channel]
BSC.f0 [lemma, in Infotheo.binary_symmetric_channel]
BSC.f1 [lemma, in Infotheo.binary_symmetric_channel]
BuildTree [section, in Infotheo.ldpc_algo]
BuildTreeOk [section, in Infotheo.ldpc_algo_proof]
BuildTreeOk.H [variable, in Infotheo.ldpc_algo_proof]
BuildTreeOk.id' [variable, in Infotheo.ldpc_algo_proof]
BuildTreeOk.m [variable, in Infotheo.ldpc_algo_proof]
BuildTreeOk.n [variable, in Infotheo.ldpc_algo_proof]
BuildTreeOk.rW [variable, in Infotheo.ldpc_algo_proof]
BuildTreeOk.tanner_connected [variable, in Infotheo.ldpc_algo_proof]
BuildTreeOk.tanner_acyclic [variable, in Infotheo.ldpc_algo_proof]
BuildTreeTest [section, in Infotheo.ldpc_algo_proof]
BuildTreeTest.F [variable, in Infotheo.ldpc_algo_proof]
BuildTreeTest.H [variable, in Infotheo.ldpc_algo_proof]
BuildTreeTest.id' [variable, in Infotheo.ldpc_algo_proof]
BuildTreeTest.m [variable, in Infotheo.ldpc_algo_proof]
BuildTreeTest.n [variable, in Infotheo.ldpc_algo_proof]
BuildTreeTest.rW [variable, in Infotheo.ldpc_algo_proof]
BuildTree.H [variable, in Infotheo.ldpc_algo]
BuildTree.m [variable, in Infotheo.ldpc_algo]
BuildTree.n [variable, in Infotheo.ldpc_algo]
BuildTree.n' [variable, in Infotheo.ldpc_algo]
BuildTree.rW [variable, in Infotheo.ldpc_algo]
build_computed_tree [abbreviation, in Infotheo.ldpc_algo_proof]
build_tree_ok [lemma, in Infotheo.ldpc_algo_proof]
build_tree_full [lemma, in Infotheo.ldpc_algo_proof]
build_tree_rec_full [lemma, in Infotheo.ldpc_algo_proof]
build_tree_rec_ok [lemma, in Infotheo.ldpc_algo_proof]
build_tree_rec_sound [lemma, in Infotheo.ldpc_algo_proof]
build_computed_tree [definition, in Infotheo.ldpc_algo]
build_tree [definition, in Infotheo.ldpc_algo]
build_tree_rec [definition, in Infotheo.ldpc_algo]


C

cal_E [definition, in Infotheo.channel_coding_direct]
cancel_on [definition, in Infotheo.linearcode]
cansort [section, in Infotheo.num_occ]
cansort.A [variable, in Infotheo.num_occ]
cansort.n [variable, in Infotheo.num_occ]
cansort.order_surgery.ta_cansorted [variable, in Infotheo.num_occ]
cansort.order_surgery [section, in Infotheo.num_occ]
cansort.ta [variable, in Infotheo.num_occ]
capacity [definition, in Infotheo.channel]
capacity_uniq [lemma, in Infotheo.channel]
capacity_definition.B [variable, in Infotheo.channel]
capacity_definition.A [variable, in Infotheo.channel]
capacity_definition [section, in Infotheo.channel]
cardEP [lemma, in Infotheo.degree_profile]
cardsCp [lemma, in Infotheo.degree_profile]
cardsltn1P [lemma, in Infotheo.ssr_ext]
card_shelled_tuples [lemma, in Infotheo.jtypes]
card_perm_shell.Bnot0 [variable, in Infotheo.jtypes]
card_perm_shell.Vctyp [variable, in Infotheo.jtypes]
card_perm_shell.Hta [variable, in Infotheo.jtypes]
card_perm_shell.V [variable, in Infotheo.jtypes]
card_perm_shell.ta [variable, in Infotheo.jtypes]
card_perm_shell.P [variable, in Infotheo.jtypes]
card_perm_shell.n [variable, in Infotheo.jtypes]
card_perm_shell.n' [variable, in Infotheo.jtypes]
card_perm_shell.B [variable, in Infotheo.jtypes]
card_perm_shell.A [variable, in Infotheo.jtypes]
card_perm_shell [section, in Infotheo.jtypes]
card_nu [lemma, in Infotheo.jtypes]
card_shell_leq_exp_entropy [lemma, in Infotheo.jtypes]
card_shell_ub.Bnot0 [variable, in Infotheo.jtypes]
card_shell_ub.ta_sorted [variable, in Infotheo.jtypes]
card_shell_ub.Vctyp [variable, in Infotheo.jtypes]
card_shell_ub.Hta [variable, in Infotheo.jtypes]
card_shell_ub.ta [variable, in Infotheo.jtypes]
card_shell_ub.P [variable, in Infotheo.jtypes]
card_shell_ub.V [variable, in Infotheo.jtypes]
card_shell_ub.n [variable, in Infotheo.jtypes]
card_shell_ub.n' [variable, in Infotheo.jtypes]
card_shell_ub.B [variable, in Infotheo.jtypes]
card_shell_ub.A [variable, in Infotheo.jtypes]
card_shell_ub [section, in Infotheo.jtypes]
card_shelled_tuples_leq_prod_card [lemma, in Infotheo.jtypes]
card_type_of_row [definition, in Infotheo.jtypes]
card_take_shell0 [lemma, in Infotheo.jtypes]
card_take_shell [lemma, in Infotheo.jtypes]
card_take_shell_incl [lemma, in Infotheo.jtypes]
card_take_shell_incl0 [lemma, in Infotheo.jtypes]
card_shelled_tuples_perm [lemma, in Infotheo.jtypes]
card_uniq_seq_decr [lemma, in Infotheo.ldpc_algo_proof]
card_typed_tuples_alt [lemma, in Infotheo.types]
card_typed_tuples [lemma, in Infotheo.types]
card_dHC [lemma, in Infotheo.hamming]
card_dH_vec [lemma, in Infotheo.hamming]
card_dH [lemma, in Infotheo.hamming]
card_Psets [lemma, in Infotheo.max_subset]
castmx_cols_mulmx2 [lemma, in Infotheo.linearcode]
castmx_cols_mulmx [lemma, in Infotheo.linearcode]
cast_rows [definition, in Infotheo.linearcode]
cast_cols [definition, in Infotheo.linearcode]
cast_rv [definition, in Infotheo.proba]
cdiv [definition, in Infotheo.conditional_divergence]
cdiv_spec.W [variable, in Infotheo.conditional_divergence]
cdiv_spec.V [variable, in Infotheo.conditional_divergence]
cdiv_spec.P [variable, in Infotheo.conditional_divergence]
cdiv_spec.n [variable, in Infotheo.conditional_divergence]
cdiv_spec.B [variable, in Infotheo.conditional_divergence]
cdiv_spec.A [variable, in Infotheo.conditional_divergence]
cdiv_spec [section, in Infotheo.conditional_divergence]
cdiv_is_div_joint_dist [lemma, in Infotheo.conditional_divergence]
cdom_by [definition, in Infotheo.conditional_divergence]
channel [library]
channel_coding [lemma, in Infotheo.channel_coding_direct]
channel_coding_theorem.Hc [variable, in Infotheo.channel_coding_direct]
channel_coding_theorem.cap [variable, in Infotheo.channel_coding_direct]
channel_coding_theorem.W [variable, in Infotheo.channel_coding_direct]
channel_coding_theorem.B [variable, in Infotheo.channel_coding_direct]
channel_coding_theorem.A [variable, in Infotheo.channel_coding_direct]
channel_coding_theorem [section, in Infotheo.channel_coding_direct]
channel_coding_converse [lemma, in Infotheo.channel_coding_converse]
channel_coding_converse.minRate_cap [variable, in Infotheo.channel_coding_converse]
channel_coding_converse.minRate [variable, in Infotheo.channel_coding_converse]
channel_coding_converse.eps_gt0 [variable, in Infotheo.channel_coding_converse]
channel_coding_converse.epsilon [variable, in Infotheo.channel_coding_converse]
channel_coding_converse.w_cap [variable, in Infotheo.channel_coding_converse]
channel_coding_converse.cap [variable, in Infotheo.channel_coding_converse]
channel_coding_converse.W [variable, in Infotheo.channel_coding_converse]
channel_coding_converse.B [variable, in Infotheo.channel_coding_converse]
channel_coding_converse.A [variable, in Infotheo.channel_coding_converse]
channel_coding_converse [section, in Infotheo.channel_coding_converse]
channel_coding_converse_gen [lemma, in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.Bnot0 [variable, in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.Anot0 [variable, in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.HminRate [variable, in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.minRate [variable, in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.Hc [variable, in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.cap [variable, in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.W [variable, in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.B [variable, in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.A [variable, in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma [section, in Infotheo.channel_coding_converse]
channel_coding_direct [library]
channel_code [library]
channel_coding_converse [library]
Channel1 [module, in Infotheo.channel]
Channel1.c [projection, in Infotheo.channel]
`Ch_1* [notation, in Infotheo.channel]
`Ch_1 [notation, in Infotheo.channel]
Channel1.Channel1_sect.B [variable, in Infotheo.channel]
Channel1.Channel1_sect.A [variable, in Infotheo.channel]
Channel1.Channel1_sect [section, in Infotheo.channel]
Channel1.chan_star_eq [lemma, in Infotheo.channel]
Channel1.chan_star [record, in Infotheo.channel]
Channel1.input_not_0 [projection, in Infotheo.channel]
Channel1.mkChan [constructor, in Infotheo.channel]
chan_of_jtype [definition, in Infotheo.jtypes]
chan_star_coercion [definition, in Infotheo.channel]
characterization_of_error_vector.a_nontrivial [variable, in Infotheo.cyclic_decoding]
characterization_of_error_vector.a_neq0 [variable, in Infotheo.cyclic_decoding]
characterization_of_error_vector.t [variable, in Infotheo.cyclic_decoding]
characterization_of_error_vector.e [variable, in Infotheo.cyclic_decoding]
characterization_of_error_vector.n [variable, in Infotheo.cyclic_decoding]
characterization_of_error_vector.a [variable, in Infotheo.cyclic_decoding]
characterization_of_error_vector.F [variable, in Infotheo.cyclic_decoding]
characterization_of_error_vector [section, in Infotheo.cyclic_decoding]
charac_bdist [lemma, in Infotheo.proba]
charac_bdist_sect.card_A [variable, in Infotheo.proba]
charac_bdist_sect.Q [variable, in Infotheo.proba]
charac_bdist_sect.P [variable, in Infotheo.proba]
charac_bdist_sect.A [variable, in Infotheo.proba]
charac_bdist_sect [section, in Infotheo.proba]
chebyshev [section, in Infotheo.proba]
chebyshev_inequality [lemma, in Infotheo.proba]
chebyshev.A [variable, in Infotheo.proba]
chebyshev.X [variable, in Infotheo.proba]
checksum [library]
children [projection, in Infotheo.ldpc_algo]
children_ind [lemma, in Infotheo.ldpc_algo_proof]
classify_big [lemma, in Infotheo.Rbigop]
closed [lemma, in Infotheo.binary_symmetric_channel]
code [record, in Infotheo.channel_code]
CodeErrRate [definition, in Infotheo.channel_code]
CodeRate [definition, in Infotheo.channel_code]
CodeRateType [record, in Infotheo.channel_code]
codeword_of_weight_3 [lemma, in Infotheo.hamming_code]
codeword_lowest_deg [definition, in Infotheo.linearcode]
echa( _ , _ ) [notation, in Infotheo.channel_code]
e( _ , _ ) [notation, in Infotheo.channel_code]
code_definition.n [variable, in Infotheo.channel_code]
code_definition.M [variable, in Infotheo.channel_code]
code_definition.B [variable, in Infotheo.channel_code]
code_definition.A [variable, in Infotheo.channel_code]
code_definition [section, in Infotheo.channel_code]
code_not_set1 [lemma, in Infotheo.linearcode]
code_error_rate.sc [variable, in Infotheo.source_code]
code_error_rate.k [variable, in Infotheo.source_code]
code_error_rate.P [variable, in Infotheo.source_code]
code_error_rate.B [variable, in Infotheo.source_code]
code_error_rate.A [variable, in Infotheo.source_code]
code_error_rate [section, in Infotheo.source_code]
colorable [definition, in Infotheo.subgraph_partition]
colorable_prop [projection, in Infotheo.subgraph_partition]
colorable_kind [projection, in Infotheo.subgraph_partition]
colorable_edge [projection, in Infotheo.subgraph_partition]
colorable_graph [record, in Infotheo.subgraph_partition]
colorable_is_simple [lemma, in Infotheo.subgraph_partition]
colorable_tanner_rel [lemma, in Infotheo.tanner]
col_matrix [lemma, in Infotheo.hamming_code]
combinaison_Coq_SSR [lemma, in Infotheo.Reals_ext]
compare_big_mult [section, in Infotheo.Rbigop]
ComputationGraph [module, in Infotheo.degree_profile]
ComputationGraph.card_p [projection, in Infotheo.degree_profile]
ComputationGraph.comp_graph [record, in Infotheo.degree_profile]
ComputationGraph.comp_graph_def.hemi_comp_graph.L [variable, in Infotheo.degree_profile]
ComputationGraph.comp_graph_def.hemi_comp_graph [section, in Infotheo.degree_profile]
ComputationGraph.comp_graph_def.E [variable, in Infotheo.degree_profile]
ComputationGraph.comp_graph_def.K [variable, in Infotheo.degree_profile]
ComputationGraph.comp_graph_def [section, in Infotheo.degree_profile]
ComputationGraph.deg_p [projection, in Infotheo.degree_profile]
ComputationGraph.edges [projection, in Infotheo.degree_profile]
ComputationGraph.funnodes [projection, in Infotheo.degree_profile]
ComputationGraph.hemi_comp_graph [record, in Infotheo.degree_profile]
ComputationGraph.part [projection, in Infotheo.degree_profile]
ComputationGraph.part_p [projection, in Infotheo.degree_profile]
ComputationGraph.varnodes [projection, in Infotheo.degree_profile]
computed_tree_ok [lemma, in Infotheo.ldpc_algo_proof]
computed_tree_spec [definition, in Infotheo.ldpc_algo]
comp_rv [definition, in Infotheo.proba]
conditional_entropy_prop.P [variable, in Infotheo.channel]
conditional_entropy_prop.W [variable, in Infotheo.channel]
conditional_entropy_prop.B [variable, in Infotheo.channel]
conditional_entropy_prop.A [variable, in Infotheo.channel]
conditional_entropy_prop [section, in Infotheo.channel]
conditional_entropy.P [variable, in Infotheo.channel]
conditional_entropy.W [variable, in Infotheo.channel]
conditional_entropy.B [variable, in Infotheo.channel]
conditional_entropy.A [variable, in Infotheo.channel]
conditional_entropy [section, in Infotheo.channel]
conditional_divergence_prop.V_dom_by_W [variable, in Infotheo.conditional_divergence]
conditional_divergence_prop.P [variable, in Infotheo.conditional_divergence]
conditional_divergence_prop.W [variable, in Infotheo.conditional_divergence]
conditional_divergence_prop.V [variable, in Infotheo.conditional_divergence]
conditional_divergence_prop.B [variable, in Infotheo.conditional_divergence]
conditional_divergence_prop.A [variable, in Infotheo.conditional_divergence]
conditional_divergence_prop [section, in Infotheo.conditional_divergence]
conditional_divergence_def.P [variable, in Infotheo.conditional_divergence]
conditional_divergence_def.W [variable, in Infotheo.conditional_divergence]
conditional_divergence_def.V [variable, in Infotheo.conditional_divergence]
conditional_divergence_def.B [variable, in Infotheo.conditional_divergence]
conditional_divergence_def.A [variable, in Infotheo.conditional_divergence]
conditional_divergence_def [section, in Infotheo.conditional_divergence]
conditional_divergence [library]
condition_equivalence [lemma, in Infotheo.conditional_divergence]
condition_equivalence.P [variable, in Infotheo.conditional_divergence]
condition_equivalence.W [variable, in Infotheo.conditional_divergence]
condition_equivalence.V [variable, in Infotheo.conditional_divergence]
condition_equivalence.B [variable, in Infotheo.conditional_divergence]
condition_equivalence.A [variable, in Infotheo.conditional_divergence]
condition_equivalence [section, in Infotheo.conditional_divergence]
cond_type_equiv [lemma, in Infotheo.jtypes]
cond_type_equiv_sect.V [variable, in Infotheo.jtypes]
cond_type_equiv_sect.B [variable, in Infotheo.jtypes]
cond_type_equiv_sect.P [variable, in Infotheo.jtypes]
cond_type_equiv_sect.n [variable, in Infotheo.jtypes]
cond_type_equiv_sect.A [variable, in Infotheo.jtypes]
cond_type_equiv_sect [section, in Infotheo.jtypes]
cond_type_prop.B [variable, in Infotheo.jtypes]
cond_type_prop.P [variable, in Infotheo.jtypes]
cond_type_prop.n [variable, in Infotheo.jtypes]
cond_type_prop.A [variable, in Infotheo.jtypes]
cond_type_prop [section, in Infotheo.jtypes]
cond_type [definition, in Infotheo.jtypes]
cond_type_def.B [variable, in Infotheo.jtypes]
cond_type_def.P [variable, in Infotheo.jtypes]
cond_type_def.n [variable, in Infotheo.jtypes]
cond_type_def.A [variable, in Infotheo.jtypes]
cond_type_def [section, in Infotheo.jtypes]
cond_entropy_single_sum [lemma, in Infotheo.channel]
cond_entropy [definition, in Infotheo.channel]
connect_sym [lemma, in Infotheo.tanner_partition]
const_rv [definition, in Infotheo.proba]
cons_tuples [definition, in Infotheo.jtypes]
cons_uniq_path [lemma, in Infotheo.ldpc_algo_proof]
cons_tuple_inj [lemma, in Infotheo.degree_profile]
continue_xlnx [lemma, in Infotheo.ln_facts]
count_sumn [lemma, in Infotheo.ldpc_algo_proof]
count_map_negb [lemma, in Infotheo.num_occ]
count_true_negb [lemma, in Infotheo.num_occ]
covered_by_maxset [lemma, in Infotheo.max_subset]
covered_by [definition, in Infotheo.max_subset]
cover_shell [lemma, in Infotheo.jtypes]
cover_enc_pre_img [lemma, in Infotheo.types]
cover_sub_ver_suc_suc [lemma, in Infotheo.subgraph_partition]
cover_Vgraph_part_Vgraph [lemma, in Infotheo.tanner_partition]
cover_Fgraph_part_Fgraph [lemma, in Infotheo.tanner_partition]
cover_Vgraph_part_vnode [lemma, in Infotheo.tanner_partition]
cover_Fgraph_part_fnode [lemma, in Infotheo.tanner_partition]
cover_set_set_co_occ [lemma, in Infotheo.num_occ]
ctyp_element_ub [lemma, in Infotheo.jtypes]
curry_imset2l_dep [lemma, in Infotheo.degree_profile]
cycle_in_subtree [lemma, in Infotheo.ldpc_algo_proof]
cycle_morph [lemma, in Infotheo.degree_profile]
CyclicCode_prop_m.divides_Xn_sub_1_is_cyclic [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.divides_Xn_sub_1_is_linear [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.generator_dim [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.gen_dvd_mem [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.mem_gen_dvdp [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.divides_lowest_size [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.generator_divides_Xn_sub_1 [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.divide_codeword [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.scale_generator [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.remainder_in_code [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.shift_linearity_codeword [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.shift_codeword [lemma, in Infotheo.cyclic_code]
CyclicCode_prop_m.cycliccode.C [variable, in Infotheo.cyclic_code]
CyclicCode_prop_m.cycliccode.F [variable, in Infotheo.cyclic_code]
CyclicCode_prop_m.cycliccode.n [variable, in Infotheo.cyclic_code]
CyclicCode_prop_m.cycliccode.n' [variable, in Infotheo.cyclic_code]
CyclicCode_prop_m.cycliccode [section, in Infotheo.cyclic_code]
CyclicCode_prop_m [module, in Infotheo.cyclic_code]
CyclicCode_m.parity_check [definition, in Infotheo.cyclic_code]
CyclicCode_m.canonical_gen_lowest_size [lemma, in Infotheo.cyclic_code]
CyclicCode_m.size_canonical_gen [lemma, in Infotheo.cyclic_code]
CyclicCode_m.canonical_genP [lemma, in Infotheo.cyclic_code]
CyclicCode_m.canonical_gen [definition, in Infotheo.cyclic_code]
CyclicCode_m.size_is_gen [lemma, in Infotheo.cyclic_code]
CyclicCode_m.is_genE [lemma, in Infotheo.cyclic_code]
'gen [notation, in Infotheo.cyclic_code]
CyclicCode_m.is_gen_keyed [definition, in Infotheo.cyclic_code]
CyclicCode_m.is_gen_key [lemma, in Infotheo.cyclic_code]
CyclicCode_m.is_gen [definition, in Infotheo.cyclic_code]
CyclicCode_m.generator.C_not_trivial [variable, in Infotheo.cyclic_code]
CyclicCode_m.generator.C [variable, in Infotheo.cyclic_code]
CyclicCode_m.generator.n [variable, in Infotheo.cyclic_code]
CyclicCode_m.generator.F [variable, in Infotheo.cyclic_code]
CyclicCode_m.generator [section, in Infotheo.cyclic_code]
CyclicCode_m.cyclicP [projection, in Infotheo.cyclic_code]
CyclicCode_m.cspace [projection, in Infotheo.cyclic_code]
CyclicCode_m.cyclicCode [record, in Infotheo.cyclic_code]
CyclicCode_m.CyclicCode [constructor, in Infotheo.cyclic_code]
CyclicCode_m.rcsP [definition, in Infotheo.cyclic_code]
CyclicCode_m.cyclic_code_def.n [variable, in Infotheo.cyclic_code]
CyclicCode_m.cyclic_code_def.F [variable, in Infotheo.cyclic_code]
CyclicCode_m.cyclic_code_def [section, in Infotheo.cyclic_code]
CyclicCode_m [module, in Infotheo.cyclic_code]
cyclic_decoding [library]
cyclic_code [library]
C_not_empty [lemma, in Infotheo.hamming_code]


D

dec [projection, in Infotheo.channel_code]
dec [projection, in Infotheo.source_code]
decode [definition, in Infotheo.repcode]
decoding [library]
decomp_errloc [lemma, in Infotheo.cyclic_decoding]
decreasing_on_half_to_1 [lemma, in Infotheo.binary_entropy_function]
decT [definition, in Infotheo.channel_code]
decT [definition, in Infotheo.source_code]
def [definition, in Infotheo.types]
def_var_dist [lemma, in Infotheo.variation_dist]
degdistp [definition, in Infotheo.degree_profile]
DegreeDistribution [module, in Infotheo.degree_profile]
DegreeDistribution.Lambda [record, in Infotheo.degree_profile]
DegreeDistribution.Lambda_definition.K [variable, in Infotheo.degree_profile]
DegreeDistribution.Lambda_definition [section, in Infotheo.degree_profile]
DegreeDistribution.mkLambda [constructor, in Infotheo.degree_profile]
DegreeDistribution.p [projection, in Infotheo.degree_profile]
DegreeDistribution.psize [projection, in Infotheo.degree_profile]
DegreeDistribution.p0 [projection, in Infotheo.degree_profile]
degree_profile [library]
deg_ub_nvstop [lemma, in Infotheo.cyclic_decoding]
deg_ub_vstop [lemma, in Infotheo.cyclic_decoding]
delta [definition, in Infotheo.source_coding_fl_direct]
delta [definition, in Infotheo.checksum]
delta [definition, in Infotheo.ldpc_erasure]
delta [definition, in Infotheo.source_coding_fl_converse]
delta_set2 [lemma, in Infotheo.ldpc]
delta_add [lemma, in Infotheo.ldpc_algo_proof]
delta_in_kernel [lemma, in Infotheo.checksum]
delta_parity [lemma, in Infotheo.checksum]
'V _ [notation, in Infotheo.checksum]
delta_parity.H [variable, in Infotheo.checksum]
delta_parity.m [variable, in Infotheo.checksum]
delta_parity.n [variable, in Infotheo.checksum]
delta_parity [section, in Infotheo.checksum]
delta_set1 [lemma, in Infotheo.checksum]
delta_tsplit_Vgraph [lemma, in Infotheo.summary_tanner]
delta_Vnext_proj [lemma, in Infotheo.summary_tanner]
delta_Vnext [lemma, in Infotheo.summary_tanner]
delta_c [lemma, in Infotheo.ldpc_erasure]
den [projection, in Infotheo.Reals_ext]
depth [definition, in Infotheo.ldpc_algo_proof]
derivable_xlnx_delta [lemma, in Infotheo.ln_facts]
derivable_pt_diff_xlnx [lemma, in Infotheo.ln_facts]
derivable_pt_xlnx [lemma, in Infotheo.ln_facts]
derivable_xlnx_total [lemma, in Infotheo.ln_facts]
derivable_pt_ln_Rminus [lemma, in Infotheo.binary_entropy_function]
derivable_f_eq_g [lemma, in Infotheo.Ranalysis_ext]
derivable_pt_ln [lemma, in Infotheo.Ranalysis_ext]
derivable_pt_Rminus [lemma, in Infotheo.Ranalysis_ext]
derivable_pt_Ropp [lemma, in Infotheo.Ranalysis_ext]
derivable_pt_cst [lemma, in Infotheo.Ranalysis_ext]
derivable_pt_log [lemma, in Infotheo.log2]
derive_pt_xlnx_delta [lemma, in Infotheo.ln_facts]
derive_sincreasing_interv [lemma, in Infotheo.ln_facts]
derive_diff_xlnx_pos [lemma, in Infotheo.ln_facts]
derive_diff_xlnx_neg_aux [lemma, in Infotheo.ln_facts]
derive_pt_diff_xlnx [lemma, in Infotheo.ln_facts]
derive_pt_xlnx [lemma, in Infotheo.ln_facts]
derive_xlnx_aux2 [lemma, in Infotheo.ln_facts]
derive_xlnx_aux1 [lemma, in Infotheo.ln_facts]
derive_pt_ln_id_xle1_ge0 [lemma, in Infotheo.ln_facts]
derive_pt_ln_id_xle1 [lemma, in Infotheo.ln_facts]
derive_errloc [lemma, in Infotheo.cyclic_decoding]
derive_increasing_ad_hoc [lemma, in Infotheo.Ranalysis_ext]
derive_increasing_interv_right [lemma, in Infotheo.Ranalysis_ext]
derive_increasing_interv_left [lemma, in Infotheo.Ranalysis_ext]
derive_increasing_interv_ax_right [lemma, in Infotheo.Ranalysis_ext]
derive_increasing_interv_ax_left [lemma, in Infotheo.Ranalysis_ext]
derive_pt_f_eq_g [lemma, in Infotheo.Ranalysis_ext]
derive_pt_ln [lemma, in Infotheo.Ranalysis_ext]
derive_pt_cst [lemma, in Infotheo.Ranalysis_ext]
derive_pt_pinsker_function_spec [lemma, in Infotheo.pinsker_function]
derive_pt_pinsker_fun [lemma, in Infotheo.pinsker_function]
derive_pinsker_fun [lemma, in Infotheo.pinsker_function]
derive_pt_log [lemma, in Infotheo.log2]
dH [definition, in Infotheo.hamming]
dH_num_occ_opp [lemma, in Infotheo.repcode]
dH_BSC.f [variable, in Infotheo.binary_symmetric_channel]
dH_BSC.c [variable, in Infotheo.binary_symmetric_channel]
dH_BSC.n [variable, in Infotheo.binary_symmetric_channel]
dH_BSC.M [variable, in Infotheo.binary_symmetric_channel]
dH_BSC.W [variable, in Infotheo.binary_symmetric_channel]
dH_BSC.card_F2 [variable, in Infotheo.binary_symmetric_channel]
dH_BSC.p_01 [variable, in Infotheo.binary_symmetric_channel]
dH_BSC.p [variable, in Infotheo.binary_symmetric_channel]
dH_BSC [section, in Infotheo.binary_symmetric_channel]
dH_tri_ine [lemma, in Infotheo.hamming]
dH_sym [lemma, in Infotheo.hamming]
dH_dH_bitseq [lemma, in Infotheo.hamming]
dH_wH [lemma, in Infotheo.hamming]
diff_xlnx_sincreasing_0_Rinv_e2 [lemma, in Infotheo.ln_facts]
diff_xlnx_1 [lemma, in Infotheo.ln_facts]
diff_xlnx_0 [lemma, in Infotheo.ln_facts]
diff_xlnx [definition, in Infotheo.ln_facts]
discardT [definition, in Infotheo.linearcode]
discard_repair [section, in Infotheo.linearcode]
disjointsU1 [lemma, in Infotheo.degree_profile]
disjoint_I_false [lemma, in Infotheo.degree_profile]
disjoint_Vgraph [lemma, in Infotheo.tanner_partition]
disjoint_Vgraph2 [lemma, in Infotheo.tanner_partition]
dist [record, in Infotheo.proba]
distribution_definition.A [variable, in Infotheo.proba]
distribution_definition [section, in Infotheo.proba]
dist_of_ffun_prop [lemma, in Infotheo.types]
dist_of_ffun [definition, in Infotheo.types]
dist_of [definition, in Infotheo.proba]
dist_eq [lemma, in Infotheo.proba]
dist_max [lemma, in Infotheo.proba]
dist_support_not_empty [lemma, in Infotheo.proba]
dist2rV1 [lemma, in Infotheo.proba]
dist2tuple1 [lemma, in Infotheo.proba]
div [definition, in Infotheo.divergence]
divergence [library]
divergence_lemmas.P_dom_by_Q [variable, in Infotheo.divergence]
divergence_lemmas.Q [variable, in Infotheo.divergence]
divergence_lemmas.P [variable, in Infotheo.divergence]
divergence_lemmas.A [variable, in Infotheo.divergence]
divergence_lemmas [section, in Infotheo.divergence]
divergence_def.Q [variable, in Infotheo.divergence]
divergence_def.P [variable, in Infotheo.divergence]
divergence_def.A [variable, in Infotheo.divergence]
divergence_def [section, in Infotheo.divergence]
divp_errloc [definition, in Infotheo.cyclic_decoding]
divp_errloc0_neq0 [lemma, in Infotheo.reed_solomon]
div_diff_ub [lemma, in Infotheo.divergence]
DMC [module, in Infotheo.channel]
DMC_sub_vec_Vgraph [lemma, in Infotheo.ldpc]
DMC_sub_vec_Fnext [lemma, in Infotheo.ldpc]
DMC_sub_vec [lemma, in Infotheo.ldpc]
DMC_nonneg [lemma, in Infotheo.channel]
dmc_exp_cdiv_cond_entropy [lemma, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.Htb [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.Vctyp [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.Hta [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.tb [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.ta [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.V [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.P [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.n [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.n' [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.W [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.B [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.A [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect [section, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy [lemma, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.Hn [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.Htb [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.HV [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.Hta [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.W0_V0 [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_aux [lemma, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.tb [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.ta [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.V [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.P [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.n [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.W [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.B [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.A [variable, in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect [section, in Infotheo.conditional_divergence]
DMC_BSC_prop [lemma, in Infotheo.binary_symmetric_channel]
DMC.c [definition, in Infotheo.channel]
DMC.channel_ext [definition, in Infotheo.channel]
`Ch_ _ [notation, in Infotheo.channel]
DMC.DMC_sect.n [variable, in Infotheo.channel]
DMC.DMC_sect.W [variable, in Infotheo.channel]
DMC.DMC_sect.B [variable, in Infotheo.channel]
DMC.DMC_sect.A [variable, in Infotheo.channel]
DMC.DMC_sect [section, in Infotheo.channel]
DMC.f [definition, in Infotheo.channel]
DMC.f0 [lemma, in Infotheo.channel]
DMC.f1 [lemma, in Infotheo.channel]
dominance [section, in Infotheo.Reals_ext]
dom_by_uniform [lemma, in Infotheo.proba]
dom_byb [definition, in Infotheo.Reals_ext]
dom_by [definition, in Infotheo.Reals_ext]
down [projection, in Infotheo.ldpc_algo]
down_msg_spec [lemma, in Infotheo.ldpc_algo_proof]
down_msg [definition, in Infotheo.ldpc_algo_proof]
drop_take_is_unzip2_filter [lemma, in Infotheo.jtypes]
drop_take_is_filter_zip [lemma, in Infotheo.jtypes]
drop_take_is_filter [lemma, in Infotheo.jtypes]
drop_take_iota [lemma, in Infotheo.ssr_ext]
d_min_repcode [lemma, in Infotheo.repcode]
d_min_neq0 [lemma, in Infotheo.linearcode]
d_min_achieved [lemma, in Infotheo.linearcode]
d_min_is_min [lemma, in Infotheo.linearcode]
d_min [definition, in Infotheo.linearcode]


E

EC [module, in Infotheo.erasure_channel]
echa_pos [lemma, in Infotheo.channel_code]
echa1 [lemma, in Infotheo.channel_code]
EC.c [definition, in Infotheo.erasure_channel]
EC.EC_non_flip [lemma, in Infotheo.erasure_channel]
EC.EC_prob.q [variable, in Infotheo.erasure_channel]
EC.EC_prob.BEC [variable, in Infotheo.erasure_channel]
EC.EC_prob.erp_01 [variable, in Infotheo.erasure_channel]
EC.EC_prob.erp [variable, in Infotheo.erasure_channel]
EC.EC_prob.P [variable, in Infotheo.erasure_channel]
EC.EC_prob.card_X [variable, in Infotheo.erasure_channel]
EC.EC_prob.X [variable, in Infotheo.erasure_channel]
EC.EC_prob [section, in Infotheo.erasure_channel]
EC.EC_sect.p_01 [variable, in Infotheo.erasure_channel]
EC.EC_sect.p [variable, in Infotheo.erasure_channel]
EC.EC_sect.A [variable, in Infotheo.erasure_channel]
EC.EC_sect [section, in Infotheo.erasure_channel]
EC.f [definition, in Infotheo.erasure_channel]
EC.f0 [lemma, in Infotheo.erasure_channel]
EC.f1 [lemma, in Infotheo.erasure_channel]
EC.PW [abbreviation, in Infotheo.erasure_channel]
EC.P'W [abbreviation, in Infotheo.erasure_channel]
EC.W [abbreviation, in Infotheo.erasure_channel]
EC.X0 [abbreviation, in Infotheo.erasure_channel]
EC.X1 [abbreviation, in Infotheo.erasure_channel]
empty_rV [lemma, in Infotheo.ssralg_ext]
enc [projection, in Infotheo.channel_code]
enc [projection, in Infotheo.source_code]
encoder_and_decoder.HS [variable, in Infotheo.source_coding_fl_direct]
encoder_and_decoder.Hdef [variable, in Infotheo.source_coding_fl_direct]
encoder_and_decoder.def [variable, in Infotheo.source_coding_fl_direct]
encoder_and_decoder.S [variable, in Infotheo.source_coding_fl_direct]
encoder_and_decoder.k [variable, in Infotheo.source_coding_fl_direct]
encoder_and_decoder.n [variable, in Infotheo.source_coding_fl_direct]
encoder_and_decoder.P [variable, in Infotheo.source_coding_fl_direct]
encoder_and_decoder.A [variable, in Infotheo.source_coding_fl_direct]
encoder_and_decoder [section, in Infotheo.source_coding_fl_direct]
encode1_is_encode [lemma, in Infotheo.repcode]
encT [definition, in Infotheo.channel_code]
encT [definition, in Infotheo.source_code]
enc_pre_img_partition [definition, in Infotheo.types]
enc_pre_img_injective [lemma, in Infotheo.types]
enc_pre_img [definition, in Infotheo.types]
enc_pre_img_partition.c [variable, in Infotheo.types]
enc_pre_img_partition.n [variable, in Infotheo.types]
enc_pre_img_partition.n' [variable, in Infotheo.types]
enc_pre_img_partition.M [variable, in Infotheo.types]
enc_pre_img_partition.B [variable, in Infotheo.types]
enc_pre_img_partition.A [variable, in Infotheo.types]
enc_pre_img_partition [section, in Infotheo.types]
enc_img_in_code [definition, in Infotheo.linearcode]
entropy [definition, in Infotheo.entropy]
entropy [library]
entropy_max [lemma, in Infotheo.entropy]
entropy_uniform [lemma, in Infotheo.entropy]
entropy_Ex [lemma, in Infotheo.entropy]
entropy_pos_P_pos [lemma, in Infotheo.entropy]
entropy_definition.P_pos [variable, in Infotheo.entropy]
entropy_pos [lemma, in Infotheo.entropy]
`H [notation, in Infotheo.entropy]
entropy_definition.P [variable, in Infotheo.entropy]
entropy_definition.A [variable, in Infotheo.entropy]
entropy_definition [section, in Infotheo.entropy]
enum_select_children [lemma, in Infotheo.ldpc_algo_proof]
enum_id_ok [lemma, in Infotheo.ldpc_algo_proof]
enum_id [definition, in Infotheo.ldpc_algo_proof]
enum_cons [lemma, in Infotheo.degree_profile]
enum_val_full [lemma, in Infotheo.degree_profile]
enum_val_bij_on [lemma, in Infotheo.degree_profile]
enum_val.p [variable, in Infotheo.degree_profile]
enum_val.x [variable, in Infotheo.degree_profile]
enum_val.T [variable, in Infotheo.degree_profile]
enum_val [section, in Infotheo.degree_profile]
enum_val_sum_num_occ [lemma, in Infotheo.num_occ]
epsilon0_condition [definition, in Infotheo.channel_coding_direct]
eqRP [lemma, in Infotheo.Rssr]
eq_alpha_beta [lemma, in Infotheo.ldpc_algo_proof]
eq_in_map_seqs [lemma, in Infotheo.ldpc_algo_proof]
eq_setSU [lemma, in Infotheo.degree_profile]
eq_path_in [lemma, in Infotheo.degree_profile]
eq_tcast2 [lemma, in Infotheo.ssr_ext]
eq_tcast [lemma, in Infotheo.ssr_ext]
eq0cdiv [lemma, in Infotheo.conditional_divergence]
eq0div [lemma, in Infotheo.divergence]
erasure_idx_SumProdBEC [lemma, in Infotheo.stopping_set]
erasure_idx [definition, in Infotheo.stopping_set]
erasure_channel [library]
erreval [definition, in Infotheo.cyclic_decoding]
errevalE [lemma, in Infotheo.cyclic_decoding]
errevalE [section, in Infotheo.cyclic_decoding]
errevalE.a [variable, in Infotheo.cyclic_decoding]
errevalE.a_neq0 [variable, in Infotheo.cyclic_decoding]
errevalE.F [variable, in Infotheo.cyclic_decoding]
errevalE.n [variable, in Infotheo.cyclic_decoding]
errevalE.t [variable, in Infotheo.cyclic_decoding]
Errloc [module, in Infotheo.cyclic_decoding]
errloc [definition, in Infotheo.cyclic_decoding]
errlocP [lemma, in Infotheo.cyclic_decoding]
errlocP [section, in Infotheo.cyclic_decoding]
errlocP.a [variable, in Infotheo.cyclic_decoding]
errlocP.a_nontrivial [variable, in Infotheo.cyclic_decoding]
errlocP.a_unit [variable, in Infotheo.cyclic_decoding]
errlocP.card_supp [variable, in Infotheo.cyclic_decoding]
errlocP.e [variable, in Infotheo.cyclic_decoding]
errlocP.F [variable, in Infotheo.cyclic_decoding]
errlocP.n [variable, in Infotheo.cyclic_decoding]
errlocP.t [variable, in Infotheo.cyclic_decoding]
errloc_dvdp [lemma, in Infotheo.cyclic_decoding]
Errloc_errloc.key_coprime [lemma, in Infotheo.cyclic_decoding]
Errloc_errloc.deg_ub [lemma, in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.a_neq0 [variable, in Infotheo.cyclic_decoding]
Errloc_errloc.normalized [lemma, in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.e [variable, in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.t [variable, in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.n [variable, in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.a [variable, in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.F [variable, in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc [section, in Infotheo.cyclic_decoding]
Errloc_errloc [module, in Infotheo.cyclic_decoding]
errloc_zero [lemma, in Infotheo.cyclic_decoding]
errloc_neq0 [lemma, in Infotheo.cyclic_decoding]
Errloc.deg_ub [definition, in Infotheo.cyclic_decoding]
Errloc.errloc_spec.p [variable, in Infotheo.cyclic_decoding]
Errloc.errloc_spec.t [variable, in Infotheo.cyclic_decoding]
Errloc.errloc_spec.y [variable, in Infotheo.cyclic_decoding]
Errloc.errloc_spec.n [variable, in Infotheo.cyclic_decoding]
Errloc.errloc_spec.a [variable, in Infotheo.cyclic_decoding]
Errloc.errloc_spec.F [variable, in Infotheo.cyclic_decoding]
Errloc.errloc_spec [section, in Infotheo.cyclic_decoding]
Errloc.key_coprime [definition, in Infotheo.cyclic_decoding]
Errloc.mkErrLocSpec [constructor, in Infotheo.cyclic_decoding]
Errloc.normalized [definition, in Infotheo.cyclic_decoding]
Errloc.spec [inductive, in Infotheo.cyclic_decoding]
errors_min_dist [lemma, in Infotheo.reed_solomon]
errors_ub [definition, in Infotheo.reed_solomon]
error_exponent_bound [lemma, in Infotheo.error_exponent]
error_exponent_lower_bound.minRate_cap [variable, in Infotheo.error_exponent]
error_exponent_lower_bound.minRate [variable, in Infotheo.error_exponent]
error_exponent_lower_bound.W_cap [variable, in Infotheo.error_exponent]
error_exponent_lower_bound.cap [variable, in Infotheo.error_exponent]
error_exponent_lower_bound.W [variable, in Infotheo.error_exponent]
error_exponent_lower_bound.Bnot0 [variable, in Infotheo.error_exponent]
error_exponent_lower_bound.B [variable, in Infotheo.error_exponent]
error_exponent_lower_bound.A [variable, in Infotheo.error_exponent]
error_exponent_lower_bound [section, in Infotheo.error_exponent]
error_evaluator_polynomial.e [variable, in Infotheo.cyclic_decoding]
error_evaluator_polynomial.t [variable, in Infotheo.cyclic_decoding]
error_evaluator_polynomial.a_neq0 [variable, in Infotheo.cyclic_decoding]
error_evaluator_polynomial.n [variable, in Infotheo.cyclic_decoding]
error_evaluator_polynomial.a [variable, in Infotheo.cyclic_decoding]
error_evaluator_polynomial.F [variable, in Infotheo.cyclic_decoding]
error_evaluator_polynomial [section, in Infotheo.cyclic_decoding]
error_evaluator_polynomial_def.y [variable, in Infotheo.cyclic_decoding]
error_evaluator_polynomial_def.n [variable, in Infotheo.cyclic_decoding]
error_evaluator_polynomial_def.a [variable, in Infotheo.cyclic_decoding]
error_evaluator_polynomial_def.F [variable, in Infotheo.cyclic_decoding]
error_evaluator_polynomial_def [section, in Infotheo.cyclic_decoding]
error_locator_polynomial.a_nontrivial [variable, in Infotheo.cyclic_decoding]
error_locator_polynomial.a_neq0 [variable, in Infotheo.cyclic_decoding]
error_locator_polynomial.n [variable, in Infotheo.cyclic_decoding]
error_locator_polynomial.a [variable, in Infotheo.cyclic_decoding]
error_locator_polynomial.F [variable, in Infotheo.cyclic_decoding]
error_locator_polynomial [section, in Infotheo.cyclic_decoding]
error_rate_symmetry [lemma, in Infotheo.channel_coding_direct]
error_exponent [library]
ErrRateCond [definition, in Infotheo.channel_code]
errsupp [projection, in Infotheo.cyclic_decoding]
errvec [record, in Infotheo.cyclic_decoding]
Errvec [constructor, in Infotheo.cyclic_decoding]
errvect [projection, in Infotheo.cyclic_decoding]
err_vecE [lemma, in Infotheo.cyclic_decoding]
Esti [definition, in Infotheo.ldpc_erasure]
estimation [definition, in Infotheo.ldpc_algo]
estimation_correctness [lemma, in Infotheo.ldpc]
estimation_ok [lemma, in Infotheo.ldpc_algo_proof]
estimation_alpha [lemma, in Infotheo.ldpc_algo_proof]
estimation_spec [definition, in Infotheo.ldpc_algo]
Esti_vec [definition, in Infotheo.ldpc_erasure]
esti_spec [definition, in Infotheo.ldpc_algo]
Euclid [module, in Infotheo.euclid]
euclid [library]
euclid_satisfies_ErrlocBC.when_syndrome_is_0.synp0 [variable, in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.when_syndrome_is_0 [section, in Infotheo.cyclic_decoding]
euclid_dec [definition, in Infotheo.cyclic_decoding]
euclid_err [definition, in Infotheo.cyclic_decoding]
`l [notation, in Infotheo.cyclic_decoding]
`q_ [notation, in Infotheo.cyclic_decoding]
`u_ [notation, in Infotheo.cyclic_decoding]
`v_ [notation, in Infotheo.cyclic_decoding]
`r_ [notation, in Infotheo.cyclic_decoding]
`r0 [notation, in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.t [variable, in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.y [variable, in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.n [variable, in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.a [variable, in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.F [variable, in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC [section, in Infotheo.cyclic_decoding]
euclid_is_correct_lemma [lemma, in Infotheo.reed_solomon]
`r_ [notation, in Infotheo.reed_solomon]
divp_errloc_vstop [notation, in Infotheo.reed_solomon]
`v_ [notation, in Infotheo.reed_solomon]
`u_ [notation, in Infotheo.reed_solomon]
keyq [notation, in Infotheo.reed_solomon]
`r0 [notation, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.a_nontrivial [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.a_neq0 [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.stop [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.td [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.c_is_cw [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.d [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.yce [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.e [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.t [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.c [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.y [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.n [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.a [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc.F [variable, in Infotheo.reed_solomon]
euclid_satisfies_Errloc [section, in Infotheo.reed_solomon]
`v [notation, in Infotheo.euclid]
euclid_cont_size_r [lemma, in Infotheo.euclid]
euclid_cont_size_r0 [lemma, in Infotheo.euclid]
euclid_back [lemma, in Infotheo.euclid]
euclid_next [lemma, in Infotheo.euclid]
euclid_cont [definition, in Infotheo.euclid]
`q [notation, in Infotheo.euclid]
`r [notation, in Infotheo.euclid]
euclid_stop.tr0 [variable, in Infotheo.euclid]
euclid_stop.r1_r0 [variable, in Infotheo.euclid]
euclid_stop.r1 [variable, in Infotheo.euclid]
euclid_stop.r0 [variable, in Infotheo.euclid]
euclid_stop.t [variable, in Infotheo.euclid]
euclid_stop.y [variable, in Infotheo.euclid]
euclid_stop.n [variable, in Infotheo.euclid]
euclid_stop.F [variable, in Infotheo.euclid]
euclid_stop [section, in Infotheo.euclid]
Euclid.euclid_algo.r1_r0 [variable, in Infotheo.euclid]
Euclid.euclid_algo.uv_sect.P1 [variable, in Infotheo.euclid]
Euclid.euclid_algo.uv_sect.P0 [variable, in Infotheo.euclid]
Euclid.euclid_algo.uv_sect [section, in Infotheo.euclid]
Euclid.euclid_algo.r1 [variable, in Infotheo.euclid]
Euclid.euclid_algo.r0 [variable, in Infotheo.euclid]
Euclid.euclid_algo.t [variable, in Infotheo.euclid]
Euclid.euclid_algo.F [variable, in Infotheo.euclid]
Euclid.euclid_algo [section, in Infotheo.euclid]
Euclid.leq_size_r [lemma, in Infotheo.euclid]
Euclid.q [definition, in Infotheo.euclid]
Euclid.qE [lemma, in Infotheo.euclid]
Euclid.r [definition, in Infotheo.euclid]
Euclid.rE [lemma, in Infotheo.euclid]
Euclid.ruv [lemma, in Infotheo.euclid]
Euclid.size_r_decreases [lemma, in Infotheo.euclid]
Euclid.size_r0r1 [lemma, in Infotheo.euclid]
Euclid.u [definition, in Infotheo.euclid]
Euclid.uv [definition, in Infotheo.euclid]
Euclid.uvE [lemma, in Infotheo.euclid]
Euclid.u0 [definition, in Infotheo.euclid]
Euclid.u1 [definition, in Infotheo.euclid]
Euclid.v [definition, in Infotheo.euclid]
Euclid.vu [lemma, in Infotheo.euclid]
Euclid.v0 [definition, in Infotheo.euclid]
Euclid.v1 [definition, in Infotheo.euclid]
Ex [definition, in Infotheo.proba]
except [definition, in Infotheo.subgraph_partition]
exists_non0_codeword_lowest_deg [lemma, in Infotheo.linearcode]
exists_frac_part [lemma, in Infotheo.log2]
ExMinordSpec [constructor, in Infotheo.arg_rmax]
expected_value_for_standard_random_variables.Y [variable, in Infotheo.proba]
expected_value_for_standard_random_variables.X [variable, in Infotheo.proba]
expected_value_for_standard_random_variables.A [variable, in Infotheo.proba]
expected_value_for_standard_random_variables [section, in Infotheo.proba]
expected_value_definition.X [variable, in Infotheo.proba]
expected_value_definition.A [variable, in Infotheo.proba]
expected_value_definition [section, in Infotheo.proba]
expn_2 [lemma, in Infotheo.ssr_ext]
exp_inj_helper' [lemma, in Infotheo.cyclic_decoding]
exp_cdiv_left [lemma, in Infotheo.conditional_divergence]
exp_cdiv [definition, in Infotheo.conditional_divergence]
exp_lb [lemma, in Infotheo.Reals_ext]
exp_lb_sect.exp_dev_ge0 [variable, in Infotheo.Reals_ext]
exp_strict_lb [lemma, in Infotheo.Reals_ext]
exp_lb_sect.exp_dev_gt0 [variable, in Infotheo.Reals_ext]
exp_lb_sect.exp_dev_rec [variable, in Infotheo.Reals_ext]
exp_lb_sect.derivable_exp_dev [variable, in Infotheo.Reals_ext]
exp_lb_sect.exp_dev [variable, in Infotheo.Reals_ext]
exp_lb_sect [section, in Infotheo.Reals_ext]
exp_opp_2_lt_1 [lemma, in Infotheo.Reals_ext]
exp_opp_1_lt_1 [lemma, in Infotheo.Reals_ext]
exp_not_0 [lemma, in Infotheo.Reals_ext]
exp_pow [lemma, in Infotheo.log2]
exp_le_inv [lemma, in Infotheo.log2]
exp2 [definition, in Infotheo.log2]
exp2_log [lemma, in Infotheo.log2]
exp2_le_increasing [lemma, in Infotheo.log2]
exp2_increasing [lemma, in Infotheo.log2]
exp2_le_inv [lemma, in Infotheo.log2]
exp2_Ropp [lemma, in Infotheo.log2]
exp2_pow [lemma, in Infotheo.log2]
exp2_pow2 [lemma, in Infotheo.log2]
exp2_plus [lemma, in Infotheo.log2]
exp2_0 [lemma, in Infotheo.log2]
exp2_not_0 [lemma, in Infotheo.log2]
exp2_pos [lemma, in Infotheo.log2]
extension [definition, in Infotheo.source_code]
extension [section, in Infotheo.source_code]
extension.A [variable, in Infotheo.source_code]
extension.B [variable, in Infotheo.source_code]
Extras [section, in Infotheo.ldpc_algo_proof]
Extras.A [variable, in Infotheo.ldpc_algo_proof]
Extras.Flatten [section, in Infotheo.ldpc_algo_proof]
Extras.Flatten.B [variable, in Infotheo.ldpc_algo_proof]
Extras.Flatten.f [variable, in Infotheo.ldpc_algo_proof]
Extras.g [variable, in Infotheo.ldpc_algo_proof]
ext_uniq_path [lemma, in Infotheo.ldpc_algo_proof]
ex_euclid_cont [lemma, in Infotheo.euclid]
ex_minordP [lemma, in Infotheo.arg_rmax]
ex_minord_spec [inductive, in Infotheo.arg_rmax]
ex_minord [definition, in Infotheo.arg_rmax]
Ex_alt_pos [lemma, in Infotheo.proba]
Ex_Ex_alt [lemma, in Infotheo.proba]
Ex_alt [definition, in Infotheo.proba]
e_hamming [lemma, in Infotheo.hamming_code]
E_linear_n [lemma, in Infotheo.proba]
E_id_rem [lemma, in Infotheo.proba]
E_id_rem_helper [lemma, in Infotheo.proba]
E_linear_2 [lemma, in Infotheo.proba]
E_rvar2tuple1 [lemma, in Infotheo.proba]
E_comp_rv_ext [lemma, in Infotheo.proba]
E_comp [lemma, in Infotheo.proba]
E_trans_id_rem [lemma, in Infotheo.proba]
E_trans_add_rv [lemma, in Infotheo.proba]
E_const [lemma, in Infotheo.proba]
E_num_int_sub [lemma, in Infotheo.proba]
E_num_int_add [lemma, in Infotheo.proba]
E_scale [lemma, in Infotheo.proba]
E_map_mlog [lemma, in Infotheo.aep]
E_leng_cw [definition, in Infotheo.source_code]
e_m_Pr_not_preimg [lemma, in Infotheo.channel_coding_direct]
e0 [definition, in Infotheo.source_coding_fl_converse]
e0_delta [lemma, in Infotheo.source_coding_fl_converse]


F

f [definition, in Infotheo.source_coding_fl_direct]
fact_Coq_SSR [lemma, in Infotheo.Reals_ext]
fdcoor [definition, in Infotheo.cyclic_decoding]
fdcoorD [lemma, in Infotheo.cyclic_decoding]
fdcoorN [lemma, in Infotheo.cyclic_decoding]
fdcoorZ [lemma, in Infotheo.cyclic_decoding]
fdcoor_rcs [lemma, in Infotheo.cyclic_decoding]
fdcoor_codeword [lemma, in Infotheo.reed_solomon]
fdcoor0 [lemma, in Infotheo.cyclic_decoding]
ffun_of_jtype [definition, in Infotheo.jtypes]
ffun_of_dist [lemma, in Infotheo.types]
ffun_of_type [definition, in Infotheo.types]
Fgraph [definition, in Infotheo.tanner]
Fgraph_part_Fgraph [definition, in Infotheo.tanner_partition]
Fgraph_disjoint [lemma, in Infotheo.tanner_partition]
Fgraph_injective [lemma, in Infotheo.tanner_partition]
Fgraph_part_fnode [definition, in Infotheo.tanner_partition]
Fgraph_Vnext_Vgraph [lemma, in Infotheo.tanner]
Fgraph_nonempty [lemma, in Infotheo.tanner]
Fgraph_m0 [lemma, in Infotheo.tanner]
filter_zip_R [lemma, in Infotheo.ssr_ext]
filter_zip_L [lemma, in Infotheo.ssr_ext]
filter_flatten [lemma, in Infotheo.ssr_ext]
filter_pred1_num_occ [lemma, in Infotheo.num_occ]
find_ex_minord [lemma, in Infotheo.arg_rmax]
finset_ops.bigop.P [variable, in Infotheo.degree_profile]
finset_ops.bigop.F [variable, in Infotheo.degree_profile]
finset_ops.bigop.A [variable, in Infotheo.degree_profile]
finset_ops.bigop.op [variable, in Infotheo.degree_profile]
finset_ops.bigop.idx [variable, in Infotheo.degree_profile]
finset_ops.bigop.R [variable, in Infotheo.degree_profile]
finset_ops.bigop [section, in Infotheo.degree_profile]
finset_ops.trivIset.C [variable, in Infotheo.degree_profile]
finset_ops.trivIset.x [variable, in Infotheo.degree_profile]
finset_ops.trivIset [section, in Infotheo.degree_profile]
finset_ops.T [variable, in Infotheo.degree_profile]
finset_ops [section, in Infotheo.degree_profile]
finset_ext.A [variable, in Infotheo.ssr_ext]
finset_ext [section, in Infotheo.ssr_ext]
first_partition.g [variable, in Infotheo.subgraph_partition]
first_partition.V [variable, in Infotheo.subgraph_partition]
first_partition [section, in Infotheo.subgraph_partition]
first_summand [lemma, in Infotheo.channel_coding_direct]
fixed_point_stopset_A [lemma, in Infotheo.stopping_set]
flatten_single [lemma, in Infotheo.ldpc_algo_proof]
Fnext [definition, in Infotheo.tanner]
Fnext_Vnext_Vgraph [lemma, in Infotheo.tanner]
frac_part_pow [lemma, in Infotheo.Reals_ext]
frac_part_mult [lemma, in Infotheo.Reals_ext]
frac_Int_part [lemma, in Infotheo.Reals_ext]
frac_part_INR [lemma, in Infotheo.Reals_ext]
fst_tnth_prod_tuple [lemma, in Infotheo.tuple_prod]
full_take_shell [lemma, in Infotheo.jtypes]
full_rank_inj [lemma, in Infotheo.ssralg_ext]
full_sum_num_occ_n [lemma, in Infotheo.num_occ]
full_sum_num_occ [lemma, in Infotheo.num_occ]
Func [constructor, in Infotheo.ldpc_algo]
f_phi [lemma, in Infotheo.source_coding_fl_direct]
f2 [library]
F2P [lemma, in Infotheo.f2]
F2_poly_add [lemma, in Infotheo.f2]
F2_addmx0 [lemma, in Infotheo.f2]
F2_mx_opp [lemma, in Infotheo.f2]
F2_addmx [lemma, in Infotheo.f2]
F2_of_boolK [lemma, in Infotheo.f2]
F2_of_bool_0_inv [lemma, in Infotheo.f2]
F2_of_bool_addr [lemma, in Infotheo.f2]
F2_add [lemma, in Infotheo.f2]
F2_opp [lemma, in Infotheo.f2]
F2_1 [constructor, in Infotheo.f2]
F2_0 [constructor, in Infotheo.f2]
F2_spec [inductive, in Infotheo.f2]
F2_0_1'''' [lemma, in Infotheo.f2]
F2_0_1''' [lemma, in Infotheo.f2]
F2_0_1'' [lemma, in Infotheo.f2]
F2_0_1' [lemma, in Infotheo.f2]
F2_0_1 [lemma, in Infotheo.f2]
F2_of_bool [definition, in Infotheo.f2]


G

gcd_errloc_keyrem [lemma, in Infotheo.cyclic_decoding]
generalized_key_equation.q [variable, in Infotheo.cyclic_decoding]
generalized_key_equation.keycond_p [variable, in Infotheo.cyclic_decoding]
generalized_key_equation.card_supp [variable, in Infotheo.cyclic_decoding]
generalized_key_equation.t [variable, in Infotheo.cyclic_decoding]
generalized_key_equation.p [variable, in Infotheo.cyclic_decoding]
generalized_key_equation.e [variable, in Infotheo.cyclic_decoding]
generalized_key_equation.n [variable, in Infotheo.cyclic_decoding]
generalized_key_equation.a [variable, in Infotheo.cyclic_decoding]
generalized_key_equation.F [variable, in Infotheo.cyclic_decoding]
generalized_key_equation [section, in Infotheo.cyclic_decoding]
gen_key_equation [lemma, in Infotheo.cyclic_decoding]
gen_key_equation' [lemma, in Infotheo.cyclic_decoding]
gen_neq0 [lemma, in Infotheo.reed_solomon]
get_esti_subseq [lemma, in Infotheo.ldpc_algo_proof]
get_esti_ok [lemma, in Infotheo.ldpc_algo_proof]
get_esti_nil [lemma, in Infotheo.ldpc_algo_proof]
get_esti_flatten [lemma, in Infotheo.ldpc_algo_proof]
get_esti_cat [lemma, in Infotheo.ldpc_algo_proof]
get_esti_spec [definition, in Infotheo.ldpc_algo]
get_esti [definition, in Infotheo.ldpc_algo]
goal [section, in Infotheo.stopping_set]
goal.c [variable, in Infotheo.stopping_set]
goal.E [variable, in Infotheo.stopping_set]
goal.H [variable, in Infotheo.stopping_set]
goal.Hc [variable, in Infotheo.stopping_set]
goal.m [variable, in Infotheo.stopping_set]
goal.m' [variable, in Infotheo.stopping_set]
goal.n [variable, in Infotheo.stopping_set]
goal.n' [variable, in Infotheo.stopping_set]
goal.y_stars_def.alpha [variable, in Infotheo.stopping_set]
goal.y_stars_def [section, in Infotheo.stopping_set]
`F [notation, in Infotheo.stopping_set]
`V [notation, in Infotheo.stopping_set]
good_code_sufficient_condition [lemma, in Infotheo.channel_coding_direct]
graph [definition, in Infotheo.ldpc_algo]
graph_sumprod_down [lemma, in Infotheo.ldpc_algo_proof]
graph_sumprod_up [lemma, in Infotheo.ldpc_algo_proof]
graph_class.V [variable, in Infotheo.subgraph_partition]
graph_class [section, in Infotheo.subgraph_partition]
graph_property.g [variable, in Infotheo.subgraph_partition]
graph_property.V [variable, in Infotheo.subgraph_partition]
graph_property [section, in Infotheo.subgraph_partition]


H

halflambdaepsilon [lemma, in Infotheo.source_coding_fl_direct]
halflambda0 [lemma, in Infotheo.source_coding_fl_direct]
halflambda1 [lemma, in Infotheo.source_coding_fl_direct]
hamming [library]
HammingCode [module, in Infotheo.hamming_code]
HammingCodeSystematic [module, in Infotheo.hamming_code]
HammingCodeSystematic.card_non_unit [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.card_unit_cols [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.card_all_cols [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.cols_1_inj [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.cols_1 [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.cols_hamH [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.col_hamH_inj [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.decoder [definition, in Infotheo.hamming_code]
HammingCodeSystematic.dec_enc [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.encode_decode [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.error_distance [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.error_distance2 [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.error_distance1 [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.hamDiscard [definition, in Infotheo.hamming_code]
HammingCodeSystematic.hamG [definition, in Infotheo.hamming_code]
HammingCodeSystematic.hamH_hamG [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance.phi [variable, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance.f [variable, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance.hamH [variable, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance.n [variable, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance.r [variable, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance.r' [variable, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance [section, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_systematic.hamH [variable, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_systematic.n [variable, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_systematic.m [variable, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_systematic.m' [variable, in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_systematic [section, in Infotheo.hamming_code]
HammingCodeSystematic.hamming_encode_inj [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.ham_detect_enc [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.ham_lcode [definition, in Infotheo.hamming_code]
HammingCodeSystematic.ham_channel_code [definition, in Infotheo.hamming_code]
HammingCodeSystematic.ham_discard [definition, in Infotheo.hamming_code]
HammingCodeSystematic.ham_discard_hamG [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.idsA [definition, in Infotheo.hamming_code]
HammingCodeSystematic.idsA_ids1 [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.ids1 [definition, in Infotheo.hamming_code]
HammingCodeSystematic.non_unit_cols [definition, in Infotheo.hamming_code]
HammingCodeSystematic.ord_split [definition, in Infotheo.hamming_code]
HammingCodeSystematic.perm_ids_inj [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.perm_ids [definition, in Infotheo.hamming_code]
HammingCodeSystematic.size_idsA [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.syndrome_enc [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.sysA [definition, in Infotheo.hamming_code]
HammingCodeSystematic.sysDiscard [definition, in Infotheo.hamming_code]
HammingCodeSystematic.sysDiscard_sysG [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.sysG [definition, in Infotheo.hamming_code]
HammingCodeSystematic.sysH [definition, in Infotheo.hamming_code]
HammingCodeSystematic.sysH_sysG_alt [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.sysH_sysG [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.sysH_sysA_1 [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.sysH_cast [definition, in Infotheo.hamming_code]
HammingCodeSystematic.sysH_perm [definition, in Infotheo.hamming_code]
HammingCodeSystematic.sys_ham_lcode [definition, in Infotheo.hamming_code]
HammingCodeSystematic.sys_enc_img_is_code [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.sys_enc_discard_is_id [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.uniq_idsA [lemma, in Infotheo.hamming_code]
HammingCodeSystematic.unit_cols [definition, in Infotheo.hamming_code]
hammingcode_mindistdecoding.Hham_scode [variable, in Infotheo.hamming_code]
hammingcode_mindistdecoding.Hham_scode_corr [variable, in Infotheo.hamming_code]
hammingcode_mindistdecoding.ham_scode [variable, in Infotheo.hamming_code]
hammingcode_mindistdecoding.hamH [variable, in Infotheo.hamming_code]
hammingcode_mindistdecoding.n [variable, in Infotheo.hamming_code]
hammingcode_mindistdecoding.m [variable, in Infotheo.hamming_code]
hammingcode_mindistdecoding.m' [variable, in Infotheo.hamming_code]
hammingcode_mindistdecoding [section, in Infotheo.hamming_code]
hammingcode_mindist.hamC [variable, in Infotheo.hamming_code]
hammingcode_mindist.m [variable, in Infotheo.hamming_code]
hammingcode_mindist.two_m [variable, in Infotheo.hamming_code]
hammingcode_mindist.hamH [variable, in Infotheo.hamming_code]
hammingcode_mindist.n [variable, in Infotheo.hamming_code]
hammingcode_mindist.m' [variable, in Infotheo.hamming_code]
hammingcode_mindist [section, in Infotheo.hamming_code]
HammingCode.dim_len [lemma, in Infotheo.hamming_code]
HammingCode.hamC [definition, in Infotheo.hamming_code]
HammingCode.hamH [definition, in Infotheo.hamming_code]
HammingCode.hamming_code_def.n [variable, in Infotheo.hamming_code]
HammingCode.hamming_code_def.m [variable, in Infotheo.hamming_code]
HammingCode.hamming_code_def.m' [variable, in Infotheo.hamming_code]
HammingCode.hamming_code_def [section, in Infotheo.hamming_code]
HammingCode.len [definition, in Infotheo.hamming_code]
HammingCode.len_two_m [lemma, in Infotheo.hamming_code]
HammingCode.len_dim [lemma, in Infotheo.hamming_code]
HammingCode.m_len [lemma, in Infotheo.hamming_code]
HammingCode.two_len [lemma, in Infotheo.hamming_code]
HammingMetric [section, in Infotheo.hamming]
HammingMetricBitstring [module, in Infotheo.hamming]
HammingMetricBitstring.dH_b_cat [lemma, in Infotheo.hamming]
HammingMetricBitstring.dH_b_tri_ine [lemma, in Infotheo.hamming]
HammingMetricBitstring.dH_b_sym [lemma, in Infotheo.hamming]
HammingMetricBitstring.dH_b_count [lemma, in Infotheo.hamming]
HammingMetricBitstring.dH_b [definition, in Infotheo.hamming]
HammingMetricBitstring.wH_b [definition, in Infotheo.hamming]
_ `b_ _ [notation, in Infotheo.hamming]
hamming_error_rate [lemma, in Infotheo.hamming_code]
hamming_code_error_rate_sect.n [variable, in Infotheo.hamming_code]
hamming_code_error_rate_sect.m [variable, in Infotheo.hamming_code]
hamming_code_error_rate_sect.m' [variable, in Infotheo.hamming_code]
hamming_code_error_rate_sect.W [variable, in Infotheo.hamming_code]
hamming_code_error_rate_sect.card_F2 [variable, in Infotheo.hamming_code]
hamming_code_error_rate_sect.p_01 [variable, in Infotheo.hamming_code]
hamming_code_error_rate_sect.p [variable, in Infotheo.hamming_code]
hamming_code_error_rate_sect.M_not_0 [variable, in Infotheo.hamming_code]
hamming_code_error_rate_sect.M [variable, in Infotheo.hamming_code]
hamming_code_error_rate_sect [section, in Infotheo.hamming_code]
hamming_MD [lemma, in Infotheo.hamming_code]
hamming_MD_alt [lemma, in Infotheo.hamming_code]
hamming_not_trivial [lemma, in Infotheo.hamming_code]
hamming_01 [lemma, in Infotheo.hamming]
hamming_code [library]
ham_channel_code [definition, in Infotheo.hamming_code]
ham_repair [definition, in Infotheo.hamming_code]
ham_detect [definition, in Infotheo.hamming_code]
Hdef [definition, in Infotheo.types]
Hdelta [lemma, in Infotheo.source_coding_fl_converse]
helper1 [lemma, in Infotheo.natbin]
helper2 [lemma, in Infotheo.natbin]
Hepsilon1 [lemma, in Infotheo.source_coding_fl_converse]
Hlambda [lemma, in Infotheo.source_coding_fl_converse]
Hlambdar [lemma, in Infotheo.source_coding_fl_direct]
horner_errloc_0 [lemma, in Infotheo.cyclic_decoding]
HP_HPW [lemma, in Infotheo.binary_symmetric_channel]
Hreg [projection, in Infotheo.ldpc]
Hreg_ldpc [definition, in Infotheo.ldpc]
Hr1 [lemma, in Infotheo.source_coding_fl_converse]
H_out_binary_uniform [lemma, in Infotheo.binary_symmetric_channel]
H_out_max [lemma, in Infotheo.binary_symmetric_channel]
H2 [definition, in Infotheo.binary_entropy_function]
H2ln [definition, in Infotheo.binary_entropy_function]
H2ln_max [lemma, in Infotheo.binary_entropy_function]
H2_max' [lemma, in Infotheo.binary_entropy_function]
H2_max [lemma, in Infotheo.binary_entropy_function]


I

id [definition, in Infotheo.ldpc_algo]
identically_distributed.n [variable, in Infotheo.proba]
identically_distributed.P [variable, in Infotheo.proba]
identically_distributed.A [variable, in Infotheo.proba]
identically_distributed [section, in Infotheo.proba]
id_of_kind_select_children [lemma, in Infotheo.ldpc_algo_proof]
id_of_kind_inj [lemma, in Infotheo.ldpc_algo_proof]
id_of_kind_neq [lemma, in Infotheo.ldpc_algo_proof]
id_dist [definition, in Infotheo.proba]
id_rem_plus [lemma, in Infotheo.Reals_ext]
id_rem [lemma, in Infotheo.Reals_ext]
id_of_kind [definition, in Infotheo.ldpc_algo]
img [definition, in Infotheo.proba]
imset_inj [lemma, in Infotheo.degree_profile]
imset2 [section, in Infotheo.degree_profile]
imset2.aT1 [variable, in Infotheo.degree_profile]
imset2.aT2 [variable, in Infotheo.degree_profile]
imset2.D1 [variable, in Infotheo.degree_profile]
imset2.D2 [variable, in Infotheo.degree_profile]
imset2.f [variable, in Infotheo.degree_profile]
imset2.rT [variable, in Infotheo.degree_profile]
increasing_xlnx_delta [lemma, in Infotheo.ln_facts]
increasing_on_0_to_half [lemma, in Infotheo.binary_entropy_function]
independent_random_variables.P [variable, in Infotheo.proba]
independent_random_variables.Y [variable, in Infotheo.proba]
independent_random_variables.n [variable, in Infotheo.proba]
independent_random_variables.X [variable, in Infotheo.proba]
independent_random_variables.A [variable, in Infotheo.proba]
independent_random_variables [section, in Infotheo.proba]
inde_rv_tuple_pmf_dist [lemma, in Infotheo.proba]
inde_rv [definition, in Infotheo.proba]
injectivity [section, in Infotheo.degree_profile]
inj_card [lemma, in Infotheo.linearcode]
inj_row_set [lemma, in Infotheo.summary]
inl_inj [lemma, in Infotheo.ldpc_algo_proof]
inl_inj [lemma, in Infotheo.degree_profile]
inl_PROD [lemma, in Infotheo.ldpc_erasure]
inl_approx [lemma, in Infotheo.ldpc_erasure]
inr_inj [lemma, in Infotheo.ldpc_algo_proof]
INR_type_fun [lemma, in Infotheo.types]
inr_inj [lemma, in Infotheo.degree_profile]
INR_pow_expn [lemma, in Infotheo.Reals_ext]
INR_Zabs_nat [lemma, in Infotheo.Reals_ext]
insupp [lemma, in Infotheo.cyclic_decoding]
Int_part_pos [lemma, in Infotheo.Reals_ext]
in_seq_set [lemma, in Infotheo.ldpc_algo_proof]
in_sorted [lemma, in Infotheo.arg_rmax]
in_sort [lemma, in Infotheo.arg_rmax]
in_cat [lemma, in Infotheo.ssr_ext]
IPW [lemma, in Infotheo.binary_symmetric_channel]
isum_n_cons [constructor, in Infotheo.proba]
isum_n_1 [constructor, in Infotheo.proba]
isum_n [inductive, in Infotheo.proba]
is_unique [definition, in Infotheo.max_subset]
iter_addr0_cV [lemma, in Infotheo.ssralg_ext]
iter_addr0 [lemma, in Infotheo.ssralg_ext]
iter_stable [lemma, in Infotheo.stopping_set]
iter_Rplus_Rmult [lemma, in Infotheo.Reals_ext]
iter_Rmult_pow [lemma, in Infotheo.Reals_ext]
iter_Rmax [lemma, in Infotheo.Rbigop_max]
iter_Rmult [lemma, in Infotheo.Rbigop]
iter_Rplus [lemma, in Infotheo.Rbigop]


J

joint [definition, in Infotheo.proba]
JointDist [module, in Infotheo.channel]
JointDistd [definition, in Infotheo.channel]
JointDist.d [definition, in Infotheo.channel]
JointDist.f [definition, in Infotheo.channel]
JointDist.f0 [lemma, in Infotheo.channel]
JointDist.f1 [lemma, in Infotheo.channel]
JointDist.JointDist_sect.W [variable, in Infotheo.channel]
JointDist.JointDist_sect.P [variable, in Infotheo.channel]
JointDist.JointDist_sect.B [variable, in Infotheo.channel]
JointDist.JointDist_sect.A [variable, in Infotheo.channel]
JointDist.JointDist_sect [section, in Infotheo.channel]
joint_entropy_dist_ub [lemma, in Infotheo.error_exponent]
`JTS [notation, in Infotheo.joint_typ_seq]
joint_typ_seq_definition.epsilon [variable, in Infotheo.joint_typ_seq]
joint_typ_seq_definition.n [variable, in Infotheo.joint_typ_seq]
joint_typ_seq_definition.W [variable, in Infotheo.joint_typ_seq]
joint_typ_seq_definition.P [variable, in Infotheo.joint_typ_seq]
joint_typ_seq_definition.B [variable, in Infotheo.joint_typ_seq]
joint_typ_seq_definition.A [variable, in Infotheo.joint_typ_seq]
joint_typ_seq_definition [section, in Infotheo.joint_typ_seq]
joint_dom [lemma, in Infotheo.conditional_divergence]
joint_dom_sect.P [variable, in Infotheo.conditional_divergence]
joint_dom_sect.W [variable, in Infotheo.conditional_divergence]
joint_dom_sect.V [variable, in Infotheo.conditional_divergence]
joint_dom_sect.B [variable, in Infotheo.conditional_divergence]
joint_dom_sect.A [variable, in Infotheo.conditional_divergence]
joint_dom_sect [section, in Infotheo.conditional_divergence]
joint_prod_n [lemma, in Infotheo.proba]
joint_prod_n_base_case [lemma, in Infotheo.proba]
joint_dist.P [variable, in Infotheo.proba]
joint_dist.P2 [variable, in Infotheo.proba]
joint_dist.n [variable, in Infotheo.proba]
joint_dist.P1 [variable, in Infotheo.proba]
joint_dist.A [variable, in Infotheo.proba]
joint_dist [section, in Infotheo.proba]
joint_typicality_decoding.HM [variable, in Infotheo.channel_coding_direct]
joint_typicality_decoding.n [variable, in Infotheo.channel_coding_direct]
joint_typicality_decoding.M [variable, in Infotheo.channel_coding_direct]
joint_typicality_decoding.B [variable, in Infotheo.channel_coding_direct]
joint_typicality_decoding.A [variable, in Infotheo.channel_coding_direct]
joint_typicality_decoding [section, in Infotheo.channel_coding_direct]
joint_typ_seq [library]
jtdec [definition, in Infotheo.channel_coding_direct]
jtdec_map [lemma, in Infotheo.channel_coding_direct]
JTS_1 [lemma, in Infotheo.joint_typ_seq]
JTS_1_bound [definition, in Infotheo.joint_typ_seq]
JTS_sup [lemma, in Infotheo.joint_typ_seq]
jtype [module, in Infotheo.jtypes]
jtypes [library]
jtype_not_empty [lemma, in Infotheo.jtypes]
jtype_0_jtypef [lemma, in Infotheo.jtypes]
jtype_entry_ub [lemma, in Infotheo.jtypes]
jtype_facts.ta [variable, in Infotheo.jtypes]
jtype_facts.n [variable, in Infotheo.jtypes]
jtype_facts.B [variable, in Infotheo.jtypes]
jtype_facts.A [variable, in Infotheo.jtypes]
jtype_facts [section, in Infotheo.jtypes]
jtype_finType [definition, in Infotheo.jtypes]
jtype_finMixin [definition, in Infotheo.jtypes]
jtype_enumP [lemma, in Infotheo.jtypes]
jtype_enum [definition, in Infotheo.jtypes]
jtype_enum_f [definition, in Infotheo.jtypes]
jtype_countType [definition, in Infotheo.jtypes]
jtype_countMixin [definition, in Infotheo.jtypes]
jtype_count_pcancel [lemma, in Infotheo.jtypes]
jtype_unpickle [definition, in Infotheo.jtypes]
jtype_pickle [definition, in Infotheo.jtypes]
jtype_choiceType [definition, in Infotheo.jtypes]
jtype_choiceMixin [lemma, in Infotheo.jtypes]
jtype_choice_pcancel [lemma, in Infotheo.jtypes]
jtype_choice_f [definition, in Infotheo.jtypes]
jtype_eqType [definition, in Infotheo.jtypes]
jtype_eqMixin [definition, in Infotheo.jtypes]
jtype_eqP [lemma, in Infotheo.jtypes]
jtype_eq [definition, in Infotheo.jtypes]
jtype_proj_eq [lemma, in Infotheo.jtypes]
jtype_coercion [definition, in Infotheo.jtypes]
jtype.c [projection, in Infotheo.jtypes]
jtype.c_f [projection, in Infotheo.jtypes]
jtype.f [projection, in Infotheo.jtypes]
jtype.jtype [record, in Infotheo.jtypes]
jtype.jtype_def.n [variable, in Infotheo.jtypes]
jtype.jtype_def.B [variable, in Infotheo.jtypes]
jtype.jtype_def.A [variable, in Infotheo.jtypes]
jtype.jtype_def [section, in Infotheo.jtypes]
jtype.mkJtype [constructor, in Infotheo.jtypes]
jtype.sum_f [projection, in Infotheo.jtypes]
jtyp_seq_transmitted.He [variable, in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.n [variable, in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.epsilon [variable, in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.W [variable, in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.P [variable, in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.B [variable, in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.A [variable, in Infotheo.joint_typ_seq]
jtyp_seq_transmitted [section, in Infotheo.joint_typ_seq]
jtyp_seq_upper.epsilon [variable, in Infotheo.joint_typ_seq]
jtyp_seq_upper.n [variable, in Infotheo.joint_typ_seq]
jtyp_seq_upper.W [variable, in Infotheo.joint_typ_seq]
jtyp_seq_upper.P [variable, in Infotheo.joint_typ_seq]
jtyp_seq_upper.B [variable, in Infotheo.joint_typ_seq]
jtyp_seq_upper.A [variable, in Infotheo.joint_typ_seq]
jtyp_seq_upper [section, in Infotheo.joint_typ_seq]
jtyp_seq [definition, in Infotheo.joint_typ_seq]


K

k [definition, in Infotheo.source_coding_fl_direct]
kernel [definition, in Infotheo.linearcode]
kernel_delta [lemma, in Infotheo.checksum]
kernel_delta0 [lemma, in Infotheo.checksum]
kernel_delta1 [lemma, in Infotheo.checksum]
kernel_sect.H [variable, in Infotheo.linearcode]
kernel_sect.m [variable, in Infotheo.linearcode]
kernel_sect.n [variable, in Infotheo.linearcode]
kernel_sect.F [variable, in Infotheo.linearcode]
kernel_sect [section, in Infotheo.linearcode]
Key [module, in Infotheo.cyclic_decoding]
keycond [definition, in Infotheo.cyclic_decoding]
keycond_nvstop [lemma, in Infotheo.cyclic_decoding]
keycond_vstop [lemma, in Infotheo.cyclic_decoding]
keycond_errloc [lemma, in Infotheo.cyclic_decoding]
keycond_errloc.card_supp [variable, in Infotheo.cyclic_decoding]
keycond_errloc.t [variable, in Infotheo.cyclic_decoding]
keycond_errloc.a_neq0 [variable, in Infotheo.cyclic_decoding]
keycond_errloc.e [variable, in Infotheo.cyclic_decoding]
keycond_errloc.n [variable, in Infotheo.cyclic_decoding]
keycond_errloc.a [variable, in Infotheo.cyclic_decoding]
keycond_errloc.F [variable, in Infotheo.cyclic_decoding]
keycond_errloc [section, in Infotheo.cyclic_decoding]
keycond_vstop_with_e [lemma, in Infotheo.reed_solomon]
keycoprime_vstop [lemma, in Infotheo.reed_solomon]
keyquot_divp_errloc [lemma, in Infotheo.cyclic_decoding]
keyquot_keyrem [lemma, in Infotheo.cyclic_decoding]
keyrem_divp_errloc [lemma, in Infotheo.cyclic_decoding]
keyrem_vstop [lemma, in Infotheo.reed_solomon]
key_equation_prop.a_nontrivial [variable, in Infotheo.cyclic_decoding]
key_equation_prop.keycond_p [variable, in Infotheo.cyclic_decoding]
key_equation_prop.errloc_deg_ub [variable, in Infotheo.cyclic_decoding]
key_equation_prop.p [variable, in Infotheo.cyclic_decoding]
key_equation_prop.card_supp [variable, in Infotheo.cyclic_decoding]
key_equation_prop.a_neq0 [variable, in Infotheo.cyclic_decoding]
q [notation, in Infotheo.cyclic_decoding]
key_equation_prop.e [variable, in Infotheo.cyclic_decoding]
key_equation_prop.t [variable, in Infotheo.cyclic_decoding]
key_equation_prop.n [variable, in Infotheo.cyclic_decoding]
key_equation_prop.a [variable, in Infotheo.cyclic_decoding]
key_equation_prop.F [variable, in Infotheo.cyclic_decoding]
key_equation_prop [section, in Infotheo.cyclic_decoding]
key_coprime_nvstop [lemma, in Infotheo.reed_solomon]
Key.eqn_mod_mod [lemma, in Infotheo.cyclic_decoding]
Key.eqn_mod [definition, in Infotheo.cyclic_decoding]
Key.equation [lemma, in Infotheo.cyclic_decoding]
\omega2_( _ , _ ) [notation, in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.a_neq0 [variable, in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.t [variable, in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.t' [variable, in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.y [variable, in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.n [variable, in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.a [variable, in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.F [variable, in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient [section, in Infotheo.cyclic_decoding]
Key.omega20 [lemma, in Infotheo.cyclic_decoding]
Key.q [definition, in Infotheo.cyclic_decoding]
Key.r [definition, in Infotheo.cyclic_decoding]
kf [constructor, in Infotheo.ldpc_algo]
kind [inductive, in Infotheo.ldpc_algo]
kind_filter [lemma, in Infotheo.ldpc_algo_proof]
kind_eqType [definition, in Infotheo.ldpc_algo_proof]
kind_eqMixin [definition, in Infotheo.ldpc_algo_proof]
kind_eqP [lemma, in Infotheo.ldpc_algo_proof]
kind_eq_bool [definition, in Infotheo.ldpc_algo_proof]
kind_of_id [definition, in Infotheo.ldpc_algo]
Kop_proof [lemma, in Infotheo.ldpc_erasure]
Kpp [definition, in Infotheo.checksum]
kv [constructor, in Infotheo.ldpc_algo]
K949 [definition, in Infotheo.ldpc]
K949_lemma [lemma, in Infotheo.ldpc]


L

labels [definition, in Infotheo.ldpc_algo]
labels_sumprod_down [lemma, in Infotheo.ldpc_algo_proof]
labels_sumprod_up [lemma, in Infotheo.ldpc_algo_proof]
labels_build_tree_rec [lemma, in Infotheo.ldpc_algo_proof]
lambda [definition, in Infotheo.source_coding_fl_direct]
lambda [definition, in Infotheo.source_coding_fl_converse]
lambdainv2 [lemma, in Infotheo.source_coding_fl_direct]
Lambda_of_L [definition, in Infotheo.degree_profile]
lambda0 [lemma, in Infotheo.source_coding_fl_direct]
largest_stopset_SumProdBEC_exists [lemma, in Infotheo.stopping_set]
largest_stopset_SumProdBEC_fix [lemma, in Infotheo.stopping_set]
largest_stopset_is_unique [lemma, in Infotheo.stopping_set]
largest_stopset [definition, in Infotheo.stopping_set]
largest_subset_verifying_stopset.E [variable, in Infotheo.stopping_set]
largest_subset_verifying_stopset.H [variable, in Infotheo.stopping_set]
largest_subset_verifying_stopset.n [variable, in Infotheo.stopping_set]
largest_subset_verifying_stopset.m [variable, in Infotheo.stopping_set]
largest_subset_verifying_stopset.n' [variable, in Infotheo.stopping_set]
largest_subset_verifying_stopset.m' [variable, in Infotheo.stopping_set]
largest_subset_verifying_stopset [section, in Infotheo.stopping_set]
lastE [definition, in Infotheo.ldpc_algo_proof]
LCode_m.sphere [definition, in Infotheo.linearcode]
LCode_m.encode_decode' [lemma, in Infotheo.linearcode]
LCode_m.encode_decode [lemma, in Infotheo.linearcode]
LCode_m.lcode_section.C_not_trivial [variable, in Infotheo.linearcode]
LCode_m.decode_encode_dist2 [lemma, in Infotheo.linearcode]
LCode_m.lcode_section.Hdecode_nearest [variable, in Infotheo.linearcode]
LCode_m.d_min_prop [lemma, in Infotheo.linearcode]
LCode_m.lcode_section.C [variable, in Infotheo.linearcode]
LCode_m.lcode_section.k [variable, in Infotheo.linearcode]
LCode_m.lcode_section.n [variable, in Infotheo.linearcode]
LCode_m.lcode_section [section, in Infotheo.linearcode]
LCode_m.dimlen [lemma, in Infotheo.linearcode]
LCode_m.enc_img [projection, in Infotheo.linearcode]
LCode_m.enc_inj [projection, in Infotheo.linearcode]
LCode_m.enc_dec [projection, in Infotheo.linearcode]
LCode_m.lcode0_of [projection, in Infotheo.linearcode]
LCode_m.lcode [record, in Infotheo.linearcode]
LCode_m.mkLcode [constructor, in Infotheo.linearcode]
LCode_m [module, in Infotheo.linearcode]
lcode0_kernel [definition, in Infotheo.linearcode]
lcode0_coercion [definition, in Infotheo.linearcode]
LCode0_m.mem_poly_rV [lemma, in Infotheo.linearcode]
LCode0_m.not_empty [lemma, in Infotheo.linearcode]
LCode0_m.oclosed [lemma, in Infotheo.linearcode]
LCode0_m.sclosed [lemma, in Infotheo.linearcode]
LCode0_m.aclosed [lemma, in Infotheo.linearcode]
LCode0_m.O_in_code [lemma, in Infotheo.linearcode]
LCode0_m.lcode0.C [variable, in Infotheo.linearcode]
LCode0_m.lcode0.F [variable, in Infotheo.linearcode]
LCode0_m.lcode0.n [variable, in Infotheo.linearcode]
LCode0_m.lcode0 [section, in Infotheo.linearcode]
LCode0_m.lcode0_coercion [definition, in Infotheo.linearcode]
LCode0_m.mkLcode0 [constructor, in Infotheo.linearcode]
LCode0_m.lcode0 [inductive, in Infotheo.linearcode]
LCode0_m [module, in Infotheo.linearcode]
LCode1_m.enc_discard_is_id [projection, in Infotheo.linearcode]
LCode1_m.dec_is_repair_discard [projection, in Infotheo.linearcode]
LCode1_m.discard [projection, in Infotheo.linearcode]
LCode1_m.repair [projection, in Infotheo.linearcode]
LCode1_m.lcode_of [projection, in Infotheo.linearcode]
LCode1_m.lcode1 [record, in Infotheo.linearcode]
LCode1_m.mkLcode1 [constructor, in Infotheo.linearcode]
LCode1_m [module, in Infotheo.linearcode]
ldpc [library]
`V [notation, in Infotheo.ldpc]
`F [notation, in Infotheo.ldpc]
ldpc_approx_algo.tb [variable, in Infotheo.ldpc]
ldpc_approx_algo.W [variable, in Infotheo.ldpc]
ldpc_approx_algo.B [variable, in Infotheo.ldpc]
ldpc_approx_algo.H [variable, in Infotheo.ldpc]
ldpc_approx_algo.n [variable, in Infotheo.ldpc]
ldpc_approx_algo.m [variable, in Infotheo.ldpc]
ldpc_approx_algo [section, in Infotheo.ldpc]
ldpc_algo_proof [library]
ldpc_erasure [library]
ldpc_algo [library]
lead_coef_F2 [lemma, in Infotheo.f2]
leq_bigmax_seq [lemma, in Infotheo.ldpc_algo_proof]
leq_cards_ord [lemma, in Infotheo.degree_profile]
leq_size_v [lemma, in Infotheo.euclid]
leq_var_dist [lemma, in Infotheo.variation_dist]
leq_lt_predn [lemma, in Infotheo.ssr_ext]
leq0cdiv [lemma, in Infotheo.conditional_divergence]
leq0div [lemma, in Infotheo.divergence]
leRR [lemma, in Infotheo.Rssr]
Letter [module, in Infotheo.ldpc_erasure]
Letter.blank [definition, in Infotheo.ldpc_erasure]
Letter.F2_of [definition, in Infotheo.ldpc_erasure]
Letter.le [definition, in Infotheo.ldpc_erasure]
Letter.le_trans [lemma, in Infotheo.ldpc_erasure]
Letter.le_refl [lemma, in Infotheo.ldpc_erasure]
Letter.le_inl_star [lemma, in Infotheo.ldpc_erasure]
Letter.le_inl [lemma, in Infotheo.ldpc_erasure]
Letter.lmat_le_trans [lemma, in Infotheo.ldpc_erasure]
Letter.lmat_le_refl [lemma, in Infotheo.ldpc_erasure]
Letter.lmat_le [definition, in Infotheo.ldpc_erasure]
Letter.P [lemma, in Infotheo.ldpc_erasure]
Letter.spec [inductive, in Infotheo.ldpc_erasure]
Letter.specblank [constructor, in Infotheo.ldpc_erasure]
Letter.specstar [constructor, in Infotheo.ldpc_erasure]
Letter.spec0 [constructor, in Infotheo.ldpc_erasure]
Letter.spec1 [constructor, in Infotheo.ldpc_erasure]
Letter.star [definition, in Infotheo.ldpc_erasure]
Letter.t [definition, in Infotheo.ldpc_erasure]
_ <=m _ [notation, in Infotheo.ldpc_erasure]
le_sum_all [lemma, in Infotheo.degree_profile]
le_lt_rank_trans [lemma, in Infotheo.ssr_ext]
le_rank [definition, in Infotheo.ssr_ext]
le_0_Pr [lemma, in Infotheo.proba]
le_sq [lemma, in Infotheo.Reals_ext]
linearcode [library]
lin_syndrome [definition, in Infotheo.linearcode]
lmat_le_alpha0 [lemma, in Infotheo.ldpc_erasure]
lmat_le_decr [lemma, in Infotheo.ldpc_erasure]
ln_id_eq [lemma, in Infotheo.ln_facts]
ln_id_cmp [lemma, in Infotheo.ln_facts]
ln_idgt0 [lemma, in Infotheo.ln_facts]
ln_idlt0_xgt1 [lemma, in Infotheo.ln_facts]
ln_idlt0_xlt1 [lemma, in Infotheo.ln_facts]
ln_id' [definition, in Infotheo.ln_facts]
ln_id [definition, in Infotheo.ln_facts]
ln_id_sect [section, in Infotheo.ln_facts]
ln_increasing_le [lemma, in Infotheo.log2]
ln_2_neq0 [lemma, in Infotheo.log2]
ln_2_pos [lemma, in Infotheo.log2]
ln_facts [library]
log [definition, in Infotheo.log2]
log_id_eq [lemma, in Infotheo.ln_facts]
log_id_cmp [lemma, in Infotheo.ln_facts]
log_id_diff [lemma, in Infotheo.divergence]
log_sum [lemma, in Infotheo.log_sum]
log_sum1 [lemma, in Infotheo.log_sum]
log_sum_stmt [definition, in Infotheo.log_sum]
log_exp2 [lemma, in Infotheo.log2]
log_le_inv [lemma, in Infotheo.log2]
log_lt_inv [lemma, in Infotheo.log2]
log_inv [lemma, in Infotheo.log2]
log_increasing [lemma, in Infotheo.log2]
log_increasing_le [lemma, in Infotheo.log2]
log_Rinv [lemma, in Infotheo.log2]
log_mult [lemma, in Infotheo.log2]
log_exp1_Rle_0 [lemma, in Infotheo.log2]
log_2 [lemma, in Infotheo.log2]
log_1 [lemma, in Infotheo.log2]
log_rmul_rsum_mlog [lemma, in Infotheo.Rbigop]
log_sum [library]
log2 [library]
lowest_size [definition, in Infotheo.linearcode]
ltn_size_v [lemma, in Infotheo.euclid]
ltn_size_q [lemma, in Infotheo.euclid]
ltn_size_q' [lemma, in Infotheo.euclid]
ltn_size_r [lemma, in Infotheo.euclid]
ltRR [lemma, in Infotheo.Rssr]
lt_neq_rank [lemma, in Infotheo.ssr_ext]
lt_le_rank_weak [lemma, in Infotheo.ssr_ext]
lt_le_rank_trans [lemma, in Infotheo.ssr_ext]
lt_rank_alt [lemma, in Infotheo.ssr_ext]
lt_rank [definition, in Infotheo.ssr_ext]
lubound [definition, in Infotheo.channel]


M

majority_vote [definition, in Infotheo.repcode]
makeDist [definition, in Infotheo.proba]
map_filter_pred1_nseq [lemma, in Infotheo.jtypes]
map_filter_nseq_nil [lemma, in Infotheo.jtypes]
map_pred1_nseq [lemma, in Infotheo.jtypes]
map_apply_seq_eq [lemma, in Infotheo.ldpc_algo_proof]
map_flatten [lemma, in Infotheo.ldpc_algo_proof]
MAP_implies_ML [lemma, in Infotheo.decoding]
MAP_decoding_prop.P [variable, in Infotheo.decoding]
MAP_decoding_prop.codewords_non_empty [variable, in Infotheo.decoding]
MAP_decoding_prop.c [variable, in Infotheo.decoding]
MAP_decoding_prop.n [variable, in Infotheo.decoding]
MAP_decoding_prop.M [variable, in Infotheo.decoding]
MAP_decoding_prop.W [variable, in Infotheo.decoding]
MAP_decoding_prop.B [variable, in Infotheo.decoding]
MAP_decoding_prop.A [variable, in Infotheo.decoding]
MAP_decoding_prop [section, in Infotheo.decoding]
MAP_decoding [definition, in Infotheo.decoding]
MAP_decoding_sect.P [variable, in Infotheo.decoding]
MAP_decoding_sect.c [variable, in Infotheo.decoding]
MAP_decoding_sect.n [variable, in Infotheo.decoding]
MAP_decoding_sect.M [variable, in Infotheo.decoding]
MAP_decoding_sect.W [variable, in Infotheo.decoding]
MAP_decoding_sect.B [variable, in Infotheo.decoding]
MAP_decoding_sect.A [variable, in Infotheo.decoding]
MAP_decoding_sect [section, in Infotheo.decoding]
map_nil_inv [lemma, in Infotheo.ssr_ext]
map_mlog_prop.P [variable, in Infotheo.aep]
map_mlog_prop.A [variable, in Infotheo.aep]
map_mlog_prop [section, in Infotheo.aep]
map_mlog [definition, in Infotheo.aep]
map_nth_iota_id [lemma, in Infotheo.num_occ]
MarginalPosteriorProbabiliy [module, in Infotheo.pproba]
MarginalPosteriorProbabiliy.d [definition, in Infotheo.pproba]
MarginalPosteriorProbabiliy.f [definition, in Infotheo.pproba]
MarginalPosteriorProbabiliy.f'_neq0 [lemma, in Infotheo.pproba]
MarginalPosteriorProbabiliy.f0 [lemma, in Infotheo.pproba]
MarginalPosteriorProbabiliy.f1 [lemma, in Infotheo.pproba]
MarginalPosteriorProbabiliy.Kmpp [definition, in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.f' [variable, in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.H [variable, in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.y [variable, in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.W [variable, in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.B [variable, in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.P [variable, in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.A [variable, in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.m [variable, in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.n [variable, in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.n' [variable, in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba [section, in Infotheo.pproba]
markov [lemma, in Infotheo.proba]
Pr[ _ >= _ ] (proba_scope) [notation, in Infotheo.proba]
markov_inquality.X_nonneg [variable, in Infotheo.proba]
markov_inquality.X [variable, in Infotheo.proba]
markov_inquality.A [variable, in Infotheo.proba]
markov_inquality [section, in Infotheo.proba]
MaxFintype [section, in Infotheo.arg_rmax]
MaxFintype.I [variable, in Infotheo.arg_rmax]
MaxFintype.i0 [variable, in Infotheo.arg_rmax]
MaxFintype.ord [variable, in Infotheo.arg_rmax]
MaxFintype.ord_inv [variable, in Infotheo.arg_rmax]
MaxFintype.P [variable, in Infotheo.arg_rmax]
MaxFintype.P_not_pred0 [variable, in Infotheo.arg_rmax]
MaxFintype.reflexive_ord_inv [variable, in Infotheo.arg_rmax]
MaxFintype.reflexive_ord [variable, in Infotheo.arg_rmax]
MaxFintype.total_ord_inv [variable, in Infotheo.arg_rmax]
MaxFintype.total_ord [variable, in Infotheo.arg_rmax]
MaxFintype.transitive_ord_inv [variable, in Infotheo.arg_rmax]
MaxFintype.transitive_ord [variable, in Infotheo.arg_rmax]
MaximumSpecOrd [constructor, in Infotheo.arg_rmax]
MaximumSpecR [constructor, in Infotheo.arg_rmax]
maximum_likelihood_decoding_prop.c_ML [variable, in Infotheo.decoding]
maximum_likelihood_decoding_prop.P [variable, in Infotheo.decoding]
maximum_likelihood_decoding_prop.codewords_non_empty [variable, in Infotheo.decoding]
maximum_likelihood_decoding_prop.c [variable, in Infotheo.decoding]
maximum_likelihood_decoding_prop.n [variable, in Infotheo.decoding]
maximum_likelihood_decoding_prop.M_not_0 [variable, in Infotheo.decoding]
maximum_likelihood_decoding_prop.M [variable, in Infotheo.decoding]
maximum_likelihood_decoding_prop.W [variable, in Infotheo.decoding]
maximum_likelihood_decoding_prop.B [variable, in Infotheo.decoding]
maximum_likelihood_decoding_prop.A [variable, in Infotheo.decoding]
maximum_likelihood_decoding_prop [section, in Infotheo.decoding]
maximum_likelihood_decoding [definition, in Infotheo.decoding]
maximum_likelihood_decoding_sect.P [variable, in Infotheo.decoding]
maximum_likelihood_decoding_sect.c [variable, in Infotheo.decoding]
maximum_likelihood_decoding_sect.n [variable, in Infotheo.decoding]
maximum_likelihood_decoding_sect.M [variable, in Infotheo.decoding]
maximum_likelihood_decoding_sect.W [variable, in Infotheo.decoding]
maximum_likelihood_decoding_sect.B [variable, in Infotheo.decoding]
maximum_likelihood_decoding_sect.A [variable, in Infotheo.decoding]
maximum_likelihood_decoding_sect [section, in Infotheo.decoding]
maximum_spec_r [inductive, in Infotheo.arg_rmax]
maximum_spec_ord [inductive, in Infotheo.arg_rmax]
maxset [definition, in Infotheo.max_subset]
maxset_is_unique [lemma, in Infotheo.max_subset]
maxset_is_Ppred [lemma, in Infotheo.max_subset]
maxset_in_Psets [lemma, in Infotheo.max_subset]
maxset_is_subset [lemma, in Infotheo.max_subset]
maxsubset [module, in Infotheo.max_subset]
maxsubset.A [variable, in Infotheo.max_subset]
maxsubset.ex_maxset [lemma, in Infotheo.max_subset]
maxsubset.maxset [definition, in Infotheo.max_subset]
maxsubset.maxsetinf [lemma, in Infotheo.max_subset]
maxsubset.maxsetp [lemma, in Infotheo.max_subset]
maxsubset.maxsetP [lemma, in Infotheo.max_subset]
maxsubset.maxset_exists [lemma, in Infotheo.max_subset]
maxsubset.maxset_eq [lemma, in Infotheo.max_subset]
max_dH [lemma, in Infotheo.hamming]
max_wH' [lemma, in Infotheo.hamming]
max_wH [lemma, in Infotheo.hamming]
max_subset_satisfying_P.PU [variable, in Infotheo.max_subset]
max_subset_satisfying_P.P0 [variable, in Infotheo.max_subset]
max_subset_satisfying_P.P [variable, in Infotheo.max_subset]
max_subset_satisfying_P.A [variable, in Infotheo.max_subset]
max_subset_satisfying_P [section, in Infotheo.max_subset]
max_subset [library]
McEliece [module, in Infotheo.mceliece]
mceliece [library]
McEliece.C [definition, in Infotheo.mceliece]
McEliece.CSM [variable, in Infotheo.mceliece]
McEliece.cyp [definition, in Infotheo.mceliece]
McEliece.cyp_hat [definition, in Infotheo.mceliece]
McEliece.C' [variable, in Infotheo.mceliece]
McEliece.decode [definition, in Infotheo.mceliece]
McEliece.decode_encode [definition, in Infotheo.mceliece]
McEliece.decryption_undoes_encryption [lemma, in Infotheo.mceliece]
McEliece.G [definition, in Infotheo.mceliece]
McEliece.gc_decoder [axiom, in Infotheo.mceliece]
McEliece.G_hat [definition, in Infotheo.mceliece]
McEliece.HC [variable, in Infotheo.mceliece]
McEliece.Hdimlen [variable, in Infotheo.mceliece]
McEliece.Hz [axiom, in Infotheo.mceliece]
McEliece.k [variable, in Infotheo.mceliece]
McEliece.msg [axiom, in Infotheo.mceliece]
McEliece.msg_hat [axiom, in Infotheo.mceliece]
McEliece.msg' [definition, in Infotheo.mceliece]
McEliece.n [variable, in Infotheo.mceliece]
McEliece.n' [variable, in Infotheo.mceliece]
McEliece.P [definition, in Infotheo.mceliece]
McEliece.p [axiom, in Infotheo.mceliece]
McEliece.S [axiom, in Infotheo.mceliece]
McEliece.S_inv [axiom, in Infotheo.mceliece]
McEliece.t [definition, in Infotheo.mceliece]
McEliece.z [axiom, in Infotheo.mceliece]
mdd_err_cor_rep [lemma, in Infotheo.repcode]
mdd_err_cor [definition, in Infotheo.linearcode]
MD_implies_ML [lemma, in Infotheo.decoding]
MD_ML_decoding.P [variable, in Infotheo.decoding]
MD_ML_decoding.c_not_empty [variable, in Infotheo.decoding]
MD_ML_decoding.c [variable, in Infotheo.decoding]
MD_ML_decoding.n [variable, in Infotheo.decoding]
MD_ML_decoding.M [variable, in Infotheo.decoding]
MD_ML_decoding.W [variable, in Infotheo.decoding]
MD_ML_decoding.card_F2 [variable, in Infotheo.decoding]
MD_ML_decoding.p_01 [variable, in Infotheo.decoding]
MD_ML_decoding.p [variable, in Infotheo.decoding]
MD_ML_decoding [section, in Infotheo.decoding]
mem_fin_enum [lemma, in Infotheo.ldpc_algo_proof]
mem_rs_gen_RS [lemma, in Infotheo.reed_solomon]
mem_kernel_syndrome0 [lemma, in Infotheo.linearcode]
mem_nseq [lemma, in Infotheo.ssr_ext]
message_ok [lemma, in Infotheo.ldpc_algo_proof]
MinFintype [section, in Infotheo.arg_rmax]
MinFintype.arg_pred_min [variable, in Infotheo.arg_rmax]
MinFintype.exFP [variable, in Infotheo.arg_rmax]
MinFintype.FP [variable, in Infotheo.arg_rmax]
MinFintype.FP_F [variable, in Infotheo.arg_rmax]
MinFintype.I [variable, in Infotheo.arg_rmax]
MinFintype.i0 [variable, in Infotheo.arg_rmax]
MinFintype.ord [variable, in Infotheo.arg_rmax]
MinFintype.P [variable, in Infotheo.arg_rmax]
MinFintype.Pi0 [variable, in Infotheo.arg_rmax]
MinFintype.P_not_pred0 [variable, in Infotheo.arg_rmax]
MinFintype.reflexive_ord [variable, in Infotheo.arg_rmax]
MinFintype.total_ord [variable, in Infotheo.arg_rmax]
MinFintype.transitive_ord [variable, in Infotheo.arg_rmax]
MinimumSpecOrd [constructor, in Infotheo.arg_rmax]
MinimumSpecR [constructor, in Infotheo.arg_rmax]
minimum_distance_decoding_equiv [lemma, in Infotheo.decoding]
minimum_distance_decoding_alt [definition, in Infotheo.decoding]
minimum_distance_decoding [definition, in Infotheo.decoding]
minimum_distance_decoding_sect.cnot0 [variable, in Infotheo.decoding]
minimum_distance_decoding_sect.c [variable, in Infotheo.decoding]
minimum_distance_decoding_sect.n [variable, in Infotheo.decoding]
minimum_distance_decoding_sect.M [variable, in Infotheo.decoding]
minimum_distance_decoding_sect [section, in Infotheo.decoding]
minimum_distance_is_3 [lemma, in Infotheo.hamming_code]
minimum_spec_r [inductive, in Infotheo.arg_rmax]
minimum_spec_ord [inductive, in Infotheo.arg_rmax]
minn_sum_num_occ_n [lemma, in Infotheo.num_occ]
min_dist_ub [definition, in Infotheo.reed_solomon]
min_wH_codeword [definition, in Infotheo.linearcode]
min_sum_num_occ [lemma, in Infotheo.num_occ]
mkCode [constructor, in Infotheo.channel_code]
mkCodeRateType [constructor, in Infotheo.channel_code]
mkDist [constructor, in Infotheo.proba]
mkLcode_dec [definition, in Infotheo.linearcode]
mkPosFun [constructor, in Infotheo.Reals_ext]
mkRrat [constructor, in Infotheo.Reals_ext]
mkRvar [constructor, in Infotheo.proba]
mkScode [constructor, in Infotheo.source_code]
mkTypedCode [constructor, in Infotheo.types]
mlog_rv [definition, in Infotheo.proba]
ML_smallest_err_rate [lemma, in Infotheo.decoding]
ML_err_rate [lemma, in Infotheo.decoding]
modp_Xn [lemma, in Infotheo.cyclic_decoding]
monic_F_2 [lemma, in Infotheo.f2]
morph_modp [lemma, in Infotheo.cyclic_code]
morph_bool_of_F2 [lemma, in Infotheo.f2]
morph_F2_of_bool [lemma, in Infotheo.f2]
morph_exp2_plus [lemma, in Infotheo.Rbigop]
morph_mulRDl [lemma, in Infotheo.Rbigop]
morph_mulRDr [lemma, in Infotheo.Rbigop]
morph_mult_INR [lemma, in Infotheo.Rbigop]
morph_plus_INR [lemma, in Infotheo.Rbigop]
morph_Ropp [lemma, in Infotheo.Rbigop]
MPM_condition [definition, in Infotheo.ldpc]
MPM_condition.c [variable, in Infotheo.ldpc]
MPM_condition.C [variable, in Infotheo.ldpc]
MPM_condition.m [variable, in Infotheo.ldpc]
MPM_condition.n [variable, in Infotheo.ldpc]
MPM_condition.n' [variable, in Infotheo.ldpc]
MPM_condition.W [variable, in Infotheo.ldpc]
MPM_condition [section, in Infotheo.ldpc]
msg [definition, in Infotheo.ldpc_algo]
msg_spec_alpha_beta [lemma, in Infotheo.ldpc_algo_proof]
msg_spec' [definition, in Infotheo.ldpc_algo_proof]
msg_sz [lemma, in Infotheo.ldpc_algo_proof]
msg_nonnil [lemma, in Infotheo.ldpc_algo_proof]
msg_nil [lemma, in Infotheo.ldpc_algo_proof]
msg_none_eq [lemma, in Infotheo.ldpc_algo_proof]
msg_spec [definition, in Infotheo.ldpc_algo]
mulmx_sum_col [lemma, in Infotheo.ssralg_ext]
mulmx_castmx_cols_comm2 [lemma, in Infotheo.linearcode]
mulmx_castmx_cols_comm [lemma, in Infotheo.linearcode]
mulmx_nat2bin_row [lemma, in Infotheo.hamming]
mulRA [lemma, in Infotheo.Rssr]
mulRC [definition, in Infotheo.Rssr]
mulRDl [lemma, in Infotheo.Rssr]
mulRDr [lemma, in Infotheo.Rssr]
mulR_comoid [definition, in Infotheo.Rbigop]
mulR_muloid [definition, in Infotheo.Rbigop]
mulR_monoid [definition, in Infotheo.Rbigop]
mulR0 [definition, in Infotheo.Rssr]
mulR1 [definition, in Infotheo.Rssr]
mul0R [definition, in Infotheo.Rssr]
mul1R [definition, in Infotheo.Rssr]
mul2_inj [lemma, in Infotheo.ssr_ext]
mutinfo_distance_bound.cdiv_bounds [variable, in Infotheo.error_exponent]
mutinfo_distance_bound.cdiv_ub [variable, in Infotheo.error_exponent]
mutinfo_distance_bound.V_dom_by_W [variable, in Infotheo.error_exponent]
mutinfo_distance_bound.P [variable, in Infotheo.error_exponent]
mutinfo_distance_bound.W [variable, in Infotheo.error_exponent]
mutinfo_distance_bound.V [variable, in Infotheo.error_exponent]
mutinfo_distance_bound.B [variable, in Infotheo.error_exponent]
mutinfo_distance_bound.A [variable, in Infotheo.error_exponent]
mutinfo_distance_bound [section, in Infotheo.error_exponent]
mutual_information_section.B [variable, in Infotheo.channel]
mutual_information_section.A [variable, in Infotheo.channel]
mutual_information_section [section, in Infotheo.channel]
mut_info_dist_ub [lemma, in Infotheo.error_exponent]
mut_info [definition, in Infotheo.channel]
mut_info_dist [definition, in Infotheo.channel]
MVT_cor1_pderivable_new_var [lemma, in Infotheo.ln_facts]
MVT_cor1_pderivable_new [lemma, in Infotheo.ln_facts]
MVT_cor1_pderivable [lemma, in Infotheo.Ranalysis_ext]
mxrank_castmx [lemma, in Infotheo.linearcode]
mybig_index_uniq [lemma, in Infotheo.Rbigop]
MyPartitions [section, in Infotheo.ldpc]
MyPartitions.I [variable, in Infotheo.ldpc]
MyPartitions.MyBigOps [section, in Infotheo.ldpc]
MyPartitions.MyBigOps.idx [variable, in Infotheo.ldpc]
MyPartitions.MyBigOps.op [variable, in Infotheo.ldpc]
MyPartitions.MyBigOps.R [variable, in Infotheo.ldpc]
MyPartitions.MyBigOps.rhs [variable, in Infotheo.ldpc]
MyPartitions.MyBigOps.rhs_cond [variable, in Infotheo.ldpc]
MyPartitions.T [variable, in Infotheo.ldpc]
mypartition_disjoint_bigcup [lemma, in Infotheo.ldpc]
mypath [definition, in Infotheo.ldpc_algo_proof]
mypath_ok [lemma, in Infotheo.ldpc_algo_proof]
mypath_ok_rec [lemma, in Infotheo.ldpc_algo_proof]
myrel [definition, in Infotheo.ldpc_algo_proof]
myrel_ok [lemma, in Infotheo.ldpc_algo_proof]
my_ord_enum_ok [lemma, in Infotheo.ldpc_algo_proof]
my_ord_enum [definition, in Infotheo.ldpc_algo_proof]
my_sub_path [lemma, in Infotheo.subgraph_partition]


N

n [definition, in Infotheo.source_coding_fl_direct]
natbin [library]
nat_of_posK [lemma, in Infotheo.natbin]
nat_of_pos_inj [lemma, in Infotheo.ssr_ext]
nat_of_pos_not_0 [lemma, in Infotheo.ssr_ext]
nat2bin [definition, in Infotheo.natbin]
nat2bin_inj [lemma, in Infotheo.natbin]
nat2bin_0_n [lemma, in Infotheo.natbin]
nat2bin_two_pow [lemma, in Infotheo.natbin]
nat2bin_nseq_false [lemma, in Infotheo.natbin]
nat2bin_rV_0 [lemma, in Infotheo.hamming]
nat2bin_rV_plus_nat2bin_rV_not_zero [lemma, in Infotheo.hamming]
nat2bin_rV_inj [lemma, in Infotheo.hamming]
nat2bin_rV_not_zero [lemma, in Infotheo.hamming]
nat2bin_cV [definition, in Infotheo.hamming]
nat2bin_rV [definition, in Infotheo.hamming]
negF2 [definition, in Infotheo.f2]
negk [definition, in Infotheo.ldpc_algo]
neq_Rdiv [lemma, in Infotheo.Reals_ext]
`F( _ , _ ) [notation, in Infotheo.tanner]
`F [notation, in Infotheo.tanner]
`V( _ , _ ) [notation, in Infotheo.tanner]
`V [notation, in Infotheo.tanner]
next_graph.H [variable, in Infotheo.tanner]
next_graph.n [variable, in Infotheo.tanner]
next_graph.m [variable, in Infotheo.tanner]
next_graph [section, in Infotheo.tanner]
Node [constructor, in Infotheo.ldpc_algo]
node_tag_build [lemma, in Infotheo.ldpc_algo_proof]
node_tag_sumprod_up [lemma, in Infotheo.ldpc_algo_proof]
node_tag_sumprod_down [lemma, in Infotheo.ldpc_algo_proof]
node_id_build [lemma, in Infotheo.ldpc_algo_proof]
node_id_sumprod_up [lemma, in Infotheo.ldpc_algo_proof]
node_id_sumprod_down [lemma, in Infotheo.ldpc_algo_proof]
node_tag [projection, in Infotheo.ldpc_algo]
node_id [projection, in Infotheo.ldpc_algo]
non_0_codeword_rep [lemma, in Infotheo.repcode]
non_0_codeword [definition, in Infotheo.linearcode]
non_trivial_linear_binary_codes.C_not_trivial [variable, in Infotheo.linearcode]
non_trivial_linear_binary_codes.C [variable, in Infotheo.linearcode]
non_trivial_linear_binary_codes.n [variable, in Infotheo.linearcode]
non_trivial_linear_binary_codes [section, in Infotheo.linearcode]
non_trivial_linear_codes.C_not_trivial [variable, in Infotheo.linearcode]
non_trivial_linear_codes.C [variable, in Infotheo.linearcode]
non_trivial_linear_codes.n [variable, in Infotheo.linearcode]
non_trivial_linear_codes.F [variable, in Infotheo.linearcode]
non_trivial_linear_codes [section, in Infotheo.linearcode]
non_trivial_def.C [variable, in Infotheo.linearcode]
non_trivial_def.n [variable, in Infotheo.linearcode]
non_trivial_def.F [variable, in Infotheo.linearcode]
non_trivial_def [section, in Infotheo.linearcode]
non_typical_sequences [lemma, in Infotheo.joint_typ_seq]
non_typicality.epsilon [variable, in Infotheo.joint_typ_seq]
non_typicality.n [variable, in Infotheo.joint_typ_seq]
non_typicality.W [variable, in Infotheo.joint_typ_seq]
non_typicality.P [variable, in Infotheo.joint_typ_seq]
non_typicality.B [variable, in Infotheo.joint_typ_seq]
non_typicality.A [variable, in Infotheo.joint_typ_seq]
non_typicality [section, in Infotheo.joint_typ_seq]
non0_codeword_lowest_deg_uniq [lemma, in Infotheo.linearcode]
non0_codeword_lowest_deg [definition, in Infotheo.linearcode]
normalize [definition, in Infotheo.ldpc_algo]
NormalizedDegreeDistribution [module, in Infotheo.degree_profile]
NormalizedDegreeDistribution.L [record, in Infotheo.degree_profile]
NormalizedDegreeDistribution.L_definition.K [variable, in Infotheo.degree_profile]
NormalizedDegreeDistribution.L_definition [section, in Infotheo.degree_profile]
NormalizedDegreeDistribution.mkL [constructor, in Infotheo.degree_profile]
NormalizedDegreeDistribution.p [projection, in Infotheo.degree_profile]
NormalizedDegreeDistribution.p0 [projection, in Infotheo.degree_profile]
NormalizedDegreeDistribution.p1 [projection, in Infotheo.degree_profile]
normalized_nvstop [lemma, in Infotheo.reed_solomon]
notin_subgraph [lemma, in Infotheo.subgraph_partition]
notin_Vgraph_part_vnode [lemma, in Infotheo.tanner_partition]
notin_Vgraph [lemma, in Infotheo.tanner_partition]
notin_num_occ_0 [lemma, in Infotheo.num_occ]
not_receivable [lemma, in Infotheo.checksum]
not_trivial_rep_code [lemma, in Infotheo.repcode]
not_trivial_equiv [lemma, in Infotheo.linearcode]
not_trivial' [definition, in Infotheo.linearcode]
not_trivial [definition, in Infotheo.linearcode]
not_zero_prop [lemma, in Infotheo.linearcode]
not_preimg_Cal_E [lemma, in Infotheo.channel_coding_direct]
not_preimg [definition, in Infotheo.channel_coding_direct]
no_0_type [lemma, in Infotheo.types]
no_codeword_with_weight_2 [lemma, in Infotheo.hamming_code]
no_codeword_with_weight_1 [lemma, in Infotheo.hamming_code]
no_failure_sup [lemma, in Infotheo.source_coding_fl_converse]
no_failure [definition, in Infotheo.source_coding_fl_converse]
nseq_cat [lemma, in Infotheo.ssr_ext]
nseq_S [lemma, in Infotheo.ssr_ext]
nseq_add [lemma, in Infotheo.ssr_ext]
num [projection, in Infotheo.Reals_ext]
num_co_occ_jtype [definition, in Infotheo.jtypes]
num_occ_num_co_occ [lemma, in Infotheo.jtypes]
num_occ_filter [lemma, in Infotheo.stopping_set]
num_occ_ext.H [variable, in Infotheo.stopping_set]
num_occ_ext.n [variable, in Infotheo.stopping_set]
num_occ_ext.m [variable, in Infotheo.stopping_set]
num_occ_ext [section, in Infotheo.stopping_set]
num_occ_tuple_F2 [lemma, in Infotheo.repcode]
num_occ_negF2 [lemma, in Infotheo.repcode]
num_occ_sum [lemma, in Infotheo.f2]
num_co_occ_num_occ [lemma, in Infotheo.num_occ]
num_co_occ_num_occ1 [lemma, in Infotheo.num_occ]
num_co_occ_perm [lemma, in Infotheo.num_occ]
num_co_occ_partial_sum_alt [lemma, in Infotheo.num_occ]
num_co_occ_sum [lemma, in Infotheo.num_occ]
num_co_occ_facts.tb [variable, in Infotheo.num_occ]
num_co_occ_facts.ta [variable, in Infotheo.num_occ]
num_co_occ_facts.n [variable, in Infotheo.num_occ]
num_co_occ_facts.B [variable, in Infotheo.num_occ]
num_co_occ_facts.A [variable, in Infotheo.num_occ]
num_co_occ_facts [section, in Infotheo.num_occ]
num_co_occ_alt [lemma, in Infotheo.num_occ]
num_co_occ_ub [lemma, in Infotheo.num_occ]
num_co_occ_leq_n [lemma, in Infotheo.num_occ]
num_co_occ_tuple.tb [variable, in Infotheo.num_occ]
num_co_occ_tuple.ta [variable, in Infotheo.num_occ]
num_co_occ_tuple.b [variable, in Infotheo.num_occ]
num_co_occ_tuple.a [variable, in Infotheo.num_occ]
num_co_occ_tuple.n [variable, in Infotheo.num_occ]
num_co_occ_tuple.B [variable, in Infotheo.num_occ]
num_co_occ_tuple.A [variable, in Infotheo.num_occ]
num_co_occ_tuple [section, in Infotheo.num_occ]
num_co_occ_sym [lemma, in Infotheo.num_occ]
num_co_occ1 [lemma, in Infotheo.num_occ]
num_co_occ_prop.tb [variable, in Infotheo.num_occ]
num_co_occ_prop.ta [variable, in Infotheo.num_occ]
num_co_occ_prop.b [variable, in Infotheo.num_occ]
num_co_occ_prop.a [variable, in Infotheo.num_occ]
num_co_occ_prop.B [variable, in Infotheo.num_occ]
num_co_occ_prop.A [variable, in Infotheo.num_occ]
num_co_occ_prop [section, in Infotheo.num_occ]
num_co_occ [definition, in Infotheo.num_occ]
num_co_occ_def.tb [variable, in Infotheo.num_occ]
num_co_occ_def.ta [variable, in Infotheo.num_occ]
num_co_occ_def.b [variable, in Infotheo.num_occ]
num_co_occ_def.a [variable, in Infotheo.num_occ]
num_co_occ_def.B [variable, in Infotheo.num_occ]
num_co_occ_def.A [variable, in Infotheo.num_occ]
num_co_occ_def [section, in Infotheo.num_occ]
num_occ_perm [lemma, in Infotheo.num_occ]
num_occ_tuple_facts.t [variable, in Infotheo.num_occ]
num_occ_tuple_facts.n [variable, in Infotheo.num_occ]
num_occ_tuple_facts.A [variable, in Infotheo.num_occ]
num_occ_tuple_facts [section, in Infotheo.num_occ]
num_occ_thead [lemma, in Infotheo.num_occ]
num_occ_alt [lemma, in Infotheo.num_occ]
num_occ_tuple.t [variable, in Infotheo.num_occ]
num_occ_tuple.a [variable, in Infotheo.num_occ]
num_occ_tuple.n [variable, in Infotheo.num_occ]
num_occ_tuple.A [variable, in Infotheo.num_occ]
num_occ_leq_n [lemma, in Infotheo.num_occ]
num_occ_tuple [section, in Infotheo.num_occ]
num_occ_sum_bool [lemma, in Infotheo.num_occ]
num_occ_rev [lemma, in Infotheo.num_occ]
num_occ_cons [lemma, in Infotheo.num_occ]
num_occ0 [lemma, in Infotheo.num_occ]
num_occ_prop.t [variable, in Infotheo.num_occ]
num_occ_prop.a [variable, in Infotheo.num_occ]
num_occ_prop.A [variable, in Infotheo.num_occ]
num_occ_prop [section, in Infotheo.num_occ]
num_occ [definition, in Infotheo.num_occ]
num_occ_def.t [variable, in Infotheo.num_occ]
num_occ_def.a [variable, in Infotheo.num_occ]
num_occ_def.A [variable, in Infotheo.num_occ]
num_occ_def [section, in Infotheo.num_occ]
num_occ [library]
nvstop [definition, in Infotheo.cyclic_decoding]
nvstop_errloc [lemma, in Infotheo.reed_solomon]
nvstop_RS_cw [lemma, in Infotheo.reed_solomon]
nzdegdist_coerce [definition, in Infotheo.degree_profile]
N_bin_to_nat [lemma, in Infotheo.natbin]
n_condition [definition, in Infotheo.channel_coding_direct]
N2bitseq [definition, in Infotheo.natbin]
N2bitseq_bin_of_nat_Npos_bitseq2positive [lemma, in Infotheo.natbin]
N2bitseq_bin_of_nat_Npos_bitseq2positive' [lemma, in Infotheo.natbin]
N2bitseq_bin_of_nat_two_pow [lemma, in Infotheo.natbin]
N2bitseq_inj [lemma, in Infotheo.natbin]
N2bitseq_nseq_false [lemma, in Infotheo.natbin]
N2bitseq_leading_bit [lemma, in Infotheo.natbin]
N2bitseq_2 [lemma, in Infotheo.natbin]


O

occ_co_occ [lemma, in Infotheo.jtypes]
old [section, in Infotheo.Rbigop]
omega0 [lemma, in Infotheo.cyclic_decoding]
one_minus_X_neq0 [lemma, in Infotheo.cyclic_decoding]
one_in_kernel [lemma, in Infotheo.repcode]
ordered_ranks.n [variable, in Infotheo.ssr_ext]
ordered_ranks.X [variable, in Infotheo.ssr_ext]
ordered_ranks [section, in Infotheo.ssr_ext]
ord_of_kind [definition, in Infotheo.ldpc_algo]
ord0_false [lemma, in Infotheo.ssr_ext]
ord1 [lemma, in Infotheo.ssr_ext]
OutDist [module, in Infotheo.channel]
OutDist_prop.B [variable, in Infotheo.channel]
OutDist_prop.A [variable, in Infotheo.channel]
OutDist_prop [section, in Infotheo.channel]
OutDist.d [definition, in Infotheo.channel]
OutDist.f [definition, in Infotheo.channel]
OutDist.f0 [lemma, in Infotheo.channel]
OutDist.f1 [lemma, in Infotheo.channel]
OutDist.OutDist_sect.W [variable, in Infotheo.channel]
OutDist.OutDist_sect.P [variable, in Infotheo.channel]
OutDist.OutDist_sect.B [variable, in Infotheo.channel]
OutDist.OutDist_sect.A [variable, in Infotheo.channel]
OutDist.OutDist_sect [section, in Infotheo.channel]
output_type_out_entropy [lemma, in Infotheo.jtypes]
output_type_out_dist [lemma, in Infotheo.jtypes]
output_type_facts.Vctyp [variable, in Infotheo.jtypes]
output_type_facts.Bnot0 [variable, in Infotheo.jtypes]
output_type_facts.P [variable, in Infotheo.jtypes]
output_type_facts.V [variable, in Infotheo.jtypes]
output_type_facts.n [variable, in Infotheo.jtypes]
output_type_facts.n' [variable, in Infotheo.jtypes]
output_type_facts.B [variable, in Infotheo.jtypes]
output_type_facts.A [variable, in Infotheo.jtypes]
output_type_facts [section, in Infotheo.jtypes]
OutType [module, in Infotheo.jtypes]
OutType.d [definition, in Infotheo.jtypes]
OutType.f [definition, in Infotheo.jtypes]
OutType.f0 [lemma, in Infotheo.jtypes]
OutType.f1 [lemma, in Infotheo.jtypes]
OutType.OutType_sect.V [variable, in Infotheo.jtypes]
OutType.OutType_sect.n [variable, in Infotheo.jtypes]
OutType.OutType_sect.n' [variable, in Infotheo.jtypes]
OutType.OutType_sect.B [variable, in Infotheo.jtypes]
OutType.OutType_sect.A [variable, in Infotheo.jtypes]
OutType.OutType_sect [section, in Infotheo.jtypes]
OutType.P [definition, in Infotheo.jtypes]
out_entropy_dist_ub [lemma, in Infotheo.error_exponent]
o_PI_2 [lemma, in Infotheo.channel_coding_direct]
o_PI [definition, in Infotheo.channel_coding_direct]


P

Pad [section, in Infotheo.natbin]
pad_seqL_leading_true_inj [lemma, in Infotheo.natbin]
pad_seqL_inj [lemma, in Infotheo.natbin]
pad_seqL [definition, in Infotheo.natbin]
pad_seq [definition, in Infotheo.natbin]
Pad.A [variable, in Infotheo.natbin]
Pad.def [variable, in Infotheo.natbin]
pair_ind [lemma, in Infotheo.euclid]
pair_big_snd [lemma, in Infotheo.Rbigop]
pair_big_fst [lemma, in Infotheo.Rbigop]
PartialComputationGraph [module, in Infotheo.degree_profile]
PartialComputationGraph.add_edge_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.border [projection, in Infotheo.degree_profile]
PartialComputationGraph.border_nodes_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.border_step.step_ok.Hcond [variable, in Infotheo.degree_profile]
PartialComputationGraph.border_step.step_ok.Htriv [variable, in Infotheo.degree_profile]
PartialComputationGraph.border_step.step_ok [section, in Infotheo.degree_profile]
PartialComputationGraph.border_step.step_id.Hid [variable, in Infotheo.degree_profile]
PartialComputationGraph.border_step.step_id [section, in Infotheo.degree_profile]
PartialComputationGraph.border_step.step_edom [variable, in Infotheo.degree_profile]
PartialComputationGraph.border_step.end_node [variable, in Infotheo.degree_profile]
PartialComputationGraph.border_step.end_port [variable, in Infotheo.degree_profile]
PartialComputationGraph.border_step.start_port [variable, in Infotheo.degree_profile]
PartialComputationGraph.border_step.c [variable, in Infotheo.degree_profile]
PartialComputationGraph.border_step.port [variable, in Infotheo.degree_profile]
PartialComputationGraph.border_step [section, in Infotheo.degree_profile]
PartialComputationGraph.border_p [projection, in Infotheo.degree_profile]
PartialComputationGraph.build_traces [definition, in Infotheo.degree_profile]
PartialComputationGraph.cards_conode_out [lemma, in Infotheo.degree_profile]
PartialComputationGraph.card_ports_nodes_start [lemma, in Infotheo.degree_profile]
PartialComputationGraph.card_nodes3 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.card_nodes2 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.card_nodes [lemma, in Infotheo.degree_profile]
PartialComputationGraph.card_border_ports [lemma, in Infotheo.degree_profile]
PartialComputationGraph.check_ports [definition, in Infotheo.degree_profile]
PartialComputationGraph.comp_graph_eqType [definition, in Infotheo.degree_profile]
PartialComputationGraph.comp_graph_eqMixin [definition, in Infotheo.degree_profile]
PartialComputationGraph.comp_graph_eqP [lemma, in Infotheo.degree_profile]
PartialComputationGraph.comp_graph_eqb [definition, in Infotheo.degree_profile]
PartialComputationGraph.comp_graph [record, in Infotheo.degree_profile]
PartialComputationGraph.connected_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.connected_start [lemma, in Infotheo.degree_profile]
PartialComputationGraph.connected_step [lemma, in Infotheo.degree_profile]
PartialComputationGraph.connected_step_out [lemma, in Infotheo.degree_profile]
PartialComputationGraph.connected_step_ep [lemma, in Infotheo.degree_profile]
PartialComputationGraph.connected_switch [lemma, in Infotheo.degree_profile]
PartialComputationGraph.connected_ports [definition, in Infotheo.degree_profile]
PartialComputationGraph.conodes [projection, in Infotheo.degree_profile]
PartialComputationGraph.conodes_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.conodes_switch_nodes [lemma, in Infotheo.degree_profile]
PartialComputationGraph.conode_outside_ports [lemma, in Infotheo.degree_profile]
PartialComputationGraph.converges [definition, in Infotheo.degree_profile]
PartialComputationGraph.correct_dist_tends_to_dist [lemma, in Infotheo.degree_profile]
PartialComputationGraph.correct_dist [definition, in Infotheo.degree_profile]
PartialComputationGraph.correct_dist0_1 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.correct_dist0_coef_ge0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.correct_dist0 [definition, in Infotheo.degree_profile]
PartialComputationGraph.dest_ports_seqs_step [lemma, in Infotheo.degree_profile]
PartialComputationGraph.dest_ports_seqs_0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.dest_ports_seqs [definition, in Infotheo.degree_profile]
PartialComputationGraph.dest_ports_step [lemma, in Infotheo.degree_profile]
PartialComputationGraph.dest_ports_0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.dest_ports [definition, in Infotheo.degree_profile]
PartialComputationGraph.dest_dist_out [lemma, in Infotheo.degree_profile]
PartialComputationGraph.dest_dist_ge0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.dest_dist1 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.dest_dist [definition, in Infotheo.degree_profile]
PartialComputationGraph.dest_port_out [lemma, in Infotheo.degree_profile]
PartialComputationGraph.dest_port [definition, in Infotheo.degree_profile]
PartialComputationGraph.edges [projection, in Infotheo.degree_profile]
PartialComputationGraph.edges_out [projection, in Infotheo.degree_profile]
PartialComputationGraph.edges_inj [projection, in Infotheo.degree_profile]
PartialComputationGraph.edom_codom [projection, in Infotheo.degree_profile]
PartialComputationGraph.empty_hemi_graph [definition, in Infotheo.degree_profile]
PartialComputationGraph.enum_step_border [lemma, in Infotheo.degree_profile]
PartialComputationGraph.en_in_step_conodes [lemma, in Infotheo.degree_profile]
PartialComputationGraph.ep_in_en [lemma, in Infotheo.degree_profile]
PartialComputationGraph.eq_edom_edges_inout [lemma, in Infotheo.degree_profile]
PartialComputationGraph.fintree_of_graph [definition, in Infotheo.degree_profile]
PartialComputationGraph.fintree_of_trace [definition, in Infotheo.degree_profile]
PartialComputationGraph.flip [definition, in Infotheo.degree_profile]
PartialComputationGraph.flip_seq_path [lemma, in Infotheo.degree_profile]
PartialComputationGraph.flip_graph_rel [lemma, in Infotheo.degree_profile]
PartialComputationGraph.free_step_coports_gt [lemma, in Infotheo.degree_profile]
PartialComputationGraph.free_coports_card [lemma, in Infotheo.degree_profile]
PartialComputationGraph.free_coports [definition, in Infotheo.degree_profile]
PartialComputationGraph.graph_of_trace'_converges [lemma, in Infotheo.degree_profile]
PartialComputationGraph.graph_of_trace' [definition, in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.step_dist.port [variable, in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.step_dist [section, in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.correct_def.lam [variable, in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.correct_def.h [variable, in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.correct_def.port [variable, in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.correct_def [section, in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.K [variable, in Infotheo.degree_profile]
PartialComputationGraph.graph_dist [section, in Infotheo.degree_profile]
PartialComputationGraph.graph_of_trace [definition, in Infotheo.degree_profile]
PartialComputationGraph.graph_rel_irrel [lemma, in Infotheo.degree_profile]
PartialComputationGraph.graph_rel_switch [lemma, in Infotheo.degree_profile]
PartialComputationGraph.graph_rel_known_port [lemma, in Infotheo.degree_profile]
PartialComputationGraph.graph_rel [definition, in Infotheo.degree_profile]
PartialComputationGraph.graph_node [definition, in Infotheo.degree_profile]
PartialComputationGraph.graph_rel.c [variable, in Infotheo.degree_profile]
PartialComputationGraph.graph_rel.port [variable, in Infotheo.degree_profile]
PartialComputationGraph.graph_rel [section, in Infotheo.degree_profile]
PartialComputationGraph.graph_dom [definition, in Infotheo.degree_profile]
PartialComputationGraph.hemi_comp_graph_eqType [definition, in Infotheo.degree_profile]
PartialComputationGraph.hemi_comp_graph_eqMixin [definition, in Infotheo.degree_profile]
PartialComputationGraph.hemi_comp_graph_eqP [lemma, in Infotheo.degree_profile]
PartialComputationGraph.hemi_comp_graph_eqb [definition, in Infotheo.degree_profile]
PartialComputationGraph.hemi_comp_graph [record, in Infotheo.degree_profile]
PartialComputationGraph.inj_switch_path_node [lemma, in Infotheo.degree_profile]
PartialComputationGraph.known_port_step [lemma, in Infotheo.degree_profile]
PartialComputationGraph.known_port [definition, in Infotheo.degree_profile]
PartialComputationGraph.known_coports [definition, in Infotheo.degree_profile]
PartialComputationGraph.ksets [definition, in Infotheo.degree_profile]
PartialComputationGraph.ksetsP [definition, in Infotheo.degree_profile]
PartialComputationGraph.le_sum_all_cond [lemma, in Infotheo.degree_profile]
PartialComputationGraph.monotone_nodes_switch_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.monotone_conodes_switch_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.monotone_conodes_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.monotonic_switch_step_it_odd [lemma, in Infotheo.degree_profile]
PartialComputationGraph.monotonic_switch_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.monotonic_switch_edges_step_it [definition, in Infotheo.degree_profile]
PartialComputationGraph.monotonic_codom_step_it [definition, in Infotheo.degree_profile]
PartialComputationGraph.monotonic_switch_progress [lemma, in Infotheo.degree_profile]
PartialComputationGraph.monotonic_edom_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.monotonic_edges_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.monotonic_step_rel [lemma, in Infotheo.degree_profile]
PartialComputationGraph.monotonic_edges_step [lemma, in Infotheo.degree_profile]
PartialComputationGraph.monotonic_edom_step [lemma, in Infotheo.degree_profile]
PartialComputationGraph.natrD_morph [lemma, in Infotheo.degree_profile]
PartialComputationGraph.nodes [projection, in Infotheo.degree_profile]
PartialComputationGraph.nodes_switch_conodes [lemma, in Infotheo.degree_profile]
PartialComputationGraph.node_of_hemi_comp_graph [lemma, in Infotheo.degree_profile]
PartialComputationGraph.no_sharing_tree_like [lemma, in Infotheo.degree_profile]
PartialComputationGraph.no_cycle_in_known_ports [lemma, in Infotheo.degree_profile]
PartialComputationGraph.part [projection, in Infotheo.degree_profile]
PartialComputationGraph.partial_to_tupleK [lemma, in Infotheo.degree_profile]
PartialComputationGraph.partial_to_tuple [definition, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.connected_step_out.Hcond [variable, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.connected_step_out.Htriv [variable, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.connected_step_out.Hc [variable, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.connected_step_out [section, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.c' [variable, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.en [variable, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.ep [variable, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.sp [variable, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step [section, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.c [variable, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.port [variable, in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress [section, in Infotheo.degree_profile]
PartialComputationGraph.partial_connected [definition, in Infotheo.degree_profile]
PartialComputationGraph.partition_big_nodes_arities [lemma, in Infotheo.degree_profile]
PartialComputationGraph.part_nodes_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.part_p [projection, in Infotheo.degree_profile]
PartialComputationGraph.pcomp_graph_def.port [variable, in Infotheo.degree_profile]
PartialComputationGraph.pcomp_graph_def [section, in Infotheo.degree_profile]
PartialComputationGraph.ports_conodes_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.tp [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.dest_ports' [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.build_graphs [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.lr [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.next_graphs [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.def_port [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.rho [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.lam [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist [section, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.tree_like_start_lemmas.Hrho [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.tree_like_start_lemmas.Hlam [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.tree_like_start_lemmas [section, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.next_graphs [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.Hmaxlen [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.tree_max [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.maxdeg [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.l [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.rho [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.lam [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.tree_of_trace [section, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.def_port [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start [section, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.tree_max [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.build_graphs [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.TuplePartial.def [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.TuplePartial.T [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.TuplePartial.s [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.TuplePartial.A [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.TuplePartial [section, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.def_port [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.maxdeg [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after [section, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.bnext [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.def_port [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.Hmax [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.maxdeg [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.tree_like_step_lemmas.Hi1 [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.tree_like_step_lemmas.Hsc [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.tree_like_step_lemmas.Htriv [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.tree_like_step_lemmas.i [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.tree_like_step_lemmas [section, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.Hpc [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_dist_out.U [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_dist_out.Hi [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_dist_out.i [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_dist_out [section, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.Hsize_lambda [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.next_graphs [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.Hpb [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.Hc [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.p [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_port_out.Hp [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_port_out.p [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_port_out.k [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_port_out [section, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.c [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step [section, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.lambda [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border [section, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.K [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.port [variable, in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor [section, in Infotheo.degree_profile]
PartialComputationGraph.remaining_ports [definition, in Infotheo.degree_profile]
PartialComputationGraph.rem_ports_ge0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.single_hemi_graph [definition, in Infotheo.degree_profile]
PartialComputationGraph.sp_in_step_edom [lemma, in Infotheo.degree_profile]
PartialComputationGraph.start_dist_ge0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.start_dist [definition, in Infotheo.degree_profile]
PartialComputationGraph.start_graph [definition, in Infotheo.degree_profile]
PartialComputationGraph.step [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_dist_it' [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_dist' [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_dist_it_1 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_it [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_dist_it_ge0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_dist_ge0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_dist_it_const [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_dist_it [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_dest_port [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_dist [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_edges_sp_ep [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_edges_out [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_edges_inj [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_edom_codom [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_edges_ok [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_codom_ok [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_coports_ok [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_coborder_ok [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_conodes_ok [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_edom_edom [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_edom_ok [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_ports_ok [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_border_ok [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_nodes_ok [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_edges_id [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_conodes_id [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_edom_id [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_nodes_id [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_edges [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_conodes [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_coborder [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_nodes [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_border [lemma, in Infotheo.degree_profile]
PartialComputationGraph.step_cond [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_end_cond [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_start_cond [definition, in Infotheo.degree_profile]
PartialComputationGraph.step_trivIset [definition, in Infotheo.degree_profile]
PartialComputationGraph.sum_weighted_count_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.sum_step_dist_it_eq0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.sum_step_out [lemma, in Infotheo.degree_profile]
PartialComputationGraph.sum_step_used [lemma, in Infotheo.degree_profile]
PartialComputationGraph.sum_step_border [lemma, in Infotheo.degree_profile]
PartialComputationGraph.sum_lambda_pred [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch [definition, in Infotheo.degree_profile]
PartialComputationGraph.switchK [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switchK_edges [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_step_dist_it' [definition, in Infotheo.degree_profile]
PartialComputationGraph.switch_step_it_cat [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_step_dist_it_const [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_step_dist_it_ge0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_step_dist_it_1 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_step_it [definition, in Infotheo.degree_profile]
PartialComputationGraph.switch_step_dist_it [definition, in Infotheo.degree_profile]
PartialComputationGraph.switch_graph_nodeK [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_graph_rel [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_path_node [definition, in Infotheo.degree_profile]
PartialComputationGraph.switch_graph_node [definition, in Infotheo.degree_profile]
PartialComputationGraph.switch_edges_cancel2 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_edges_out [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_edges_inj [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_edom_codom [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_edges_cancel [lemma, in Infotheo.degree_profile]
PartialComputationGraph.switch_edges [definition, in Infotheo.degree_profile]
PartialComputationGraph.switch_step.switch_edom [variable, in Infotheo.degree_profile]
PartialComputationGraph.switch_step.c [variable, in Infotheo.degree_profile]
PartialComputationGraph.switch_step.port [variable, in Infotheo.degree_profile]
PartialComputationGraph.switch_step [section, in Infotheo.degree_profile]
PartialComputationGraph.temp1 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_neighbor [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_start [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_of_trace_graph [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_rev_switch_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_rev_step_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_of_graph_deg [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_of_trace_deg [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_of_graph [definition, in Infotheo.degree_profile]
PartialComputationGraph.tree_of_trace [definition, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_after [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_empty_border [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_step [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_no_sharing [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_switch [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_switch_imp [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_rev_step [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like_rev_subrel [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree_like [definition, in Infotheo.degree_profile]
PartialComputationGraph.tree'_of_trace_graph [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree'_of_graph_deg [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree'_of_trace_deg [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tree'_of_graph [definition, in Infotheo.degree_profile]
PartialComputationGraph.tree'_of_trace [definition, in Infotheo.degree_profile]
PartialComputationGraph.trivIset_port_out [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tuple_to_partial_enumK [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tuple_to_partial_out [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tuple_to_partial_in [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tuple_to_partialK [lemma, in Infotheo.degree_profile]
PartialComputationGraph.tuple_to_partial [definition, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_is_fintree_dist [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_is_tree_dist [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_tree_of_trace [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_start_is_dist [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_next [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_switch_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_switch_ge0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_switch_step [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_it_ge0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_it [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_it_eq0 [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count_step [lemma, in Infotheo.degree_profile]
PartialComputationGraph.weighted_count [definition, in Infotheo.degree_profile]
PartialComputationGraph.weight_is_dist [lemma, in Infotheo.degree_profile]
[ node _ # _ | _ ] (set_scope) [notation, in Infotheo.degree_profile]
partition_inequality [lemma, in Infotheo.partition_inequality]
partition_of_subgraph_prop [lemma, in Infotheo.subgraph_partition]
partition_inequality [library]
path [section, in Infotheo.degree_profile]
path_ext.acyclic_g [variable, in Infotheo.subgraph_partition]
path_ext.simple_g [variable, in Infotheo.subgraph_partition]
path_ext.symmetric_g [variable, in Infotheo.subgraph_partition]
path_ext.g [variable, in Infotheo.subgraph_partition]
path_ext.V [variable, in Infotheo.subgraph_partition]
path_ext [section, in Infotheo.subgraph_partition]
path_notin [lemma, in Infotheo.subgraph_partition]
path.f [variable, in Infotheo.degree_profile]
path.f_morph [variable, in Infotheo.degree_profile]
path.g [variable, in Infotheo.degree_profile]
path.g' [variable, in Infotheo.degree_profile]
path.T [variable, in Infotheo.degree_profile]
PCM_V [lemma, in Infotheo.ldpc_erasure]
pderivable [definition, in Infotheo.Ranalysis_ext]
pderivable_Ropp_xlnx [lemma, in Infotheo.ln_facts]
pderivable_ln_id_xle1 [lemma, in Infotheo.ln_facts]
pderivable_Ropp_H2ln [lemma, in Infotheo.binary_entropy_function]
pderivable_H2ln [lemma, in Infotheo.binary_entropy_function]
pderivable_restrict_right [lemma, in Infotheo.Ranalysis_ext]
pderivable_restrict_left [lemma, in Infotheo.Ranalysis_ext]
pderivable_prop.f [variable, in Infotheo.Ranalysis_ext]
pderivable_prop.b [variable, in Infotheo.Ranalysis_ext]
pderivable_prop.a [variable, in Infotheo.Ranalysis_ext]
pderivable_prop [section, in Infotheo.Ranalysis_ext]
pderivable_pinsker_function_spec [lemma, in Infotheo.pinsker_function]
perm_Stuples_Stuples_perm [lemma, in Infotheo.jtypes]
perm_mx_vec [lemma, in Infotheo.ssralg_ext]
perm_tuple_in_Ttuples [lemma, in Infotheo.types]
perm_tuples_facts.B [variable, in Infotheo.ssr_ext]
perm_tuple0 [lemma, in Infotheo.ssr_ext]
perm_tuple_inj [lemma, in Infotheo.ssr_ext]
perm_tuple_comp [lemma, in Infotheo.ssr_ext]
perm_tuples_facts.n [variable, in Infotheo.ssr_ext]
perm_tuple_id [lemma, in Infotheo.ssr_ext]
perm_tuples_facts.A [variable, in Infotheo.ssr_ext]
perm_tuples_facts [section, in Infotheo.ssr_ext]
perm_tuple_set [definition, in Infotheo.ssr_ext]
perm_tuple [definition, in Infotheo.ssr_ext]
perm_tuples.s [variable, in Infotheo.ssr_ext]
perm_tuples.n [variable, in Infotheo.ssr_ext]
perm_tuples.A [variable, in Infotheo.ssr_ext]
perm_tuples [section, in Infotheo.ssr_ext]
perm_eq_enum [lemma, in Infotheo.hamming]
perm_on_Sn [lemma, in Infotheo.hamming]
pfamily_tsplit_Vgraph [lemma, in Infotheo.summary_tanner]
phi [definition, in Infotheo.source_coding_fl_direct]
phi_f [lemma, in Infotheo.source_coding_fl_direct]
pid_mx_inj [lemma, in Infotheo.ssralg_ext]
Pinsker [section, in Infotheo.pinsker]
pinsker [library]
Pinsker_inequality_weak [lemma, in Infotheo.pinsker]
Pinsker_inequality [lemma, in Infotheo.pinsker]
Pinsker_2_inequality [lemma, in Infotheo.pinsker]
Pinsker_2.P_dom_by_Q [variable, in Infotheo.pinsker]
Pinsker_2.card_A [variable, in Infotheo.pinsker]
Pinsker_2.Q [variable, in Infotheo.pinsker]
Pinsker_2.P [variable, in Infotheo.pinsker]
Pinsker_2.A [variable, in Infotheo.pinsker]
Pinsker_2 [section, in Infotheo.pinsker]
Pinsker_2_inequality_bdist [lemma, in Infotheo.pinsker]
pinsker_fun_p_eq [lemma, in Infotheo.pinsker]
Pinsker_2_bdist.P_dom_by_Q [variable, in Infotheo.pinsker]
Pinsker_2_bdist.Q [variable, in Infotheo.pinsker]
Pinsker_2_bdist.P [variable, in Infotheo.pinsker]
Pinsker_2_bdist.card_A [variable, in Infotheo.pinsker]
Pinsker_2_bdist.A [variable, in Infotheo.pinsker]
Pinsker_2_bdist.q01 [variable, in Infotheo.pinsker]
Pinsker_2_bdist.p01 [variable, in Infotheo.pinsker]
Pinsker_2_bdist.q [variable, in Infotheo.pinsker]
Pinsker_2_bdist.p [variable, in Infotheo.pinsker]
Pinsker_2_bdist [section, in Infotheo.pinsker]
pinsker_fun_pos [lemma, in Infotheo.pinsker_function]
pinsker_fun_pos_sect.P_dom_by_Q [variable, in Infotheo.pinsker_function]
pinsker_fun_pos_sect.card_A [variable, in Infotheo.pinsker_function]
pinsker_fun_pos_sect.A [variable, in Infotheo.pinsker_function]
pinsker_fun_pos_sect.q01 [variable, in Infotheo.pinsker_function]
pinsker_fun_pos_sect.p01 [variable, in Infotheo.pinsker_function]
pinsker_fun_pos_sect.q [variable, in Infotheo.pinsker_function]
pinsker_fun_pos_sect.p [variable, in Infotheo.pinsker_function]
pinsker_fun_pos_sect [section, in Infotheo.pinsker_function]
pinsker_fun_increasing_on_p_to_1 [lemma, in Infotheo.pinsker_function]
pinsker_fun_pderivable2 [lemma, in Infotheo.pinsker_function]
pinsker_fun_decreasing_on_0_to_p [lemma, in Infotheo.pinsker_function]
pinsker_fun_pderivable1 [lemma, in Infotheo.pinsker_function]
pinsker_fun_p [lemma, in Infotheo.pinsker_function]
pinsker_function_analysis.Hq [variable, in Infotheo.pinsker_function]
pinsker_function_analysis.Hp [variable, in Infotheo.pinsker_function]
pinsker_function_analysis.q [variable, in Infotheo.pinsker_function]
pinsker_function_analysis.p [variable, in Infotheo.pinsker_function]
pinsker_function_analysis [section, in Infotheo.pinsker_function]
pinsker_function_spec_pos [lemma, in Infotheo.pinsker_function]
pinsker_fun_increasing_on_0_to_1 [lemma, in Infotheo.pinsker_function]
pinsker_function_spec' [definition, in Infotheo.pinsker_function]
pinsker_function_spec [definition, in Infotheo.pinsker_function]
pinsker_fun' [definition, in Infotheo.pinsker_function]
pinsker_fun [definition, in Infotheo.pinsker_function]
pinsker_function [library]
Pinsker.A [variable, in Infotheo.pinsker]
Pinsker.P [variable, in Infotheo.pinsker]
Pinsker.P_dom_by_Q [variable, in Infotheo.pinsker]
Pinsker.Q [variable, in Infotheo.pinsker]
0 [notation, in Infotheo.pinsker]
1 [notation, in Infotheo.pinsker]
pivot_notin_subgraph [lemma, in Infotheo.subgraph_partition]
pmf [projection, in Infotheo.proba]
pmf1 [projection, in Infotheo.proba]
poly_ops.K [variable, in Infotheo.degree_profile]
poly_ops [section, in Infotheo.degree_profile]
poly_rV_0 [lemma, in Infotheo.poly_ext]
poly_rV_0_inv [lemma, in Infotheo.poly_ext]
poly_def_lead_coef [lemma, in Infotheo.poly_ext]
poly_ext [library]
positive2bitseq [definition, in Infotheo.natbin]
positive2bitseq_bitseq2positive [lemma, in Infotheo.natbin]
positive2bitseq_true [lemma, in Infotheo.natbin]
positive2bitseq_inj [lemma, in Infotheo.natbin]
positive2bitseq_not_false [lemma, in Infotheo.natbin]
positive2bitseq_not_nseq_false [lemma, in Infotheo.natbin]
positive2bitseq_not_nil [lemma, in Infotheo.natbin]
PosteriorProbability [module, in Infotheo.pproba]
PosteriorProbability.d [definition, in Infotheo.pproba]
PosteriorProbability.den [definition, in Infotheo.pproba]
PosteriorProbability.den_nonneg [lemma, in Infotheo.pproba]
PosteriorProbability.f [definition, in Infotheo.pproba]
PosteriorProbability.f0 [lemma, in Infotheo.pproba]
PosteriorProbability.f1 [lemma, in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.receivable_y [variable, in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.y [variable, in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.P [variable, in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.n [variable, in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.W [variable, in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.B [variable, in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.A [variable, in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect [section, in Infotheo.pproba]
post_proba_bsc_unif.Ha' [variable, in Infotheo.ldpc]
post_proba_bsc_unif.a' [variable, in Infotheo.ldpc]
post_proba_bsc_unif.P [variable, in Infotheo.ldpc]
post_proba_bsc_unif.p_01 [variable, in Infotheo.ldpc]
post_proba_bsc_unif.p_01' [variable, in Infotheo.ldpc]
post_proba_bsc_unif.p [variable, in Infotheo.ldpc]
post_proba_bsc_unif.card_A [variable, in Infotheo.ldpc]
post_proba_bsc_unif.A [variable, in Infotheo.ldpc]
post_proba_bsc_unif [section, in Infotheo.ldpc]
post_proba_delta [lemma, in Infotheo.checksum]
post_proba_delta.Hy [variable, in Infotheo.checksum]
post_proba_delta.y [variable, in Infotheo.checksum]
post_proba_delta.HC [variable, in Infotheo.checksum]
post_proba_delta.C [variable, in Infotheo.checksum]
'V [notation, in Infotheo.checksum]
post_proba_delta.x [variable, in Infotheo.checksum]
post_proba_delta.H [variable, in Infotheo.checksum]
post_proba_delta.n [variable, in Infotheo.checksum]
post_proba_delta.m [variable, in Infotheo.checksum]
post_proba_delta.W [variable, in Infotheo.checksum]
post_proba_delta.B [variable, in Infotheo.checksum]
post_proba_delta [section, in Infotheo.checksum]
pos_fun_of_pre_jtype [definition, in Infotheo.jtypes]
pos_fun_of_ffun [definition, in Infotheo.types]
pos_var_dist [lemma, in Infotheo.variation_dist]
pos_fun_eq [lemma, in Infotheo.Reals_ext]
pos_f [projection, in Infotheo.Reals_ext]
pos_fun [record, in Infotheo.Reals_ext]
pow_inv [lemma, in Infotheo.Reals_ext]
pow_not0 [lemma, in Infotheo.Reals_ext]
pow_ge0 [lemma, in Infotheo.Reals_ext]
pow_gt0 [lemma, in Infotheo.Reals_ext]
pow_mult [lemma, in Infotheo.Reals_ext]
pow_sect [section, in Infotheo.Reals_ext]
pow0_inv [lemma, in Infotheo.Reals_ext]
pow2_Rlt_inv [lemma, in Infotheo.Reals_ext]
pow2_Rle_inv [lemma, in Infotheo.Reals_ext]
pproba [library]
pr [definition, in Infotheo.proba]
Pr [definition, in Infotheo.proba]
prec_node [definition, in Infotheo.ldpc_algo]
pred_of_setK [lemma, in Infotheo.degree_profile]
primitive_element.a_nontrivial [variable, in Infotheo.cyclic_decoding]
primitive_element.n [variable, in Infotheo.cyclic_decoding]
primitive_element.a_neq0 [variable, in Infotheo.cyclic_decoding]
primitive_element.a [variable, in Infotheo.cyclic_decoding]
primitive_element.F [variable, in Infotheo.cyclic_decoding]
primitive_element [section, in Infotheo.cyclic_decoding]
proba [library]
probability [section, in Infotheo.proba]
probability.A [variable, in Infotheo.proba]
probability.P [variable, in Infotheo.proba]
Prod [definition, in Infotheo.ldpc_erasure]
PROD [definition, in Infotheo.ldpc_erasure]
ProdDist [module, in Infotheo.proba]
ProdDist.d [definition, in Infotheo.proba]
ProdDist.f [definition, in Infotheo.proba]
ProdDist.f0 [lemma, in Infotheo.proba]
ProdDist.f1 [lemma, in Infotheo.proba]
ProdDist.ProdDist_sect.P2 [variable, in Infotheo.proba]
ProdDist.ProdDist_sect.P1 [variable, in Infotheo.proba]
ProdDist.ProdDist_sect.B [variable, in Infotheo.proba]
ProdDist.ProdDist_sect.A [variable, in Infotheo.proba]
ProdDist.ProdDist_sect [section, in Infotheo.proba]
ProdDist.proj1 [definition, in Infotheo.proba]
ProdDist.proj2 [definition, in Infotheo.proba]
PROD_y_star_variant [lemma, in Infotheo.stopping_set]
Prod_alpha0_beta0 [lemma, in Infotheo.stopping_set]
Prod_alpha_star_c [lemma, in Infotheo.stopping_set]
PROD_stopset_starblank_is_star_Prod [lemma, in Infotheo.stopping_set]
PROD_stopset_starblank_is_star [lemma, in Infotheo.stopping_set]
PROD_alpha0_star [lemma, in Infotheo.stopping_set]
PROD_not_star_inv [lemma, in Infotheo.stopping_set]
PROD_star_inv [lemma, in Infotheo.stopping_set]
PROD_c_cstar_c_variant [lemma, in Infotheo.stopping_set]
PROD_c_cstar_c [lemma, in Infotheo.stopping_set]
PROD_star_inl_is_inl [lemma, in Infotheo.stopping_set]
PROD_filter_star_inl [lemma, in Infotheo.stopping_set]
`F [notation, in Infotheo.stopping_set]
PROD_prop.H [variable, in Infotheo.stopping_set]
PROD_filter_star [lemma, in Infotheo.stopping_set]
PROD_prop.n [variable, in Infotheo.stopping_set]
PROD_prop.m [variable, in Infotheo.stopping_set]
PROD_prop [section, in Infotheo.stopping_set]
Prod_monotone [lemma, in Infotheo.ldpc_erasure]
Prod_inl [lemma, in Infotheo.ldpc_erasure]
Prod_vec [definition, in Infotheo.ldpc_erasure]
PROD_cons [lemma, in Infotheo.ldpc_erasure]
PROD_starblank_is_star [lemma, in Infotheo.ldpc_erasure]
PROD_inl [lemma, in Infotheo.ldpc_erasure]
PROD_nseq_inl [lemma, in Infotheo.ldpc_erasure]
PROD_nseq_blank [lemma, in Infotheo.ldpc_erasure]
PROD_nseq_star [lemma, in Infotheo.ldpc_erasure]
PROD_cons_star [lemma, in Infotheo.ldpc_erasure]
PROD_prop [section, in Infotheo.ldpc_erasure]
prod_of_tuples_to_tuple_of_prods.B [variable, in Infotheo.tuple_prod]
prod_of_tuples_to_tuple_of_prods.A [variable, in Infotheo.tuple_prod]
prod_of_tuples_to_tuple_of_prods [section, in Infotheo.tuple_prod]
prod_tupleK [lemma, in Infotheo.tuple_prod]
prod_tuple [definition, in Infotheo.tuple_prod]
prod_tuple_def.B [variable, in Infotheo.tuple_prod]
prod_tuple_def.A [variable, in Infotheo.tuple_prod]
prod_tuple_def [section, in Infotheo.tuple_prod]
PROD1 [lemma, in Infotheo.ldpc_erasure]
proof_derive_irrelevance [lemma, in Infotheo.Ranalysis_ext]
Pr_tuple_prod [lemma, in Infotheo.channel]
Pr_tuple_prod_sect.n [variable, in Infotheo.channel]
Pr_tuple_prod_sect.W [variable, in Infotheo.channel]
Pr_tuple_prod_sect.P [variable, in Infotheo.channel]
Pr_tuple_prod_sect.B [variable, in Infotheo.channel]
Pr_tuple_prod_sect.A [variable, in Infotheo.channel]
Pr_tuple_prod_sect [section, in Infotheo.channel]
Pr_TS_1 [lemma, in Infotheo.typ_seq]
pr_geq [definition, in Infotheo.proba]
pr_def.A [variable, in Infotheo.proba]
pr_def [section, in Infotheo.proba]
Pr_tuple_prod.Q [variable, in Infotheo.proba]
Pr_tuple_prod.P [variable, in Infotheo.proba]
Pr_tuple_prod.n [variable, in Infotheo.proba]
Pr_tuple_prod.B [variable, in Infotheo.proba]
Pr_tuple_prod.A [variable, in Infotheo.proba]
Pr_tuple_prod [section, in Infotheo.proba]
Pr_bigcup [lemma, in Infotheo.proba]
Pr_incl [lemma, in Infotheo.proba]
Pr_union_disj [lemma, in Infotheo.proba]
Pr_union [lemma, in Infotheo.proba]
Pr_of_cplt [lemma, in Infotheo.proba]
Pr_to_cplt [lemma, in Infotheo.proba]
Pr_cplt [lemma, in Infotheo.proba]
Pr_0 [lemma, in Infotheo.proba]
Pr_ext [lemma, in Infotheo.proba]
Pr_1 [lemma, in Infotheo.proba]
Psets [definition, in Infotheo.max_subset]
PsetsU [lemma, in Infotheo.max_subset]
psumR_eq0P [lemma, in Infotheo.Rbigop]
push_init_spec [lemma, in Infotheo.ldpc_algo_proof]
push_init [definition, in Infotheo.ldpc_algo]


Q

Qplus [record, in Infotheo.Reals_ext]
Q2R [definition, in Infotheo.Reals_ext]


R

Rabs_xlnx [lemma, in Infotheo.ln_facts]
Rabs_le [lemma, in Infotheo.Reals_ext]
Rabs_lt [lemma, in Infotheo.Reals_ext]
Rabs_eq_0 [lemma, in Infotheo.Reals_ext]
Rabs_Rle [lemma, in Infotheo.Reals_ext]
Rabs_sq [lemma, in Infotheo.Reals_ext]
Ranalysis_ext [library]
random_coding_good_code [lemma, in Infotheo.channel_coding_direct]
random_coding_good_code_existence.P [variable, in Infotheo.channel_coding_direct]
random_coding_good_code_existence.W [variable, in Infotheo.channel_coding_direct]
random_coding_good_code_existence.A [variable, in Infotheo.channel_coding_direct]
random_coding_good_code_existence.B [variable, in Infotheo.channel_coding_direct]
random_coding_good_code_existence [section, in Infotheo.channel_coding_direct]
rank_row_mx [lemma, in Infotheo.ssralg_ext]
rank_I [lemma, in Infotheo.ssralg_ext]
rank_cast_cols_comm [lemma, in Infotheo.linearcode]
rate [projection, in Infotheo.channel_code]
rbehead [definition, in Infotheo.ssralg_ext]
rbehead_row_mx [lemma, in Infotheo.ssralg_ext]
Rbigop [library]
Rbigop_max [library]
Rcomparison_rsum.Q [variable, in Infotheo.Rbigop]
Rcomparison_rsum.P [variable, in Infotheo.Rbigop]
Rcomparison_rsum.g [variable, in Infotheo.Rbigop]
Rcomparison_rsum.f [variable, in Infotheo.Rbigop]
Rcomparison_rsum.A [variable, in Infotheo.Rbigop]
Rcomparison_rsum [section, in Infotheo.Rbigop]
rcs [definition, in Infotheo.cyclic_code]
rcsP_BCH_cyclic [lemma, in Infotheo.bch]
rcs_poly_rcs [lemma, in Infotheo.cyclic_code]
rcs_rcs_poly [lemma, in Infotheo.cyclic_code]
rcs_poly [definition, in Infotheo.cyclic_code]
rcs_perm [definition, in Infotheo.cyclic_code]
rcs_perm_ffun_injectiveb [lemma, in Infotheo.cyclic_code]
rcs_perm_ffun [definition, in Infotheo.cyclic_code]
rcs' [definition, in Infotheo.cyclic_code]
rcs'_rcs [lemma, in Infotheo.cyclic_code]
rcs'0 [lemma, in Infotheo.cyclic_code]
Rdiv_lt [lemma, in Infotheo.Reals_ext]
Rdiv_le [lemma, in Infotheo.Reals_ext]
Reals_ext [library]
receivable [definition, in Infotheo.pproba]
receivable_y [lemma, in Infotheo.stopping_set]
receivable_den0 [lemma, in Infotheo.pproba]
receivable_sect.P [variable, in Infotheo.pproba]
receivable_sect.n [variable, in Infotheo.pproba]
receivable_sect.W [variable, in Infotheo.pproba]
receivable_sect.B [variable, in Infotheo.pproba]
receivable_sect.A [variable, in Infotheo.pproba]
receivable_sect [section, in Infotheo.pproba]
receivable_alpha0 [lemma, in Infotheo.ldpc_erasure]
record_tcomp_Vgraph [lemma, in Infotheo.summary_tanner]
recursive_computation [lemma, in Infotheo.ldpc]
reed_solomon_min_dist_errors.n [variable, in Infotheo.reed_solomon]
reed_solomon_min_dist_errors.d [variable, in Infotheo.reed_solomon]
reed_solomon_min_dist_errors.t [variable, in Infotheo.reed_solomon]
reed_solomon_min_dist_errors [section, in Infotheo.reed_solomon]
reed_solomon [library]
reflexive_relYn [lemma, in Infotheo.jtypes]
reflexive_le_rank [lemma, in Infotheo.ssr_ext]
regH [projection, in Infotheo.ldpc]
reglambda [projection, in Infotheo.ldpc]
regrho [projection, in Infotheo.ldpc]
regular_ldpc.n [variable, in Infotheo.ldpc]
regular_ldpc.m [variable, in Infotheo.ldpc]
regular_ldpc [section, in Infotheo.ldpc]
reg_ldpc_prop [lemma, in Infotheo.ldpc]
reg_rate [definition, in Infotheo.ldpc]
reg_ldpc [record, in Infotheo.ldpc]
rel [section, in Infotheo.degree_profile]
relYn [definition, in Infotheo.jtypes]
rel.r1 [variable, in Infotheo.degree_profile]
rel.r2 [variable, in Infotheo.degree_profile]
rel.r3 [variable, in Infotheo.degree_profile]
rel.T [variable, in Infotheo.degree_profile]
rem_lea_false_pad_seqL [lemma, in Infotheo.natbin]
rem_lea_false_nseq [lemma, in Infotheo.natbin]
rem_lea_false [definition, in Infotheo.natbin]
repairT [definition, in Infotheo.linearcode]
RepCode [definition, in Infotheo.repcode]
repcode [library]
repcode_codewords [lemma, in Infotheo.repcode]
repcode_codewords' [lemma, in Infotheo.repcode]
repcode_sysform.dim [variable, in Infotheo.repcode]
repcode_sysform.n [variable, in Infotheo.repcode]
repcode_sysform.n' [variable, in Infotheo.repcode]
repcode_sysform [section, in Infotheo.repcode]
repCSM [definition, in Infotheo.repcode]
rep_encode_decode [lemma, in Infotheo.repcode]
rep_min_dist_dec [lemma, in Infotheo.repcode]
rep_cnot0 [lemma, in Infotheo.repcode]
Req_bool [definition, in Infotheo.Rssr]
Req_0_rmul [lemma, in Infotheo.Rbigop]
Req_0_rmul_inv [lemma, in Infotheo.Rbigop]
Req_0_rmul_inv' [lemma, in Infotheo.Rbigop]
rev_path_rcons [lemma, in Infotheo.ldpc_algo_proof]
rev_inj [lemma, in Infotheo.ssr_ext]
rev_nseq [lemma, in Infotheo.ssr_ext]
rev_nat2bin_7 [lemma, in Infotheo.hamming]
rev7_lb [lemma, in Infotheo.natbin]
rev7_ub [lemma, in Infotheo.natbin]
rev7_neq0 [lemma, in Infotheo.natbin]
rev7_bin [lemma, in Infotheo.hamming]
rExtrema [section, in Infotheo.arg_rmax]
rExtrema.F [variable, in Infotheo.arg_rmax]
rExtrema.I [variable, in Infotheo.arg_rmax]
rExtrema.i0 [variable, in Infotheo.arg_rmax]
rExtrema.ord_F_Rle [variable, in Infotheo.arg_rmax]
rExtrema.P [variable, in Infotheo.arg_rmax]
rExtrema.P_not_pred0 [variable, in Infotheo.arg_rmax]
rExtrema.reflexive_ord [variable, in Infotheo.arg_rmax]
rExtrema.total_ord [variable, in Infotheo.arg_rmax]
rExtrema.transitive_ord [variable, in Infotheo.arg_rmax]
RgeP [lemma, in Infotheo.Rssr]
Rge_bool [definition, in Infotheo.Rssr]
Rgt_bool [definition, in Infotheo.Rssr]
right_cyclic_shift [section, in Infotheo.cyclic_code]
Rleb_trans_minus [lemma, in Infotheo.Reals_ext]
RleNgt [lemma, in Infotheo.Rssr]
RleP [lemma, in Infotheo.Rssr]
Rle_pmul2r [lemma, in Infotheo.Rssr]
Rle_pmul2l [lemma, in Infotheo.Rssr]
Rle_add2r [lemma, in Infotheo.Rssr]
Rle_eqVlt [lemma, in Infotheo.Rssr]
Rle_add [lemma, in Infotheo.Rssr]
Rle_bool [definition, in Infotheo.Rssr]
Rle_opp [lemma, in Infotheo.Reals_ext]
Rle_mult_div_R [lemma, in Infotheo.Reals_ext]
Rle_mult_div_L [lemma, in Infotheo.Reals_ext]
Rle_up [lemma, in Infotheo.Reals_ext]
Rle_up_pos [lemma, in Infotheo.Reals_ext]
Rle_inv_conv [lemma, in Infotheo.Reals_ext]
Rle_bigrmax_R [lemma, in Infotheo.Rbigop_max]
Rle_0_bigRmax [lemma, in Infotheo.Rbigop_max]
Rle_bigRmax [lemma, in Infotheo.Rbigop_max]
Rle_exp2_log2_R [lemma, in Infotheo.log2]
Rle_exp2_log1_L [lemma, in Infotheo.log2]
Rle_big_mult [lemma, in Infotheo.Rbigop]
Rle_1_big_mult [lemma, in Infotheo.Rbigop]
Rle_0_big_mult [lemma, in Infotheo.Rbigop]
Rle_big_eq [lemma, in Infotheo.Rbigop]
Rle_big_P_Q_f_X_new [lemma, in Infotheo.Rbigop]
Rle_big_0_P_g [lemma, in Infotheo.Rbigop]
Rle_big_P_true_f [lemma, in Infotheo.Rbigop]
Rle_big_predU_f [lemma, in Infotheo.Rbigop]
Rle_big_P_Q_f_X [lemma, in Infotheo.Rbigop]
Rle_big_f_X_Y [lemma, in Infotheo.Rbigop]
Rle_big_P_true_f_g [lemma, in Infotheo.Rbigop]
Rle_big_P_Q_f_g [lemma, in Infotheo.Rbigop]
Rle_big_P_f_g [lemma, in Infotheo.Rbigop]
Rle_big_P_f_g_X [lemma, in Infotheo.Rbigop]
Rle0f [projection, in Infotheo.Reals_ext]
Rle2P [lemma, in Infotheo.Reals_ext]
Rle2_trans_minus [lemma, in Infotheo.Reals_ext]
Rle2_opp [lemma, in Infotheo.Reals_ext]
Rle2_mult_div [lemma, in Infotheo.Reals_ext]
Rle2_exp2_log [lemma, in Infotheo.log2]
RltNge [lemma, in Infotheo.Rssr]
RltnNge [lemma, in Infotheo.proba]
RltP [lemma, in Infotheo.Rssr]
RltW [definition, in Infotheo.Rssr]
Rlt_add2r [lemma, in Infotheo.Rssr]
Rlt_neqAle [lemma, in Infotheo.Rssr]
Rlt_bool [definition, in Infotheo.Rssr]
Rlt_le_neq [lemma, in Infotheo.Reals_ext]
Rlt_0_Rmult_inv [lemma, in Infotheo.Reals_ext]
Rlt_ne [lemma, in Infotheo.Reals_ext]
Rlt_0_rmul_inv [lemma, in Infotheo.Rbigop]
Rlt_0_big_mult [lemma, in Infotheo.Rbigop]
Rlt_big_0_g [lemma, in Infotheo.Rbigop]
Rlt_big_f_g_X [lemma, in Infotheo.Rbigop]
RmaxA [lemma, in Infotheo.Reals_ext]
RmaxC [definition, in Infotheo.Reals_ext]
Rmax_Rle_in [lemma, in Infotheo.Reals_ext]
rmax_distrl [lemma, in Infotheo.Rbigop_max]
rmax_distrr [lemma, in Infotheo.Rbigop_max]
rmax_imset [lemma, in Infotheo.Rbigop_max]
rmax_imset' [lemma, in Infotheo.Rbigop_max]
Rmult_pow_inv [lemma, in Infotheo.Reals_ext]
Rmult_minus_distr_r [lemma, in Infotheo.Reals_ext]
rmul_sub_vec [lemma, in Infotheo.ldpc]
rmul_foldr_rsum [lemma, in Infotheo.ldpc_algo_proof]
rmul_Fgraph_part_fnode [lemma, in Infotheo.tanner_partition]
rmul_rsum_commute [lemma, in Infotheo.summary_tanner]
rmul_rsum_commute0 [lemma, in Infotheo.summary_tanner]
rowF2_tuplebool [definition, in Infotheo.ssralg_ext]
row_num_occ_sect.b [variable, in Infotheo.jtypes]
row_num_occ_sect.a [variable, in Infotheo.jtypes]
row_num_occ_sect.Hta [variable, in Infotheo.jtypes]
row_num_occ_sect.ta [variable, in Infotheo.jtypes]
row_num_occ_sect.H [variable, in Infotheo.jtypes]
row_num_occ [definition, in Infotheo.jtypes]
row_num_occ_sect.V [variable, in Infotheo.jtypes]
row_num_occ_sect.B [variable, in Infotheo.jtypes]
row_num_occ_sect.P [variable, in Infotheo.jtypes]
row_num_occ_sect.n [variable, in Infotheo.jtypes]
row_num_occ_sect.A [variable, in Infotheo.jtypes]
row_num_occ_sect [section, in Infotheo.jtypes]
row_to_seq_0 [lemma, in Infotheo.ssralg_ext]
row_of_tupleK [lemma, in Infotheo.ssralg_ext]
row_of_tuple [definition, in Infotheo.ssralg_ext]
row_mx_rbehead [lemma, in Infotheo.ssralg_ext]
row_mx_row_ord0 [lemma, in Infotheo.ssralg_ext]
row_mx_ext [section, in Infotheo.ssralg_ext]
row_set_comm [lemma, in Infotheo.ssralg_ext]
row_set [definition, in Infotheo.ssralg_ext]
row_of_tuple_inj [lemma, in Infotheo.types]
row_nth [lemma, in Infotheo.f2]
RPascal [lemma, in Infotheo.Rbigop]
Rplus_le_lt_reg_pos_r [lemma, in Infotheo.Reals_ext]
RS [module, in Infotheo.reed_solomon]
rsplit_Vgraph_inv [lemma, in Infotheo.ldpc]
rsplit_Vgraph [definition, in Infotheo.ldpc]
Rssr [library]
rstop [definition, in Infotheo.cyclic_decoding]
rstop_keyrem_nvstop [lemma, in Infotheo.reed_solomon]
rsum_row_of_tuple [lemma, in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect.C [variable, in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect.n [variable, in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect.op [variable, in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect.idx [variable, in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect.R [variable, in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect.A [variable, in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect [section, in Infotheo.ssralg_ext]
rsum_rmul_rV_pmf_tnth [lemma, in Infotheo.proba]
rsum_rmul_tuple_pmf [lemma, in Infotheo.channel_coding_direct]
rsum_rmul_tuple_pmf_tnth [lemma, in Infotheo.channel_coding_direct]
rsum_summary1 [lemma, in Infotheo.summary]
rsum_summary0 [lemma, in Infotheo.summary]
rsum_summary.n [variable, in Infotheo.summary]
rsum_summary [section, in Infotheo.summary]
rsum_tuple_tnth [lemma, in Infotheo.Rbigop]
rsum_0tuple [lemma, in Infotheo.Rbigop]
rsum_1_tuple [lemma, in Infotheo.Rbigop]
rsum_0rV [lemma, in Infotheo.Rbigop]
rsum_rV_1 [lemma, in Infotheo.Rbigop]
rsum_rV_prod [lemma, in Infotheo.Rbigop]
rsum_union [lemma, in Infotheo.Rbigop]
rsum_neq0 [lemma, in Infotheo.Rbigop]
RS_encoder.RS_as_lcode1 [definition, in Infotheo.reed_solomon]
RS_encoder.RS_enc_discard_is_id [lemma, in Infotheo.reed_solomon]
RS_encoder.RS_enc_surjective [lemma, in Infotheo.reed_solomon]
RS_encoder.decomp_codeword [lemma, in Infotheo.reed_solomon]
RS_encoder.high [definition, in Infotheo.reed_solomon]
RS_encoder.low [definition, in Infotheo.reed_solomon]
RS_encoder.RS_dec_is_repair_discard [lemma, in Infotheo.reed_solomon]
RS_encoder.RS_as_lcode [definition, in Infotheo.reed_solomon]
RS_encoder.RS_enc_img [lemma, in Infotheo.reed_solomon]
RS_encoder.a_nontrivial [variable, in Infotheo.reed_solomon]
RS_encoder.a_neq0 [variable, in Infotheo.reed_solomon]
RS_encoder.RS_enc_injective [lemma, in Infotheo.reed_solomon]
RS_encoder.RS_code [definition, in Infotheo.reed_solomon]
RS_encoder.decoder [definition, in Infotheo.reed_solomon]
RS_encoder.RS_discard [definition, in Infotheo.reed_solomon]
RS_encoder.RS_discard' [definition, in Infotheo.reed_solomon]
RS_encoder.tmp [lemma, in Infotheo.reed_solomon]
RS_encoder.RS_repair [definition, in Infotheo.reed_solomon]
RS_encoder.encoder [definition, in Infotheo.reed_solomon]
RS_encoder.dn [variable, in Infotheo.reed_solomon]
RS_encoder.d [variable, in Infotheo.reed_solomon]
RS_encoder.n [variable, in Infotheo.reed_solomon]
RS_encoder.n' [variable, in Infotheo.reed_solomon]
RS_encoder.d' [variable, in Infotheo.reed_solomon]
RS_encoder.a [variable, in Infotheo.reed_solomon]
RS_encoder.F [variable, in Infotheo.reed_solomon]
RS_encoder [module, in Infotheo.reed_solomon]
rs_gen_is_gen [lemma, in Infotheo.reed_solomon]
RS_cyclic [lemma, in Infotheo.reed_solomon]
rs_genP [lemma, in Infotheo.reed_solomon]
RS_generator_prop.a_nontrivial [variable, in Infotheo.reed_solomon]
RS_generator_prop.a_neq0 [variable, in Infotheo.reed_solomon]
RS_generator_prop.Hd [variable, in Infotheo.reed_solomon]
RS_generator_prop.d [variable, in Infotheo.reed_solomon]
RS_generator_prop.n [variable, in Infotheo.reed_solomon]
RS_generator_prop.n' [variable, in Infotheo.reed_solomon]
RS_generator_prop.d' [variable, in Infotheo.reed_solomon]
RS_generator_prop.a [variable, in Infotheo.reed_solomon]
RS_generator_prop.F [variable, in Infotheo.reed_solomon]
RS_generator_prop [section, in Infotheo.reed_solomon]
RS_message_size [lemma, in Infotheo.reed_solomon]
RS_kernel_neq0 [lemma, in Infotheo.reed_solomon]
RS_generator_prop0.dn [variable, in Infotheo.reed_solomon]
RS_generator_prop0.d [variable, in Infotheo.reed_solomon]
RS_generator_prop0.d' [variable, in Infotheo.reed_solomon]
RS_generator_prop0.n [variable, in Infotheo.reed_solomon]
RS_generator_prop0.a [variable, in Infotheo.reed_solomon]
RS_generator_prop0.F [variable, in Infotheo.reed_solomon]
RS_generator_prop0 [section, in Infotheo.reed_solomon]
rs_gen [definition, in Infotheo.reed_solomon]
RS_generator_def.d [variable, in Infotheo.reed_solomon]
RS_generator_def.a [variable, in Infotheo.reed_solomon]
RS_generator_def.F [variable, in Infotheo.reed_solomon]
RS_generator_def [section, in Infotheo.reed_solomon]
RS_dec_is_correct [lemma, in Infotheo.reed_solomon]
RS_err [lemma, in Infotheo.reed_solomon]
RS_nvstop_prop.td [variable, in Infotheo.reed_solomon]
RS_nvstop_prop.c_is_cw [variable, in Infotheo.reed_solomon]
RS_nvstop_prop.d [variable, in Infotheo.reed_solomon]
RS_nvstop_prop.t [variable, in Infotheo.reed_solomon]
RS_nvstop_prop.c [variable, in Infotheo.reed_solomon]
RS_nvstop_prop.n [variable, in Infotheo.reed_solomon]
RS_nvstop_prop.a [variable, in Infotheo.reed_solomon]
RS_nvstop_prop.F [variable, in Infotheo.reed_solomon]
RS_nvstop_prop [section, in Infotheo.reed_solomon]
RS.addr_closed [lemma, in Infotheo.reed_solomon]
RS.all_root_codeword [lemma, in Infotheo.reed_solomon]
RS.code [definition, in Infotheo.reed_solomon]
RS.codebook [definition, in Infotheo.reed_solomon]
RS.deg_lb [lemma, in Infotheo.reed_solomon]
RS.lcode0_codebook [lemma, in Infotheo.reed_solomon]
RS.oppr_closed [lemma, in Infotheo.reed_solomon]
RS.O_in_codebook [lemma, in Infotheo.reed_solomon]
RS.PCM [definition, in Infotheo.reed_solomon]
RS.PCMP [lemma, in Infotheo.reed_solomon]
RS.reed_solomon_definition.a_nontrivial [variable, in Infotheo.reed_solomon]
RS.reed_solomon_definition.a_neq0 [variable, in Infotheo.reed_solomon]
RS.reed_solomon_definition.dn [variable, in Infotheo.reed_solomon]
RS.reed_solomon_definition.d1 [variable, in Infotheo.reed_solomon]
RS.reed_solomon_definition.d [variable, in Infotheo.reed_solomon]
RS.reed_solomon_definition.n [variable, in Infotheo.reed_solomon]
RS.reed_solomon_definition.a [variable, in Infotheo.reed_solomon]
RS.reed_solomon_definition.F [variable, in Infotheo.reed_solomon]
RS.reed_solomon_definition [section, in Infotheo.reed_solomon]
RS.scaler_closed [lemma, in Infotheo.reed_solomon]
RS.submod_closed [lemma, in Infotheo.reed_solomon]
RS.syndromep_codeword [lemma, in Infotheo.reed_solomon]
RS.syndrome_syndromep [lemma, in Infotheo.reed_solomon]
RS.uniq_roots_exp [lemma, in Infotheo.reed_solomon]
rvar [record, in Infotheo.proba]
rvar_of [definition, in Infotheo.proba]
rvar2tuple1 [lemma, in Infotheo.proba]
rVpoly0 [lemma, in Infotheo.poly_ext]
rv_fun [projection, in Infotheo.proba]
rv_dist [projection, in Infotheo.proba]
R_eqType [definition, in Infotheo.Rssr]
R_eqMixin [definition, in Infotheo.Rssr]
r10_stop'0 [lemma, in Infotheo.euclid]
R2 [definition, in Infotheo.ldpc_algo]


S

scale_rv [definition, in Infotheo.proba]
scha [definition, in Infotheo.success_decode_bound]
scha_pos [lemma, in Infotheo.success_decode_bound]
scha_facts.n [variable, in Infotheo.success_decode_bound]
scha_facts.Mnot0 [variable, in Infotheo.success_decode_bound]
scha_facts.M [variable, in Infotheo.success_decode_bound]
scha_facts.A [variable, in Infotheo.success_decode_bound]
scha_facts.B [variable, in Infotheo.success_decode_bound]
scha_facts [section, in Infotheo.success_decode_bound]
scha_def.n [variable, in Infotheo.success_decode_bound]
scha_def.M [variable, in Infotheo.success_decode_bound]
scha_def.A [variable, in Infotheo.success_decode_bound]
scha_def.B [variable, in Infotheo.success_decode_bound]
scha_def [section, in Infotheo.success_decode_bound]
scode [record, in Infotheo.source_code]
scode_fl [definition, in Infotheo.source_code]
scode_fl_definition.n [variable, in Infotheo.source_code]
scode_fl_definition.k [variable, in Infotheo.source_code]
scode_fl_definition.A [variable, in Infotheo.source_code]
scode_fl_definition [section, in Infotheo.source_code]
scode_vl_definition.P [variable, in Infotheo.source_code]
scode_vl_definition.f [variable, in Infotheo.source_code]
scode_vl [definition, in Infotheo.source_code]
scode_vl_definition.n [variable, in Infotheo.source_code]
scode_vl_definition.k [variable, in Infotheo.source_code]
scode_vl_definition.A [variable, in Infotheo.source_code]
scode_vl_definition [section, in Infotheo.source_code]
scode_definition.P [variable, in Infotheo.source_code]
scode_definition.f [variable, in Infotheo.source_code]
scode_definition.n [variable, in Infotheo.source_code]
scode_definition.k [variable, in Infotheo.source_code]
scode_definition.B [variable, in Infotheo.source_code]
scode_definition.A [variable, in Infotheo.source_code]
scode_definition [section, in Infotheo.source_code]
second_partition.acyclic_g [variable, in Infotheo.subgraph_partition]
second_partition.symmetric_g [variable, in Infotheo.subgraph_partition]
second_partition.g [variable, in Infotheo.subgraph_partition]
second_partition.V [variable, in Infotheo.subgraph_partition]
second_partition [section, in Infotheo.subgraph_partition]
second_summand [lemma, in Infotheo.channel_coding_direct]
select_children_def [lemma, in Infotheo.ldpc_algo_proof]
select_children_spec [lemma, in Infotheo.ldpc_algo_proof]
select_children [definition, in Infotheo.ldpc_algo]
seq [section, in Infotheo.degree_profile]
seqs_but1 [definition, in Infotheo.ldpc_algo]
seq_full [lemma, in Infotheo.ldpc_algo_proof]
seq_block_inv [lemma, in Infotheo.repcode]
seq_index_enum_card [lemma, in Infotheo.ssr_ext]
seq_eqType_ext.B [variable, in Infotheo.ssr_ext]
seq_eqType_ext.A [variable, in Infotheo.ssr_ext]
seq_eqType_ext [section, in Infotheo.ssr_ext]
seq_ext.def [variable, in Infotheo.ssr_ext]
seq_ext.B [variable, in Infotheo.ssr_ext]
seq_ext.A [variable, in Infotheo.ssr_ext]
seq_ext [section, in Infotheo.ssr_ext]
seq.A [variable, in Infotheo.degree_profile]
seq.B [variable, in Infotheo.degree_profile]
set_flatten_cond [lemma, in Infotheo.degree_profile]
set_cons [lemma, in Infotheo.degree_profile]
set_nil [lemma, in Infotheo.degree_profile]
set_jtyp_seq [definition, in Infotheo.joint_typ_seq]
set_typ_seq_not0 [lemma, in Infotheo.typ_seq]
set_typ_seq_incl [lemma, in Infotheo.typ_seq]
set_typ_seq [definition, in Infotheo.typ_seq]
set_predleq_size [lemma, in Infotheo.num_occ]
set_set_co_occ [definition, in Infotheo.num_occ]
set_co_occ [definition, in Infotheo.num_occ]
set_occ [definition, in Infotheo.num_occ]
set_mem [lemma, in Infotheo.summary]
set1 [definition, in Infotheo.stopping_set]
set1F [lemma, in Infotheo.ldpc_algo_proof]
set1_is_stopset [lemma, in Infotheo.stopping_set]
set2 [definition, in Infotheo.stopping_set]
set2_is_not_stopset [lemma, in Infotheo.stopping_set]
shell [definition, in Infotheo.jtypes]
shelled_tuples_perm_facts.s [variable, in Infotheo.jtypes]
shelled_tuples_perm_facts.ta [variable, in Infotheo.jtypes]
shelled_tuples_perm_facts.V [variable, in Infotheo.jtypes]
shelled_tuples_perm_facts.n [variable, in Infotheo.jtypes]
shelled_tuples_perm_facts.B [variable, in Infotheo.jtypes]
shelled_tuples_perm_facts.A [variable, in Infotheo.jtypes]
shelled_tuples_perm_facts [section, in Infotheo.jtypes]
shelled_tuples_facts.Hta [variable, in Infotheo.jtypes]
shelled_tuples_facts.P [variable, in Infotheo.jtypes]
shelled_tuples_facts.Htb [variable, in Infotheo.jtypes]
shelled_tuples_facts.tb [variable, in Infotheo.jtypes]
shelled_tuples_facts.ta [variable, in Infotheo.jtypes]
shelled_tuples_facts.V [variable, in Infotheo.jtypes]
shelled_tuples_facts.n [variable, in Infotheo.jtypes]
shelled_tuples_facts.n' [variable, in Infotheo.jtypes]
shelled_tuples_facts.B [variable, in Infotheo.jtypes]
shelled_tuples_facts.A [variable, in Infotheo.jtypes]
shelled_tuples_facts [section, in Infotheo.jtypes]
shell_partition [definition, in Infotheo.jtypes]
shell_partition.Hta [variable, in Infotheo.jtypes]
shell_partition.P [variable, in Infotheo.jtypes]
shell_partition.ta [variable, in Infotheo.jtypes]
shell_partition.Bnot0 [variable, in Infotheo.jtypes]
shell_partition.Anot0 [variable, in Infotheo.jtypes]
shell_partition.n [variable, in Infotheo.jtypes]
shell_partition.n' [variable, in Infotheo.jtypes]
shell_partition.B [variable, in Infotheo.jtypes]
shell_partition.A [variable, in Infotheo.jtypes]
shell_partition [section, in Infotheo.jtypes]
shell_subset_output_type [lemma, in Infotheo.jtypes]
shell_injective [lemma, in Infotheo.jtypes]
shell_not_empty [lemma, in Infotheo.jtypes]
shell_not_empty.Hta [variable, in Infotheo.jtypes]
shell_not_empty.Hrow_num_occ [variable, in Infotheo.jtypes]
shell_not_empty.P [variable, in Infotheo.jtypes]
shell_not_empty.V [variable, in Infotheo.jtypes]
shell_not_empty.ta [variable, in Infotheo.jtypes]
shell_not_empty.n [variable, in Infotheo.jtypes]
shell_not_empty.B [variable, in Infotheo.jtypes]
shell_not_empty.A [variable, in Infotheo.jtypes]
shell_not_empty [section, in Infotheo.jtypes]
shell_not_empty_sorted [lemma, in Infotheo.jtypes]
shell_not_empty' [lemma, in Infotheo.jtypes]
shell_not_empty_sorted.Hta [variable, in Infotheo.jtypes]
shell_not_empty_sorted.Hrow_num_occ [variable, in Infotheo.jtypes]
shell_not_empty_sorted.P [variable, in Infotheo.jtypes]
shell_not_empty_sorted.V [variable, in Infotheo.jtypes]
shell_not_empty_sorted.ta_sorted [variable, in Infotheo.jtypes]
shell_not_empty_sorted.ta [variable, in Infotheo.jtypes]
shell_not_empty_sorted.n [variable, in Infotheo.jtypes]
shell_not_empty_sorted.B [variable, in Infotheo.jtypes]
shell_not_empty_sorted.A [variable, in Infotheo.jtypes]
shell_not_empty_sorted [section, in Infotheo.jtypes]
shell_def.V [variable, in Infotheo.jtypes]
shell_def.ta [variable, in Infotheo.jtypes]
shell_def.n [variable, in Infotheo.jtypes]
shell_def.B [variable, in Infotheo.jtypes]
shell_def.A [variable, in Infotheo.jtypes]
shell_def [section, in Infotheo.jtypes]
simple [definition, in Infotheo.subgraph_partition]
simple_of_colorable [definition, in Infotheo.subgraph_partition]
simple_prop [projection, in Infotheo.subgraph_partition]
simple_edge [projection, in Infotheo.subgraph_partition]
simple_graph [record, in Infotheo.subgraph_partition]
simple_neg [lemma, in Infotheo.subgraph_partition]
simple_tanner_rel [lemma, in Infotheo.tanner]
SizeCons [constructor, in Infotheo.degree_profile]
SizeNil [constructor, in Infotheo.degree_profile]
sizeP [lemma, in Infotheo.degree_profile]
size_seqs_but1 [lemma, in Infotheo.ldpc_algo_proof]
size_synd_X2t [lemma, in Infotheo.cyclic_decoding]
size_syndromep [lemma, in Infotheo.cyclic_decoding]
size_erreval [lemma, in Infotheo.cyclic_decoding]
size_errloc [lemma, in Infotheo.cyclic_decoding]
size_one_minus_X [lemma, in Infotheo.cyclic_decoding]
size_rs_gen [lemma, in Infotheo.reed_solomon]
size_divp_errloc1 [lemma, in Infotheo.reed_solomon]
size_spec [inductive, in Infotheo.degree_profile]
size_rstop [lemma, in Infotheo.euclid]
size_r0_sum [lemma, in Infotheo.euclid]
size_v_sum [lemma, in Infotheo.euclid]
size_v_incr [lemma, in Infotheo.euclid]
size_rcs_poly_old [lemma, in Infotheo.cyclic_code]
size_rcs_poly [lemma, in Infotheo.cyclic_code]
size_rcs [lemma, in Infotheo.cyclic_code]
size_lowest [lemma, in Infotheo.linearcode]
size_lowestP [lemma, in Infotheo.linearcode]
size_nat2bin [lemma, in Infotheo.natbin]
size_bitseq2NK [lemma, in Infotheo.natbin]
size_N2bitseq_lb [lemma, in Infotheo.natbin]
size_N2bitseq_lb' [lemma, in Infotheo.natbin]
size_N2bitseq_ub [lemma, in Infotheo.natbin]
size_pad_positive [lemma, in Infotheo.natbin]
size_N2bitseq_ub' [lemma, in Infotheo.natbin]
size_pad_seqL [lemma, in Infotheo.natbin]
size_pad_seq [lemma, in Infotheo.natbin]
size_lead_coef_F2 [lemma, in Infotheo.f2]
size_sub [lemma, in Infotheo.poly_ext]
size_lead_coefK [lemma, in Infotheo.poly_ext]
size_quot_eq0 [lemma, in Infotheo.poly_ext]
size1_polyC_F2 [lemma, in Infotheo.f2]
snd_tnth_prod_tuple [lemma, in Infotheo.tuple_prod]
sorted_enum [lemma, in Infotheo.ssr_ext]
sorted_is_flattened [lemma, in Infotheo.ssr_ext]
sorted_cat [lemma, in Infotheo.ssr_ext]
sorted_tuple_sorted [lemma, in Infotheo.num_occ]
sorted_tuple_inv [lemma, in Infotheo.num_occ]
sorted_inv [lemma, in Infotheo.num_occ]
sort_le_rank_tuple [definition, in Infotheo.ssr_ext]
sort_le_rank [definition, in Infotheo.ssr_ext]
source_coding_direct [lemma, in Infotheo.source_coding_fl_direct]
source_coding_direct.P [variable, in Infotheo.source_coding_fl_direct]
source_coding_direct.A [variable, in Infotheo.source_coding_fl_direct]
source_coding_direct [section, in Infotheo.source_coding_fl_direct]
source_coding' [lemma, in Infotheo.source_coding_fl_direct]
source_coding_direct'.k' [variable, in Infotheo.source_coding_fl_direct]
source_coding_direct'.Hepsilon [variable, in Infotheo.source_coding_fl_direct]
source_coding_direct'.epsilon [variable, in Infotheo.source_coding_fl_direct]
source_coding_direct'.Hr [variable, in Infotheo.source_coding_fl_direct]
source_coding_direct'.r [variable, in Infotheo.source_coding_fl_direct]
source_coding_direct'.den [variable, in Infotheo.source_coding_fl_direct]
source_coding_direct'.num [variable, in Infotheo.source_coding_fl_direct]
source_coding_direct'.P [variable, in Infotheo.source_coding_fl_direct]
source_coding_direct'.A [variable, in Infotheo.source_coding_fl_direct]
source_coding_direct' [section, in Infotheo.source_coding_fl_direct]
source_coding_converse [lemma, in Infotheo.source_coding_fl_converse]
source_coding_converse.P [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse.A [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse [section, in Infotheo.source_coding_fl_converse]
source_coding_converse' [lemma, in Infotheo.source_coding_fl_converse]
source_coding_converse'.Hk [variable, in Infotheo.source_coding_fl_converse]
max( _ , _ ) (reals_ext_scope) [notation, in Infotheo.source_coding_fl_converse]
source_coding_converse'.Hepsilon [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse'.epsilon [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse'.r_sc [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse'.sc [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse'.k [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse'.n [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse'.Hr [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse'.r [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse'.den [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse'.num [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse'.P [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse'.A [variable, in Infotheo.source_coding_fl_converse]
source_coding_converse' [section, in Infotheo.source_coding_fl_converse]
source_code [library]
source_coding_fl_direct [library]
source_coding_fl_converse [library]
Specification [section, in Infotheo.ldpc_algo]
Specification.alpha' [variable, in Infotheo.ldpc_algo]
Specification.B [variable, in Infotheo.ldpc_algo]
Specification.beta' [variable, in Infotheo.ldpc_algo]
Specification.C [variable, in Infotheo.ldpc_algo]
Specification.computed_tree [variable, in Infotheo.ldpc_algo]
Specification.d [variable, in Infotheo.ldpc_algo]
Specification.estimations [variable, in Infotheo.ldpc_algo]
Specification.H [variable, in Infotheo.ldpc_algo]
Specification.HC [variable, in Infotheo.ldpc_algo]
Specification.Hy [variable, in Infotheo.ldpc_algo]
Specification.id' [variable, in Infotheo.ldpc_algo]
Specification.m [variable, in Infotheo.ldpc_algo]
Specification.n [variable, in Infotheo.ldpc_algo]
Specification.n' [variable, in Infotheo.ldpc_algo]
Specification.p01 [variable, in Infotheo.ldpc_algo]
Specification.rW [variable, in Infotheo.ldpc_algo]
Specification.W [variable, in Infotheo.ldpc_algo]
Specification.y [variable, in Infotheo.ldpc_algo]
split_nocc_rec [lemma, in Infotheo.jtypes]
split_cons_tuples [lemma, in Infotheo.jtypes]
split_tuple [definition, in Infotheo.jtypes]
sq_rv [definition, in Infotheo.proba]
sq_incr [lemma, in Infotheo.Reals_ext]
SrcConverseBound [definition, in Infotheo.source_coding_fl_converse]
SrcDirectBound [lemma, in Infotheo.source_coding_fl_direct]
SrcDirectBound' [lemma, in Infotheo.source_coding_fl_direct]
SrcErrRate [definition, in Infotheo.source_code]
SrcRate [definition, in Infotheo.source_code]
ssralg_ext [library]
ssrnat_ext [section, in Infotheo.ssr_ext]
ssr_ext [library]
star [definition, in Infotheo.ldpc_erasure]
starblank [definition, in Infotheo.ldpc_erasure]
starblank_star [lemma, in Infotheo.ldpc_erasure]
starletter [definition, in Infotheo.stopping_set]
starletter_letter [lemma, in Infotheo.stopping_set]
stars [definition, in Infotheo.ldpc_erasure]
start_in_subgraph [lemma, in Infotheo.subgraph_partition]
step1 [lemma, in Infotheo.source_coding_fl_converse]
step2 [lemma, in Infotheo.source_coding_fl_converse]
step3 [lemma, in Infotheo.source_coding_fl_converse]
step4 [lemma, in Infotheo.source_coding_fl_converse]
step5 [lemma, in Infotheo.source_coding_fl_converse]
step6 [lemma, in Infotheo.source_coding_fl_converse]
stop [definition, in Infotheo.euclid]
`F [notation, in Infotheo.stopping_set]
`V [notation, in Infotheo.stopping_set]
stopping_set_def.H [variable, in Infotheo.stopping_set]
stopping_set_def.n [variable, in Infotheo.stopping_set]
stopping_set_def.m [variable, in Infotheo.stopping_set]
stopping_set_def.n' [variable, in Infotheo.stopping_set]
stopping_set_def.m' [variable, in Infotheo.stopping_set]
stopping_set_def [section, in Infotheo.stopping_set]
stopping_set [library]
stopset [definition, in Infotheo.stopping_set]
stopsetU [lemma, in Infotheo.stopping_set]
stopset_SumProdBEC_exists [lemma, in Infotheo.stopping_set]
stopset_SumProdBEC_fix [lemma, in Infotheo.stopping_set]
stopset_prop.s1ss [variable, in Infotheo.stopping_set]
stopset_starblank [definition, in Infotheo.stopping_set]
stopset_card [lemma, in Infotheo.stopping_set]
stopset_prop.s1 [variable, in Infotheo.stopping_set]
`F [notation, in Infotheo.stopping_set]
`V [notation, in Infotheo.stopping_set]
stopset_prop.H [variable, in Infotheo.stopping_set]
stopset_prop.m [variable, in Infotheo.stopping_set]
stopset_prop.n [variable, in Infotheo.stopping_set]
stopset_prop.n' [variable, in Infotheo.stopping_set]
stopset_prop.m' [variable, in Infotheo.stopping_set]
stopset_prop [section, in Infotheo.stopping_set]
stopset_VF [lemma, in Infotheo.stopping_set]
stopset0 [lemma, in Infotheo.stopping_set]
stop_y_e [lemma, in Infotheo.reed_solomon]
stop' [definition, in Infotheo.euclid]
subgraph [definition, in Infotheo.subgraph_partition]
subgraph_trivIset [lemma, in Infotheo.subgraph_partition]
subgraph_union [lemma, in Infotheo.subgraph_partition]
subgraph_partition [definition, in Infotheo.subgraph_partition]
subgraph_empty [lemma, in Infotheo.subgraph_partition]
subgraph_definition.g [variable, in Infotheo.subgraph_partition]
subgraph_definition.V [variable, in Infotheo.subgraph_partition]
subgraph_definition [section, in Infotheo.subgraph_partition]
subgraph_partition [library]
subrel_refl [lemma, in Infotheo.degree_profile]
subrel_trans [lemma, in Infotheo.degree_profile]
subRKC [lemma, in Infotheo.Rssr]
subr_add2r [lemma, in Infotheo.ssralg_ext]
subR0 [definition, in Infotheo.Rssr]
`V [notation, in Infotheo.ldpc_erasure]
subscript_set.H [variable, in Infotheo.ldpc_erasure]
subscript_set.n [variable, in Infotheo.ldpc_erasure]
subscript_set.m [variable, in Infotheo.ldpc_erasure]
subscript_set.n' [variable, in Infotheo.ldpc_erasure]
subscript_set.m' [variable, in Infotheo.ldpc_erasure]
subscript_set [section, in Infotheo.ldpc_erasure]
subseq_estimation [lemma, in Infotheo.ldpc_algo_proof]
subseq_labels [lemma, in Infotheo.ldpc_algo_proof]
subseq_flatten [lemma, in Infotheo.ldpc_algo_proof]
subset_leq_card_split_tuple [lemma, in Infotheo.jtypes]
subset_erasure_idx [lemma, in Infotheo.stopping_set]
subset_erasure_idx_sect.receivable_ys [variable, in Infotheo.stopping_set]
subset_erasure_idx0 [lemma, in Infotheo.stopping_set]
subset_erasure_idx_sect.s1s2 [variable, in Infotheo.stopping_set]
subset_erasure_idx_sect.stopset_s1 [variable, in Infotheo.stopping_set]
subset_erasure_idx_sect.s2 [variable, in Infotheo.stopping_set]
subset_erasure_idx_sect.ys [variable, in Infotheo.stopping_set]
subset_erasure_idx_sect.s1 [variable, in Infotheo.stopping_set]
`F [notation, in Infotheo.stopping_set]
`V [notation, in Infotheo.stopping_set]
subset_erasure_idx_sect.H [variable, in Infotheo.stopping_set]
subset_erasure_idx_sect.m [variable, in Infotheo.stopping_set]
subset_erasure_idx_sect.n [variable, in Infotheo.stopping_set]
subset_erasure_idx_sect.n' [variable, in Infotheo.stopping_set]
subset_erasure_idx_sect.m' [variable, in Infotheo.stopping_set]
subset_erasure_idx_sect [section, in Infotheo.stopping_set]
subset_cover1 [lemma, in Infotheo.degree_profile]
sub_vec_channel.tanner [variable, in Infotheo.ldpc]
`F [notation, in Infotheo.ldpc]
`V [notation, in Infotheo.ldpc]
`F( _ , _ ) [notation, in Infotheo.ldpc]
`V( _ , _ ) [notation, in Infotheo.ldpc]
sub_vec_channel.H [variable, in Infotheo.ldpc]
sub_vec_channel.m [variable, in Infotheo.ldpc]
sub_vec_channel.tb [variable, in Infotheo.ldpc]
sub_vec_channel.n [variable, in Infotheo.ldpc]
sub_vec_channel.n' [variable, in Infotheo.ldpc]
sub_vec_channel.W [variable, in Infotheo.ldpc]
sub_vec_channel.B [variable, in Infotheo.ldpc]
sub_vec_channel [section, in Infotheo.ldpc]
sub_ver_suc_suc [definition, in Infotheo.subgraph_partition]
sub_ver_suc [definition, in Infotheo.subgraph_partition]
sub_XrVpoly_rcs [lemma, in Infotheo.cyclic_code]
sub_rv [definition, in Infotheo.proba]
_ # _ [notation, in Infotheo.summary]
sub_vec [definition, in Infotheo.summary]
sub_vec_sect.A [variable, in Infotheo.summary]
sub_vec_sect [section, in Infotheo.summary]
successors [definition, in Infotheo.subgraph_partition]
successor_subgraph_successor [lemma, in Infotheo.subgraph_partition]
success_bound [lemma, in Infotheo.success_decode_bound]
success_bound_sect.P0 [variable, in Infotheo.success_decode_bound]
success_bound_sect.c [variable, in Infotheo.success_decode_bound]
success_bound_sect.n [variable, in Infotheo.success_decode_bound]
success_bound_sect.n' [variable, in Infotheo.success_decode_bound]
success_bound_sect.Mnot0 [variable, in Infotheo.success_decode_bound]
success_bound_sect.W [variable, in Infotheo.success_decode_bound]
success_bound_sect.M [variable, in Infotheo.success_decode_bound]
success_bound_sect.B [variable, in Infotheo.success_decode_bound]
success_bound_sect.A [variable, in Infotheo.success_decode_bound]
success_bound_sect [section, in Infotheo.success_decode_bound]
success_factor_ub [lemma, in Infotheo.success_decode_bound]
success_factor_bound_part2 [lemma, in Infotheo.success_decode_bound]
success_factor_bound_part1 [lemma, in Infotheo.success_decode_bound]
success_factor_bound [definition, in Infotheo.success_decode_bound]
success_factor [definition, in Infotheo.success_decode_bound]
success_decode [lemma, in Infotheo.success_decode_bound]
success_decode_bound [library]
Sum [definition, in Infotheo.ldpc_erasure]
SUM [definition, in Infotheo.ldpc_erasure]
sum [definition, in Infotheo.proba]
SumCoef [section, in Infotheo.degree_profile]
SumCoef.K [variable, in Infotheo.degree_profile]
SumCoef.p [variable, in Infotheo.degree_profile]
summary [definition, in Infotheo.summary]
summary [section, in Infotheo.summary]
summary [library]
summary_Vnext_proj [lemma, in Infotheo.summary_tanner]
summary_tsplit_Vgraph [lemma, in Infotheo.summary_tanner]
summary_tcomp_Vgraph [lemma, in Infotheo.summary_tanner]
summary_fold [definition, in Infotheo.summary]
summary_summary2 [lemma, in Infotheo.summary]
summary_row_set [lemma, in Infotheo.summary]
summary_all_sub_vec [lemma, in Infotheo.summary]
summary_all [lemma, in Infotheo.summary]
summary_n0 [lemma, in Infotheo.summary]
summary_notin [lemma, in Infotheo.summary]
summary_sym [lemma, in Infotheo.summary]
summary_tanner [library]
summary.A [variable, in Infotheo.summary]
summary.n [variable, in Infotheo.summary]
summary0 [lemma, in Infotheo.summary]
summary1 [lemma, in Infotheo.summary]
summary2 [definition, in Infotheo.summary]
summary2_3 [lemma, in Infotheo.summary]
summary23 [section, in Infotheo.summary]
summary23.n [variable, in Infotheo.summary]
sumn_eq0P [lemma, in Infotheo.ldpc_algo_proof]
sumn_big_addn [lemma, in Infotheo.ssr_ext]
SumProd [definition, in Infotheo.ldpc_erasure]
sumprod [definition, in Infotheo.ldpc_algo]
SumProdBEC [definition, in Infotheo.ldpc_erasure]
SumProdBEC_prop [lemma, in Infotheo.stopping_set]
sumproduct [definition, in Infotheo.ldpc]
sumproduct_loop [definition, in Infotheo.ldpc]
sumproduct_init [definition, in Infotheo.ldpc]
sumprod_ok [lemma, in Infotheo.ldpc_algo_proof]
SumProd_alphal [lemma, in Infotheo.stopping_set]
SumProd_is_iter [lemma, in Infotheo.ldpc_erasure]
SumProd_is_approx [lemma, in Infotheo.ldpc_erasure]
SumProd_is_a_fixpoint [lemma, in Infotheo.ldpc_erasure]
sumprod_spec [definition, in Infotheo.ldpc_algo]
sumprod_down [definition, in Infotheo.ldpc_algo]
sumprod_up [definition, in Infotheo.ldpc_algo]
beta [notation, in Infotheo.ldpc]
alpha [notation, in Infotheo.ldpc]
sum_prod_correctness.tanner [variable, in Infotheo.ldpc]
`F( _ , _ ) [notation, in Infotheo.ldpc]
`V( _ , _ ) [notation, in Infotheo.ldpc]
`F [notation, in Infotheo.ldpc]
`V [notation, in Infotheo.ldpc]
sum_prod_correctness.f [variable, in Infotheo.ldpc]
sum_prod_correctness.Hy [variable, in Infotheo.ldpc]
sum_prod_correctness.C_not_empty [variable, in Infotheo.ldpc]
sum_prod_correctness.C [variable, in Infotheo.ldpc]
sum_prod_correctness.y [variable, in Infotheo.ldpc]
sum_prod_correctness.W [variable, in Infotheo.ldpc]
sum_prod_correctness.B [variable, in Infotheo.ldpc]
sum_prod_correctness.H [variable, in Infotheo.ldpc]
sum_prod_correctness.n [variable, in Infotheo.ldpc]
sum_prod_correctness.n' [variable, in Infotheo.ldpc]
sum_prod_correctness.m [variable, in Infotheo.ldpc]
sum_prod_correctness [section, in Infotheo.ldpc]
sum_tuples_ctypes [lemma, in Infotheo.jtypes]
sum_tuples_ctypes.sum_tuples_ctypes' [variable, in Infotheo.jtypes]
sum_tuples_ctypes.Bnot0 [variable, in Infotheo.jtypes]
sum_tuples_ctypes.Anot0 [variable, in Infotheo.jtypes]
sum_tuples_ctypes.sum_tuples_ctypes'' [variable, in Infotheo.jtypes]
sum_tuples_ctypes.Hta [variable, in Infotheo.jtypes]
sum_tuples_ctypes.P [variable, in Infotheo.jtypes]
sum_tuples_ctypes.ta [variable, in Infotheo.jtypes]
sum_tuples_ctypes.n [variable, in Infotheo.jtypes]
sum_tuples_ctypes.n' [variable, in Infotheo.jtypes]
sum_tuples_ctypes.B [variable, in Infotheo.jtypes]
sum_tuples_ctypes.A [variable, in Infotheo.jtypes]
sum_tuples_ctypes [section, in Infotheo.jtypes]
sum_num_occ_tuple.Bnot0 [variable, in Infotheo.jtypes]
sum_num_occ_tuple.ta_sorted [variable, in Infotheo.jtypes]
sum_num_occ_size [lemma, in Infotheo.jtypes]
sum_num_occ_tuple.k [variable, in Infotheo.jtypes]
sum_num_occ_tuple.ta [variable, in Infotheo.jtypes]
sum_num_occ_tuple.n [variable, in Infotheo.jtypes]
sum_num_occ_tuple.B [variable, in Infotheo.jtypes]
sum_num_occ_tuple.A [variable, in Infotheo.jtypes]
sum_num_occ_tuple [section, in Infotheo.jtypes]
sum_messages_types [lemma, in Infotheo.types]
sum_messages_types' [lemma, in Infotheo.types]
sum_messages_types.c [variable, in Infotheo.types]
sum_messages_types.n [variable, in Infotheo.types]
sum_messages_types.n' [variable, in Infotheo.types]
sum_messages_types.M [variable, in Infotheo.types]
sum_messages_types.B [variable, in Infotheo.types]
sum_messages_types.A [variable, in Infotheo.types]
sum_messages_types [section, in Infotheo.types]
Sum_star_inv [lemma, in Infotheo.stopping_set]
Sum_Prod_fixpoint [lemma, in Infotheo.stopping_set]
Sum_Prod [definition, in Infotheo.stopping_set]
Sum_beta0_star [lemma, in Infotheo.stopping_set]
Sum_beta0_blank [lemma, in Infotheo.stopping_set]
Sum_stopset_starblank_Prod [lemma, in Infotheo.stopping_set]
Sum_stopset_starblank [lemma, in Infotheo.stopping_set]
Sum_star [lemma, in Infotheo.stopping_set]
sum_supp [lemma, in Infotheo.cyclic_decoding]
sum_expr_S [lemma, in Infotheo.degree_profile]
sum_ops.K [variable, in Infotheo.degree_profile]
sum_ops.T [variable, in Infotheo.degree_profile]
sum_ops [section, in Infotheo.degree_profile]
sum_poly_weaken [lemma, in Infotheo.degree_profile]
sum_coef_pos [lemma, in Infotheo.degree_profile]
sum_coef_horner [lemma, in Infotheo.degree_profile]
sum_coef [definition, in Infotheo.degree_profile]
Sum_Prod_decoding.receivable_y' [variable, in Infotheo.ldpc_erasure]
Sum_Prod_rec [definition, in Infotheo.ldpc_erasure]
_ <=M _ [notation, in Infotheo.ldpc_erasure]
SUM_prop [lemma, in Infotheo.ldpc_erasure]
Sum_Prod_decoding.SUM_prod2 [section, in Infotheo.ldpc_erasure]
Sum_Prod_invariant [lemma, in Infotheo.ldpc_erasure]
Sum_Prod_monotone [lemma, in Infotheo.ldpc_erasure]
Sum_Prod_decoding.receivable_as_a_variable.y'_le_y [variable, in Infotheo.ldpc_erasure]
_ <=M _ [notation, in Infotheo.ldpc_erasure]
Sum_Prod_decoding.receivable_as_a_variable.Hy' [variable, in Infotheo.ldpc_erasure]
Sum_Prod_decoding.receivable_as_a_variable.y' [variable, in Infotheo.ldpc_erasure]
Sum_Prod_decoding.receivable_as_a_variable [section, in Infotheo.ldpc_erasure]
Sum_Prod_decoding.y [variable, in Infotheo.ldpc_erasure]
`F [notation, in Infotheo.ldpc_erasure]
`V [notation, in Infotheo.ldpc_erasure]
Sum_Prod_decoding.H [variable, in Infotheo.ldpc_erasure]
Sum_Prod_decoding.n [variable, in Infotheo.ldpc_erasure]
Sum_Prod_decoding.m [variable, in Infotheo.ldpc_erasure]
Sum_Prod_decoding.n' [variable, in Infotheo.ldpc_erasure]
Sum_Prod_decoding.m' [variable, in Infotheo.ldpc_erasure]
Sum_Prod_decoding [section, in Infotheo.ldpc_erasure]
Sum_vec [definition, in Infotheo.ldpc_erasure]
SUM_blank_inv [lemma, in Infotheo.ldpc_erasure]
SUM_prop [section, in Infotheo.ldpc_erasure]
N( 1 | _ ) [notation, in Infotheo.ldpc_erasure]
N( 0 | _ ) [notation, in Infotheo.ldpc_erasure]
SUM_PROD_def [section, in Infotheo.ldpc_erasure]
sum_n_i_sum_n [lemma, in Infotheo.proba]
sum_n_independent_rand_var.A [variable, in Infotheo.proba]
sum_n_independent_rand_var [section, in Infotheo.proba]
_ \=isum _ (proba_scope) [notation, in Infotheo.proba]
sum_n_independent_rand_var_def.A [variable, in Infotheo.proba]
sum_n_independent_rand_var_def [section, in Infotheo.proba]
sum_n_rand_var.A [variable, in Infotheo.proba]
sum_n_rand_var [section, in Infotheo.proba]
_ \=sum _ (proba_scope) [notation, in Infotheo.proba]
sum_n_cons [constructor, in Infotheo.proba]
sum_n_1 [constructor, in Infotheo.proba]
sum_n [inductive, in Infotheo.proba]
sum_n_rand_var_def.A [variable, in Infotheo.proba]
sum_n_rand_var_def [section, in Infotheo.proba]
sum_two_rand_var.X [variable, in Infotheo.proba]
sum_two_rand_var.X2 [variable, in Infotheo.proba]
sum_two_rand_var.n [variable, in Infotheo.proba]
sum_two_rand_var.X1 [variable, in Infotheo.proba]
sum_two_rand_var.A [variable, in Infotheo.proba]
sum_two_rand_var [section, in Infotheo.proba]
sum_two_rand_var_def.X [variable, in Infotheo.proba]
sum_two_rand_var_def.X2 [variable, in Infotheo.proba]
sum_two_rand_var_def.n [variable, in Infotheo.proba]
sum_two_rand_var_def.X1 [variable, in Infotheo.proba]
sum_two_rand_var_def.A [variable, in Infotheo.proba]
sum_two_rand_var_def [section, in Infotheo.proba]
sum_mlog_prod_isum_map_mlog [lemma, in Infotheo.aep]
sum_mlog_prod [definition, in Infotheo.aep]
sum_num_occ_is_enum_val [lemma, in Infotheo.num_occ]
sum_num_occ_enum_val [lemma, in Infotheo.num_occ]
sum_num_occ_leq_n [lemma, in Infotheo.num_occ]
sum_num_occ_inc [lemma, in Infotheo.num_occ]
sum_num_occ_inc_loc [lemma, in Infotheo.num_occ]
sum_num_occ_sub [lemma, in Infotheo.num_occ]
sum_num_occ_rec [lemma, in Infotheo.num_occ]
sum_num_occ_0 [lemma, in Infotheo.num_occ]
sum_num_occ [definition, in Infotheo.num_occ]
sum_num_occ_all [lemma, in Infotheo.num_occ]
sum_num_occ_alt [lemma, in Infotheo.num_occ]
sum_num_occ_seq1 [lemma, in Infotheo.num_occ]
sum_wH_row [lemma, in Infotheo.hamming]
sum_rV_ffun [lemma, in Infotheo.channel_coding_direct]
+%M [notation, in Infotheo.channel_coding_direct]
sum_rV_ffun.plus [variable, in Infotheo.channel_coding_direct]
*%M [notation, in Infotheo.channel_coding_direct]
sum_rV_ffun.times [variable, in Infotheo.channel_coding_direct]
sum_rV_ffun.R [variable, in Infotheo.channel_coding_direct]
sum_rV_ffun [section, in Infotheo.channel_coding_direct]
sum_f_R0_rsum [lemma, in Infotheo.Rbigop]
sum_tuple_ffun [lemma, in Infotheo.Rbigop]
+%M [notation, in Infotheo.Rbigop]
sum_tuple_ffun.plus [variable, in Infotheo.Rbigop]
*%M [notation, in Infotheo.Rbigop]
sum_tuple_ffun.times [variable, in Infotheo.Rbigop]
sum_tuple_ffun.R [variable, in Infotheo.Rbigop]
sum_tuple_ffun [section, in Infotheo.Rbigop]
sum_parti_finType [lemma, in Infotheo.Rbigop]
sum_parti [lemma, in Infotheo.Rbigop]
sum_dom_codom.A [variable, in Infotheo.Rbigop]
sum_dom_codom [section, in Infotheo.Rbigop]
supp [definition, in Infotheo.cyclic_decoding]
support_set.e [variable, in Infotheo.cyclic_decoding]
support_set.n [variable, in Infotheo.cyclic_decoding]
support_set.F [variable, in Infotheo.cyclic_decoding]
support_set [section, in Infotheo.cyclic_decoding]
supp_neq0 [lemma, in Infotheo.cyclic_decoding]
supp_set0 [lemma, in Infotheo.cyclic_decoding]
supp0 [lemma, in Infotheo.cyclic_decoding]
symmetric_var_dist [lemma, in Infotheo.variation_dist]
sym_tanner_rel [lemma, in Infotheo.tanner]
syndrome [definition, in Infotheo.linearcode]
syndromeD [lemma, in Infotheo.linearcode]
syndromeN [lemma, in Infotheo.linearcode]
syndromep [definition, in Infotheo.cyclic_decoding]
syndromepD [lemma, in Infotheo.cyclic_decoding]
syndromept0 [lemma, in Infotheo.cyclic_decoding]
syndromep_Euclid_alt [lemma, in Infotheo.reed_solomon]
syndromep_err [lemma, in Infotheo.reed_solomon]
syndromep0 [lemma, in Infotheo.cyclic_decoding]
syndromeZ [lemma, in Infotheo.linearcode]
\synp_( _ ) [notation, in Infotheo.cyclic_decoding]
syndrome_polynomial.t [variable, in Infotheo.cyclic_decoding]
syndrome_polynomial.n [variable, in Infotheo.cyclic_decoding]
syndrome_polynomial.a [variable, in Infotheo.cyclic_decoding]
syndrome_polynomial.F [variable, in Infotheo.cyclic_decoding]
syndrome_polynomial [section, in Infotheo.cyclic_decoding]
syndrome_ham_detect [lemma, in Infotheo.hamming_code]
syndrome0 [lemma, in Infotheo.linearcode]
syndrome0_euclid_err0 [lemma, in Infotheo.cyclic_decoding]
syndrome0_nvstop1 [lemma, in Infotheo.cyclic_decoding]
syndrome0_stop1 [lemma, in Infotheo.cyclic_decoding]
sysencode_const_mx [lemma, in Infotheo.repcode]
SysLCode_prop_m.encode_image_code [lemma, in Infotheo.linearcode]
'G [notation, in Infotheo.linearcode]
'H [notation, in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode.C [variable, in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode.decode [variable, in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode.CSM [variable, in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode.dimlen [variable, in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode.k [variable, in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode.n [variable, in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode [section, in Infotheo.linearcode]
SysLCode_prop_m [module, in Infotheo.linearcode]
SysLCode_m.syslcode [definition, in Infotheo.linearcode]
SysLCode_m.sysencode_code [lemma, in Infotheo.linearcode]
SysLCode_m.sysencode_inj [lemma, in Infotheo.linearcode]
SysLCode_m.sysencode [definition, in Infotheo.linearcode]
SysLCode_m.H_G_T [lemma, in Infotheo.linearcode]
SysLCode_m.G_H_T [lemma, in Infotheo.linearcode]
SysLCode_m.code_rank [lemma, in Infotheo.linearcode]
'H [notation, in Infotheo.linearcode]
'G [notation, in Infotheo.linearcode]
'A [notation, in Infotheo.linearcode]
SysLCode_m.GEN [definition, in Infotheo.linearcode]
SysLCode_m.PCM [definition, in Infotheo.linearcode]
SysLCode_m.syslcode_def.CSM [variable, in Infotheo.linearcode]
SysLCode_m.syslcode_def.dimlen [variable, in Infotheo.linearcode]
SysLCode_m.syslcode_def.n [variable, in Infotheo.linearcode]
SysLCode_m.syslcode_def.k [variable, in Infotheo.linearcode]
SysLCode_m.syslcode_def [section, in Infotheo.linearcode]
SysLCode_m [module, in Infotheo.linearcode]


T

tag [inductive, in Infotheo.ldpc_algo]
tag_eqType [definition, in Infotheo.ldpc_algo_proof]
tag_eqMixin [definition, in Infotheo.ldpc_algo_proof]
tag_eqP [lemma, in Infotheo.ldpc_algo_proof]
tag_eq_bool [definition, in Infotheo.ldpc_algo_proof]
tag_of_id [definition, in Infotheo.ldpc_algo]
tag_of_kind [definition, in Infotheo.ldpc_algo]
take_shell_row_num_occ.Bnot0 [variable, in Infotheo.jtypes]
take_shell_row_num_occ.ta_sorted [variable, in Infotheo.jtypes]
take_shell_row_num_occ.Hrow_num_occ [variable, in Infotheo.jtypes]
take_shell_row_num_occ.Hta [variable, in Infotheo.jtypes]
take_shell_row_num_occ.ta [variable, in Infotheo.jtypes]
take_shell_row_num_occ.P [variable, in Infotheo.jtypes]
take_shell_row_num_occ.V [variable, in Infotheo.jtypes]
take_shell_row_num_occ.n [variable, in Infotheo.jtypes]
take_shell_row_num_occ.B [variable, in Infotheo.jtypes]
take_shell_row_num_occ.A [variable, in Infotheo.jtypes]
take_shell_row_num_occ [section, in Infotheo.jtypes]
take_shell [definition, in Infotheo.jtypes]
take_shell_def.V [variable, in Infotheo.jtypes]
take_shell_def.ta [variable, in Infotheo.jtypes]
take_shell_def.n [variable, in Infotheo.jtypes]
take_shell_def.B [variable, in Infotheo.jtypes]
take_shell_def.A [variable, in Infotheo.jtypes]
take_shell_def [section, in Infotheo.jtypes]
take_index [lemma, in Infotheo.subgraph_partition]
take_drop_take [lemma, in Infotheo.ssr_ext]
take_take [lemma, in Infotheo.ssr_ext]
tanner [definition, in Infotheo.ldpc_algo_proof]
Tanner [module, in Infotheo.tanner]
tanner [library]
tanneredges [definition, in Infotheo.tanner]
tanner_split_uncons [lemma, in Infotheo.ldpc_algo_proof]
tanner_rel_split [lemma, in Infotheo.ldpc_algo_proof]
tanner_split_cons [lemma, in Infotheo.ldpc_algo_proof]
tanner_split_nil [lemma, in Infotheo.ldpc_algo_proof]
tanner_split_tanner [lemma, in Infotheo.ldpc_algo_proof]
tanner_split [definition, in Infotheo.ldpc_algo_proof]
tanner_partition.Hacyclic [variable, in Infotheo.tanner_partition]
tanner_partition.Hconnect [variable, in Infotheo.tanner_partition]
`F( _ , _ ) [notation, in Infotheo.tanner_partition]
`V( _ , _ ) [notation, in Infotheo.tanner_partition]
`F [notation, in Infotheo.tanner_partition]
`V [notation, in Infotheo.tanner_partition]
tanner_partition.H [variable, in Infotheo.tanner_partition]
tanner_partition.n [variable, in Infotheo.tanner_partition]
tanner_partition.n' [variable, in Infotheo.tanner_partition]
tanner_partition.m [variable, in Infotheo.tanner_partition]
tanner_partition [section, in Infotheo.tanner_partition]
`F( _ , _ ) [notation, in Infotheo.tanner_partition]
`V( _ , _ ) [notation, in Infotheo.tanner_partition]
`F [notation, in Infotheo.tanner_partition]
`V [notation, in Infotheo.tanner_partition]
tanner_rel_no_hypo.H [variable, in Infotheo.tanner_partition]
tanner_rel_no_hypo.n [variable, in Infotheo.tanner_partition]
tanner_rel_no_hypo.m [variable, in Infotheo.tanner_partition]
tanner_rel_no_hypo [section, in Infotheo.tanner_partition]
tanner_rel_kind [definition, in Infotheo.tanner]
tanner_rel [definition, in Infotheo.tanner]
tanner_relation.H [variable, in Infotheo.tanner]
tanner_relation.n [variable, in Infotheo.tanner]
tanner_relation.m [variable, in Infotheo.tanner]
tanner_relation [section, in Infotheo.tanner]
tanner_partition [library]
Tanner.acyclic [projection, in Infotheo.tanner]
Tanner.acyclic_graph [record, in Infotheo.tanner]
Tanner.bipartite [projection, in Infotheo.tanner]
Tanner.bipartite_of_tanner [definition, in Infotheo.tanner]
Tanner.coloring [projection, in Infotheo.tanner]
Tanner.connected [projection, in Infotheo.tanner]
Tanner.edges [projection, in Infotheo.tanner]
Tanner.graph [record, in Infotheo.tanner]
Tanner.tanner [section, in Infotheo.tanner]
Tanner.tanner.V [variable, in Infotheo.tanner]
Tanner.undirected [projection, in Infotheo.tanner]
tbehead [definition, in Infotheo.ssr_ext]
tbeheadE [lemma, in Infotheo.degree_profile]
tcast_take_simpl [lemma, in Infotheo.ssr_ext]
tcast2tval [lemma, in Infotheo.ssr_ext]
tcode [definition, in Infotheo.types]
tcode_typed_prop [lemma, in Infotheo.types]
tcode_untyped_code [definition, in Infotheo.types]
tcomp_Vsubsubtree_tsplit_Vsubsubtree [lemma, in Infotheo.summary_tanner]
tcomp_Vsubsubtree_summary [lemma, in Infotheo.summary_tanner]
tcomp_Vsubsubtree [definition, in Infotheo.summary_tanner]
tcomp_Vgraph_summary [lemma, in Infotheo.summary_tanner]
tcomp_Vgraphubtree_n0_only [lemma, in Infotheo.summary_tanner]
tcomp_Vgraph [definition, in Infotheo.summary_tanner]
test_graph [lemma, in Infotheo.ldpc_algo_proof]
test_connected [lemma, in Infotheo.ldpc_algo_proof]
test_acyclic [lemma, in Infotheo.ldpc_algo_proof]
test_mat [definition, in Infotheo.stopping_set]
test_stopset [section, in Infotheo.stopping_set]
thead_tuple1 [lemma, in Infotheo.ssr_ext]
third_partition.acyclic_g [variable, in Infotheo.subgraph_partition]
third_partition.symmetric_g [variable, in Infotheo.subgraph_partition]
third_partition.g [variable, in Infotheo.subgraph_partition]
third_partition.V [variable, in Infotheo.subgraph_partition]
third_partition [section, in Infotheo.subgraph_partition]
tmp [section, in Infotheo.Rbigop]
tnth_tsplit_Vsubsubtree [lemma, in Infotheo.summary_tanner]
tnth_zip_2 [lemma, in Infotheo.ssr_ext]
tnth_zip_1 [lemma, in Infotheo.ssr_ext]
TnTreeEq [section, in Infotheo.ldpc_algo_proof]
TnTreeEq.EqTag [section, in Infotheo.ldpc_algo_proof]
TnTreeEq.EqTag.k [variable, in Infotheo.ldpc_algo_proof]
TnTreeEq.EqTnTree [section, in Infotheo.ldpc_algo_proof]
TnTreeEq.EqTnTree.k [variable, in Infotheo.ldpc_algo_proof]
TnTreeEq.i [variable, in Infotheo.ldpc_algo_proof]
TnTreeEq.U [variable, in Infotheo.ldpc_algo_proof]
TnTreeEq.V [variable, in Infotheo.ldpc_algo_proof]
tn_tree_eqType [definition, in Infotheo.ldpc_algo_proof]
tn_tree_eqMixin [definition, in Infotheo.ldpc_algo_proof]
tn_tree_eqP [lemma, in Infotheo.ldpc_algo_proof]
tn_tree_eq_bool_refl [lemma, in Infotheo.ldpc_algo_proof]
tn_tree_eq_bool [definition, in Infotheo.ldpc_algo_proof]
tn_tree [record, in Infotheo.ldpc_algo]
ToGraph [section, in Infotheo.ldpc_algo]
total_le_rank [lemma, in Infotheo.ssr_ext]
transitive_le_rank [lemma, in Infotheo.ssr_ext]
trans_min_rv [definition, in Infotheo.proba]
trans_add_rv [definition, in Infotheo.proba]
Tree [section, in Infotheo.ldpc_algo]
TreeEnsemble [module, in Infotheo.degree_profile]
TreeEnsemble.allpairs_flatten [lemma, in Infotheo.degree_profile]
TreeEnsemble.all_max_def_tree_enum [lemma, in Infotheo.degree_profile]
TreeEnsemble.cancel_fintree [lemma, in Infotheo.degree_profile]
TreeEnsemble.cancel_tree [lemma, in Infotheo.degree_profile]
TreeEnsemble.count_allpairs [lemma, in Infotheo.degree_profile]
TreeEnsemble.count_map_muln [lemma, in Infotheo.degree_profile]
TreeEnsemble.decode_tree [definition, in Infotheo.degree_profile]
TreeEnsemble.definition [section, in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs.abc [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs.c [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs.b [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs.a [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs.em [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs.en [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs.f [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs.C [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs.B [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs.A [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs [section, in Infotheo.degree_profile]
TreeEnsemble.definition.EncodeDecode [section, in Infotheo.degree_profile]
TreeEnsemble.definition.FinseqDeg [section, in Infotheo.degree_profile]
TreeEnsemble.definition.FinseqDeg.en [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.FinseqDeg.en_full [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.FinseqDeg.k [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.FinseqDeg.l [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.FinseqDeg.n [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.Finseqs [section, in Infotheo.degree_profile]
TreeEnsemble.definition.Finseqs.A [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.Finseqs.en [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.Hlam [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.Hrho [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.K [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.LAM [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.lambda [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.Limit [section, in Infotheo.degree_profile]
TreeEnsemble.definition.Limit.n [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.LR [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.RHO [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.rho [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.RofK [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.RofKadd [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.RofKmul [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.RofKpos [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.RofK0 [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.RofK1 [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.TreeEnum [section, in Infotheo.degree_profile]
TreeEnsemble.definition.TreeEnum.n [variable, in Infotheo.degree_profile]
TreeEnsemble.definition.tw [variable, in Infotheo.degree_profile]
TreeEnsemble.deriv [definition, in Infotheo.degree_profile]
TreeEnsemble.encode_tree [definition, in Infotheo.degree_profile]
TreeEnsemble.ensemble [definition, in Infotheo.degree_profile]
TreeEnsemble.finseqs [definition, in Infotheo.degree_profile]
TreeEnsemble.finseqs_deg [lemma, in Infotheo.degree_profile]
TreeEnsemble.fintree [record, in Infotheo.degree_profile]
TreeEnsemble.fintree_dist [definition, in Infotheo.degree_profile]
TreeEnsemble.fintree_finType [definition, in Infotheo.degree_profile]
TreeEnsemble.fintree_finMixin [definition, in Infotheo.degree_profile]
TreeEnsemble.fintree_enumP [lemma, in Infotheo.degree_profile]
TreeEnsemble.fintree_enum [definition, in Infotheo.degree_profile]
TreeEnsemble.fintree_enum_dep [definition, in Infotheo.degree_profile]
TreeEnsemble.fintree_countType [definition, in Infotheo.degree_profile]
TreeEnsemble.fintree_countMixin [definition, in Infotheo.degree_profile]
TreeEnsemble.fintree_choiceType [definition, in Infotheo.degree_profile]
TreeEnsemble.fintree_choiceMixin [definition, in Infotheo.degree_profile]
TreeEnsemble.fintree_eqType [definition, in Infotheo.degree_profile]
TreeEnsemble.fintree_eqMixin [definition, in Infotheo.degree_profile]
TreeEnsemble.fintree_decode [definition, in Infotheo.degree_profile]
TreeEnsemble.foldr_maxnE [lemma, in Infotheo.degree_profile]
TreeEnsemble.Frontier [constructor, in Infotheo.degree_profile]
TreeEnsemble.ft [projection, in Infotheo.degree_profile]
TreeEnsemble.f0 [lemma, in Infotheo.degree_profile]
TreeEnsemble.f0R [lemma, in Infotheo.degree_profile]
TreeEnsemble.f0_tree [lemma, in Infotheo.degree_profile]
TreeEnsemble.f1 [lemma, in Infotheo.degree_profile]
TreeEnsemble.f1R [lemma, in Infotheo.degree_profile]
TreeEnsemble.f1_tree [lemma, in Infotheo.degree_profile]
TreeEnsemble.integ [definition, in Infotheo.degree_profile]
TreeEnsemble.integ_deg [definition, in Infotheo.degree_profile]
TreeEnsemble.kf [constructor, in Infotheo.degree_profile]
TreeEnsemble.kind [inductive, in Infotheo.degree_profile]
TreeEnsemble.kind_eqType [definition, in Infotheo.degree_profile]
TreeEnsemble.kind_eqMixin [definition, in Infotheo.degree_profile]
TreeEnsemble.kind_eqP [lemma, in Infotheo.degree_profile]
TreeEnsemble.kind_eq_bool [definition, in Infotheo.degree_profile]
TreeEnsemble.kv [constructor, in Infotheo.degree_profile]
TreeEnsemble.limit_get_id [lemma, in Infotheo.degree_profile]
TreeEnsemble.limit_get_fintree [lemma, in Infotheo.degree_profile]
TreeEnsemble.limit_get [definition, in Infotheo.degree_profile]
TreeEnsemble.LR_pos [lemma, in Infotheo.degree_profile]
TreeEnsemble.max_deg_all [lemma, in Infotheo.degree_profile]
TreeEnsemble.max_deg [definition, in Infotheo.degree_profile]
TreeEnsemble.mkFintree [constructor, in Infotheo.degree_profile]
TreeEnsemble.negk [definition, in Infotheo.degree_profile]
TreeEnsemble.negk_involution [lemma, in Infotheo.degree_profile]
TreeEnsemble.Node [constructor, in Infotheo.degree_profile]
TreeEnsemble.Node_inj [lemma, in Infotheo.degree_profile]
TreeEnsemble.norm [definition, in Infotheo.degree_profile]
TreeEnsemble.norm_integ_deg [definition, in Infotheo.degree_profile]
TreeEnsemble.norm_deg [definition, in Infotheo.degree_profile]
TreeEnsemble.nseqs [definition, in Infotheo.degree_profile]
TreeEnsemble.nseqs_deg [lemma, in Infotheo.degree_profile]
TreeEnsemble.size_norm [lemma, in Infotheo.degree_profile]
TreeEnsemble.size_integ [lemma, in Infotheo.degree_profile]
TreeEnsemble.size_integ_eq0 [lemma, in Infotheo.degree_profile]
TreeEnsemble.size_finseqs [lemma, in Infotheo.degree_profile]
TreeEnsemble.size_nseqs [lemma, in Infotheo.degree_profile]
TreeEnsemble.size_take_leq [lemma, in Infotheo.degree_profile]
TreeEnsemble.tree [inductive, in Infotheo.degree_profile]
TreeEnsemble.tree_ensemble [definition, in Infotheo.degree_profile]
TreeEnsemble.tree_dist [definition, in Infotheo.degree_profile]
TreeEnsemble.tree_dist_children [definition, in Infotheo.degree_profile]
TreeEnsemble.tree_enumP [lemma, in Infotheo.degree_profile]
TreeEnsemble.tree_enum [definition, in Infotheo.degree_profile]
TreeEnsemble.tree_countType [definition, in Infotheo.degree_profile]
TreeEnsemble.tree_countMixin [definition, in Infotheo.degree_profile]
TreeEnsemble.tree_choiceType [definition, in Infotheo.degree_profile]
TreeEnsemble.tree_choiceMixin [definition, in Infotheo.degree_profile]
TreeEnsemble.tree_eqType [definition, in Infotheo.degree_profile]
TreeEnsemble.tree_eqMixin [definition, in Infotheo.degree_profile]
TreeEnsemble.tree_node_children [lemma, in Infotheo.degree_profile]
TreeEnsemble.tree_node_inv [lemma, in Infotheo.degree_profile]
TreeEnsemble.tree_children_node [lemma, in Infotheo.degree_profile]
TreeEnsemble.tree_frontier [lemma, in Infotheo.degree_profile]
TreeEnsemble.tree_children [definition, in Infotheo.degree_profile]
TreeEnsemble.uniq_tree_enum [lemma, in Infotheo.degree_profile]
tree_ok [lemma, in Infotheo.ldpc_algo_proof]
Tree.id [variable, in Infotheo.ldpc_algo]
trivIsetS_inr [lemma, in Infotheo.tanner_partition]
trivIsetS_inl [lemma, in Infotheo.tanner_partition]
trivIsetS_in.Q [variable, in Infotheo.tanner_partition]
trivIsetS_in.n [variable, in Infotheo.tanner_partition]
trivIsetS_in.m [variable, in Infotheo.tanner_partition]
trivIsetS_in [section, in Infotheo.tanner_partition]
trivIset_shell [lemma, in Infotheo.jtypes]
trivIset_shell' [lemma, in Infotheo.jtypes]
trivIset_enc_pre_img [lemma, in Infotheo.types]
trivIset_sub_ver_suc_suc [lemma, in Infotheo.subgraph_partition]
trivIset_sub_ver_suc_suc_helper [lemma, in Infotheo.subgraph_partition]
trivIset_I1 [lemma, in Infotheo.degree_profile]
trivIset_disjoint [lemma, in Infotheo.degree_profile]
trivIset_out [lemma, in Infotheo.degree_profile]
trivIset_in [lemma, in Infotheo.degree_profile]
trivIset_Vgraph_part_Vgraph [lemma, in Infotheo.tanner_partition]
trivIset_Fgraph_part_Fgraph [lemma, in Infotheo.tanner_partition]
trivIset_Vgraph_part_vnode [lemma, in Infotheo.tanner_partition]
trivIset_Fgraph_part_fnode [lemma, in Infotheo.tanner_partition]
trivIset_set_set_co_occ [lemma, in Infotheo.num_occ]
trivIset0 [lemma, in Infotheo.degree_profile]
trivIset1 [lemma, in Infotheo.degree_profile]
trmx_cV_0 [lemma, in Infotheo.ssralg_ext]
tsplit_Vsubsubtree_pfamily [lemma, in Infotheo.summary_tanner]
tsplit_Vgraph_sub_seq [lemma, in Infotheo.summary_tanner]
tsplit_Vsubsubtree [definition, in Infotheo.summary_tanner]
tsplit_Vgraph [definition, in Infotheo.summary_tanner]
TS_inf [lemma, in Infotheo.typ_seq]
TS_0_is_typ_seq [lemma, in Infotheo.typ_seq]
TS_0 [definition, in Infotheo.typ_seq]
TS_sup [lemma, in Infotheo.typ_seq]
tuple [section, in Infotheo.degree_profile]
TupleDist [module, in Infotheo.proba]
TupleDistd [definition, in Infotheo.proba]
TupleDistn [lemma, in Infotheo.proba]
TupleDist.d [definition, in Infotheo.proba]
TupleDist.f [definition, in Infotheo.proba]
TupleDist.f0 [lemma, in Infotheo.proba]
TupleDist.f1 [lemma, in Infotheo.proba]
TupleDist.TupleDist_sect.n [variable, in Infotheo.proba]
TupleDist.TupleDist_sect.P [variable, in Infotheo.proba]
TupleDist.TupleDist_sect.A [variable, in Infotheo.proba]
TupleDist.TupleDist_sect [section, in Infotheo.proba]
TupleDist0 [lemma, in Infotheo.proba]
TupleDist1 [lemma, in Infotheo.proba]
tuple_pmf_out_dist [lemma, in Infotheo.channel]
tuple_of_row_row_mx [lemma, in Infotheo.ssralg_ext]
tuple_of_rowK [lemma, in Infotheo.ssralg_ext]
tuple_of_row_inj [lemma, in Infotheo.ssralg_ext]
tuple_of_row [definition, in Infotheo.ssralg_ext]
tuple_dist_type_entropy [lemma, in Infotheo.types]
tuple_dist_type [lemma, in Infotheo.types]
tuple_ext_finType.n [variable, in Infotheo.ssr_ext]
tuple_ext_finType.B [variable, in Infotheo.ssr_ext]
tuple_ext_finType.A [variable, in Infotheo.ssr_ext]
tuple_ext_finType [section, in Infotheo.ssr_ext]
tuple_ext.A [variable, in Infotheo.ssr_ext]
tuple_ext [section, in Infotheo.ssr_ext]
tuple_prod_cast.P [variable, in Infotheo.proba]
tuple_prod_cast.n [variable, in Infotheo.proba]
tuple_prod_cast.B [variable, in Infotheo.proba]
tuple_prod_cast.A [variable, in Infotheo.proba]
tuple_prod_cast [section, in Infotheo.proba]
tuple_pmf_singleton [lemma, in Infotheo.proba]
tuple_exist_perm_sort [lemma, in Infotheo.num_occ]
tuple_sort.mysort_tuple [variable, in Infotheo.num_occ]
tuple_sort.mysort [variable, in Infotheo.num_occ]
tuple_sort.total_myrel [variable, in Infotheo.num_occ]
tuple_sort.antisymmetric_myrel [variable, in Infotheo.num_occ]
tuple_sort.reflexive_myrel [variable, in Infotheo.num_occ]
tuple_sort.transitive_myrel [variable, in Infotheo.num_occ]
tuple_sort.myrel [variable, in Infotheo.num_occ]
tuple_sort.n [variable, in Infotheo.num_occ]
tuple_sort.X [variable, in Infotheo.num_occ]
tuple_sort [section, in Infotheo.num_occ]
tuple_prodK [lemma, in Infotheo.tuple_prod]
tuple_prod [definition, in Infotheo.tuple_prod]
tuple_of_prods_to_prod_of_tuples.B [variable, in Infotheo.tuple_prod]
tuple_of_prods_to_prod_of_tuples.A [variable, in Infotheo.tuple_prod]
tuple_of_prods_to_prod_of_tuples [section, in Infotheo.tuple_prod]
tuple_of_row_ord0 [lemma, in Infotheo.hamming]
tuple_prod [library]
tuple.n [variable, in Infotheo.degree_profile]
tuple.T [variable, in Infotheo.degree_profile]
tuple2N [definition, in Infotheo.natbin]
tuple2N_0 [lemma, in Infotheo.natbin]
two_induction [lemma, in Infotheo.ldpc]
Two_set.neq_val0_val1 [lemma, in Infotheo.ssr_ext]
Two_set.val0_neq_val1 [lemma, in Infotheo.ssr_ext]
Two_set.enum [lemma, in Infotheo.ssr_ext]
Two_set.val1 [definition, in Infotheo.ssr_ext]
Two_set.val0 [definition, in Infotheo.ssr_ext]
Two_set.two_set.HX [variable, in Infotheo.ssr_ext]
Two_set.two_set.X [variable, in Infotheo.ssr_ext]
Two_set.two_set [section, in Infotheo.ssr_ext]
Two_set [module, in Infotheo.ssr_ext]
two_e [lemma, in Infotheo.Reals_ext]
type [module, in Infotheo.types]
typed_code_of_code.c [variable, in Infotheo.types]
typed_code_of_code.P [variable, in Infotheo.types]
typed_code_of_code.n [variable, in Infotheo.types]
typed_code_of_code.n' [variable, in Infotheo.types]
typed_code_of_code.M [variable, in Infotheo.types]
typed_code_of_code.B [variable, in Infotheo.types]
typed_code_of_code.A [variable, in Infotheo.types]
typed_code_of_code [section, in Infotheo.types]
typed_prop [projection, in Infotheo.types]
typed_code [record, in Infotheo.types]
typed_code_def.P [variable, in Infotheo.types]
typed_code_def.n [variable, in Infotheo.types]
typed_code_def.M [variable, in Infotheo.types]
typed_code_def.B [variable, in Infotheo.types]
typed_code_def.A [variable, in Infotheo.types]
typed_code_def [section, in Infotheo.types]
typed_tuples_are_typ_seq [lemma, in Infotheo.types]
typed_tuples_not_empty_alt [lemma, in Infotheo.types]
typed_tuples_facts_continued.P [variable, in Infotheo.types]
typed_tuples_facts_continued.Hn [variable, in Infotheo.types]
typed_tuples_facts_continued.n [variable, in Infotheo.types]
typed_tuples_facts_continued.A [variable, in Infotheo.types]
typed_tuples_facts_continued [section, in Infotheo.types]
typed_tuples_not_empty [lemma, in Infotheo.types]
typed_tuples_not_empty' [lemma, in Infotheo.types]
typed_tuples_facts.P [variable, in Infotheo.types]
typed_tuples_facts.n [variable, in Infotheo.types]
typed_tuples_facts.n' [variable, in Infotheo.types]
typed_tuples_facts.A [variable, in Infotheo.types]
typed_tuples_facts [section, in Infotheo.types]
typed_tuples [definition, in Infotheo.types]
typed_tuples.P [variable, in Infotheo.types]
typed_tuples.n [variable, in Infotheo.types]
typed_tuples.A [variable, in Infotheo.types]
typed_tuples [section, in Infotheo.types]
typed_success_bound [lemma, in Infotheo.success_decode_bound]
typed_success_bound_sect.exp_cdiv_bound [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.V0 [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.Bnot0 [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.Anot0 [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.tc [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.P [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.n [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.n' [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.Mnot0 [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.W [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.M [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.B [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect.A [variable, in Infotheo.success_decode_bound]
typed_success_bound_sect [section, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.cover_pre_image [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.trivIset_pre_image [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.partition_pre_image [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.Vctyp [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.tc [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.P [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.V [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.n [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.n' [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.Mnot0 [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.M [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.B [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect.A [variable, in Infotheo.success_decode_bound]
typed_success_factor_bound_sect [section, in Infotheo.success_decode_bound]
typed_success [lemma, in Infotheo.success_decode_bound]
typed_success_decomp_sect.Bnot0 [variable, in Infotheo.success_decode_bound]
typed_success_decomp_sect.Anot0 [variable, in Infotheo.success_decode_bound]
typed_success_decomp_sect.P [variable, in Infotheo.success_decode_bound]
typed_success_decomp_sect.n [variable, in Infotheo.success_decode_bound]
typed_success_decomp_sect.n' [variable, in Infotheo.success_decode_bound]
typed_success_decomp_sect.Mnot0 [variable, in Infotheo.success_decode_bound]
typed_success_decomp_sect.W [variable, in Infotheo.success_decode_bound]
typed_success_decomp_sect.M [variable, in Infotheo.success_decode_bound]
typed_success_decomp_sect.B [variable, in Infotheo.success_decode_bound]
typed_success_decomp_sect.A [variable, in Infotheo.success_decode_bound]
typed_success_decomp_sect [section, in Infotheo.success_decode_bound]
types [library]
type_of_row [definition, in Infotheo.jtypes]
type_co_occ [lemma, in Infotheo.jtypes]
type_numocc [lemma, in Infotheo.types]
type_empty2 [lemma, in Infotheo.types]
type_empty1 [lemma, in Infotheo.types]
type_not_empty [lemma, in Infotheo.types]
type_counting [lemma, in Infotheo.types]
type_facts.A [variable, in Infotheo.types]
type_facts [section, in Infotheo.types]
type_finType [definition, in Infotheo.types]
type_finMixin [definition, in Infotheo.types]
type_enumP [lemma, in Infotheo.types]
type_enum [definition, in Infotheo.types]
type_enum_f [definition, in Infotheo.types]
type_countType [definition, in Infotheo.types]
type_countMixin [definition, in Infotheo.types]
type_count_pcancel [lemma, in Infotheo.types]
type_unpickle [definition, in Infotheo.types]
type_pickle [definition, in Infotheo.types]
type_choiceType [definition, in Infotheo.types]
type_choiceMixin [lemma, in Infotheo.types]
type_choice_pcancel [lemma, in Infotheo.types]
type_choice_f [definition, in Infotheo.types]
type_ffunP [lemma, in Infotheo.types]
type_eqType [definition, in Infotheo.types]
type_eqMixin [definition, in Infotheo.types]
type_eqP [lemma, in Infotheo.types]
type_eq [definition, in Infotheo.types]
type_proj_eq [lemma, in Infotheo.types]
type_of_tuple [definition, in Infotheo.types]
type_fun_type [lemma, in Infotheo.types]
type_coercion [definition, in Infotheo.types]
type.d [projection, in Infotheo.types]
type.d_f [projection, in Infotheo.types]
type.f [projection, in Infotheo.types]
type.mkType [constructor, in Infotheo.types]
type.type [record, in Infotheo.types]
type.type_def.n [variable, in Infotheo.types]
type.type_def.A [variable, in Infotheo.types]
type.type_def [section, in Infotheo.types]
typical_sequence1_JTS' [lemma, in Infotheo.joint_typ_seq]
typical_sequence1_JTS [lemma, in Infotheo.joint_typ_seq]
typical_sequence_definition.epsilon [variable, in Infotheo.typ_seq]
typical_sequence_definition.n [variable, in Infotheo.typ_seq]
typical_sequence_definition.P [variable, in Infotheo.typ_seq]
typical_sequence_definition.A [variable, in Infotheo.typ_seq]
typical_sequence_definition [section, in Infotheo.typ_seq]
typ_seq_more_prop.He1 [variable, in Infotheo.typ_seq]
typ_seq_more_prop.He [variable, in Infotheo.typ_seq]
typ_seq_more_prop.n [variable, in Infotheo.typ_seq]
typ_seq_more_prop.epsilon [variable, in Infotheo.typ_seq]
typ_seq_more_prop.P [variable, in Infotheo.typ_seq]
typ_seq_more_prop.A [variable, in Infotheo.typ_seq]
typ_seq_more_prop [section, in Infotheo.typ_seq]
typ_seq_definition_equiv2 [lemma, in Infotheo.typ_seq]
typ_seq_definition_equiv [lemma, in Infotheo.typ_seq]
typ_seq_prop.n [variable, in Infotheo.typ_seq]
typ_seq_prop.epsilon [variable, in Infotheo.typ_seq]
typ_seq_prop.P [variable, in Infotheo.typ_seq]
typ_seq_prop.A [variable, in Infotheo.typ_seq]
typ_seq_prop [section, in Infotheo.typ_seq]
typ_seq [definition, in Infotheo.typ_seq]
typ_seq [library]
t_sizeX2t [lemma, in Infotheo.cyclic_decoding]


U

ubound [definition, in Infotheo.channel]
undup_perm [lemma, in Infotheo.ssr_ext]
undup_filter [lemma, in Infotheo.ssr_ext]
undup_nil_inv [lemma, in Infotheo.ssr_ext]
Uniform [module, in Infotheo.proba]
uniformly_continue_xlnx [lemma, in Infotheo.ln_facts]
UniformSupport [module, in Infotheo.proba]
UniformSupport.big_distrr [lemma, in Infotheo.proba]
UniformSupport.d [definition, in Infotheo.proba]
UniformSupport.f [definition, in Infotheo.proba]
UniformSupport.f0 [lemma, in Infotheo.proba]
UniformSupport.f1 [lemma, in Infotheo.proba]
UniformSupport.restrict [lemma, in Infotheo.proba]
UniformSupport.UniformSupport_sect.HC [variable, in Infotheo.proba]
UniformSupport.UniformSupport_sect.C [variable, in Infotheo.proba]
UniformSupport.UniformSupport_sect.A [variable, in Infotheo.proba]
UniformSupport.UniformSupport_sect [section, in Infotheo.proba]
Uniform.d [definition, in Infotheo.proba]
Uniform.d_neq0 [lemma, in Infotheo.proba]
Uniform.f [definition, in Infotheo.proba]
Uniform.f0 [lemma, in Infotheo.proba]
Uniform.f1 [lemma, in Infotheo.proba]
Uniform.Uniform_sect.Anot0 [variable, in Infotheo.proba]
Uniform.Uniform_sect.n [variable, in Infotheo.proba]
Uniform.Uniform_sect.A [variable, in Infotheo.proba]
Uniform.Uniform_sect [section, in Infotheo.proba]
uniquely_decodable [definition, in Infotheo.source_code]
unique_children [lemma, in Infotheo.ldpc_algo_proof]
uniq_select_children [lemma, in Infotheo.ldpc_algo_proof]
uniq_labels_build_tree_rec [lemma, in Infotheo.ldpc_algo_proof]
uniq_flatten_map [lemma, in Infotheo.ldpc_algo_proof]
uniq_path [definition, in Infotheo.ldpc_algo_proof]
uniq_path_ucycle_cat_extend [lemma, in Infotheo.subgraph_partition]
uniq_path_ucycle_cat [lemma, in Infotheo.subgraph_partition]
uniq_path_ucycle_extend_3 [lemma, in Infotheo.subgraph_partition]
uniq_path_ucycle_extend_2 [lemma, in Infotheo.subgraph_partition]
uniq_path_ucycle_extend_1 [lemma, in Infotheo.subgraph_partition]
uniq_extend_1 [lemma, in Infotheo.subgraph_partition]
uniq_take [lemma, in Infotheo.subgraph_partition]
uniq_dec_inj [lemma, in Infotheo.source_code]
untyped_code [projection, in Infotheo.types]
up [projection, in Infotheo.ldpc_algo]
up_sumprod_down [lemma, in Infotheo.ldpc_algo_proof]
up_Int_part [lemma, in Infotheo.Reals_ext]
up_pos [lemma, in Infotheo.Reals_ext]
u_keyquot_v [lemma, in Infotheo.cyclic_decoding]
u_keyquot_v_with_e [lemma, in Infotheo.reed_solomon]


V

Var [definition, in Infotheo.proba]
Var [constructor, in Infotheo.ldpc_algo]
variance_properties.X [variable, in Infotheo.proba]
variance_properties.A [variable, in Infotheo.proba]
variance_properties [section, in Infotheo.proba]
variance_definition.X [variable, in Infotheo.proba]
variance_definition.A [variable, in Infotheo.proba]
variance_definition [section, in Infotheo.proba]
d( _ , _ ) [notation, in Infotheo.variation_dist]
variation_distance.A [variable, in Infotheo.variation_dist]
variation_distance [section, in Infotheo.variation_dist]
variation_dist [library]
var_dist [definition, in Infotheo.variation_dist]
vec_perm_mx [lemma, in Infotheo.ssralg_ext]
VFnext [lemma, in Infotheo.tanner]
Vgraph [definition, in Infotheo.tanner]
Vgraph_injective3 [lemma, in Infotheo.tanner_partition]
Vgraph_part_Vgraph [definition, in Infotheo.tanner_partition]
Vgraph_id [lemma, in Infotheo.tanner_partition]
Vgraph_injective [lemma, in Infotheo.tanner_partition]
Vgraph_part_vnode [definition, in Infotheo.tanner_partition]
Vgraph_inclusion [lemma, in Infotheo.tanner_partition]
Vgraph_decompose [lemma, in Infotheo.tanner_partition]
Vgraph_proj_section.Hacyclic [variable, in Infotheo.summary_tanner]
Vgraph_proj_section.n0 [variable, in Infotheo.summary_tanner]
Vgraph_proj_section.d [variable, in Infotheo.summary_tanner]
`F [notation, in Infotheo.summary_tanner]
'V [notation, in Infotheo.summary_tanner]
`F( _ , _ ) [notation, in Infotheo.summary_tanner]
`V( _ , _ ) [notation, in Infotheo.summary_tanner]
Vgraph_proj_section.Hsymmetric [variable, in Infotheo.summary_tanner]
Vgraph_proj_section.Hconnected [variable, in Infotheo.summary_tanner]
Vgraph_proj_section.Hsimple [variable, in Infotheo.summary_tanner]
Vgraph_proj_section.H [variable, in Infotheo.summary_tanner]
Vgraph_proj_section.n [variable, in Infotheo.summary_tanner]
Vgraph_proj_section.n' [variable, in Infotheo.summary_tanner]
Vgraph_proj_section.m [variable, in Infotheo.summary_tanner]
Vgraph_proj_section [section, in Infotheo.summary_tanner]
Vgraph_set1 [lemma, in Infotheo.tanner]
Vgraph_not0 [lemma, in Infotheo.tanner]
Vgraph_n0 [lemma, in Infotheo.tanner]
Vnext [definition, in Infotheo.tanner]
Vnext_proj_prop [lemma, in Infotheo.summary_tanner]
Vnext_proj [definition, in Infotheo.summary_tanner]
Vnext_proj_sect.n0 [variable, in Infotheo.summary_tanner]
Vnext_proj_sect.m0 [variable, in Infotheo.summary_tanner]
Vnext_proj_sect.d [variable, in Infotheo.summary_tanner]
`F [notation, in Infotheo.summary_tanner]
'V [notation, in Infotheo.summary_tanner]
`F( _ , _ ) [notation, in Infotheo.summary_tanner]
`V( _ , _ ) [notation, in Infotheo.summary_tanner]
Vnext_proj_sect.H [variable, in Infotheo.summary_tanner]
Vnext_proj_sect.n [variable, in Infotheo.summary_tanner]
Vnext_proj_sect.n' [variable, in Infotheo.summary_tanner]
Vnext_proj_sect.m [variable, in Infotheo.summary_tanner]
Vnext_proj_sect [section, in Infotheo.summary_tanner]
vstop0_is_unit [lemma, in Infotheo.reed_solomon]
Vsubsubtree_only_section.m0n0 [variable, in Infotheo.summary_tanner]
Vsubsubtree_only_section.n0 [variable, in Infotheo.summary_tanner]
Vsubsubtree_only_section.m0 [variable, in Infotheo.summary_tanner]
Vsubsubtree_only_section.d [variable, in Infotheo.summary_tanner]
`F [notation, in Infotheo.summary_tanner]
'V [notation, in Infotheo.summary_tanner]
`F( _ , _ ) [notation, in Infotheo.summary_tanner]
`V( _ , _ ) [notation, in Infotheo.summary_tanner]
Vsubsubtree_only_section.Hconnected [variable, in Infotheo.summary_tanner]
Vsubsubtree_only_section.tannerH_acyclic [variable, in Infotheo.summary_tanner]
Vsubsubtree_only_section.tannerH_simple [variable, in Infotheo.summary_tanner]
Vsubsubtree_only_section.H [variable, in Infotheo.summary_tanner]
Vsubsubtree_only_section.n [variable, in Infotheo.summary_tanner]
Vsubsubtree_only_section.n' [variable, in Infotheo.summary_tanner]
Vsubsubtree_only_section.m [variable, in Infotheo.summary_tanner]
Vsubsubtree_only_section [section, in Infotheo.summary_tanner]
V_average_isum [lemma, in Infotheo.proba]
V_linearity_isum [lemma, in Infotheo.proba]
V_linear_2 [lemma, in Infotheo.proba]
V_rvar2tuple1 [lemma, in Infotheo.proba]
V_scale [lemma, in Infotheo.proba]
V_alt [lemma, in Infotheo.proba]
V_map_mlog [lemma, in Infotheo.aep]


W

weak_law_of_large_numbers.X_Xs [variable, in Infotheo.proba]
weak_law_of_large_numbers.X [variable, in Infotheo.proba]
weak_law_of_large_numbers.V_Xs [variable, in Infotheo.proba]
weak_law_of_large_numbers.sigma2 [variable, in Infotheo.proba]
weak_law_of_large_numbers.E_Xs [variable, in Infotheo.proba]
weak_law_of_large_numbers.miu [variable, in Infotheo.proba]
weak_law_of_large_numbers.Xs_id [variable, in Infotheo.proba]
weak_law_of_large_numbers.Xs [variable, in Infotheo.proba]
weak_law_of_large_numbers.n [variable, in Infotheo.proba]
weak_law_of_large_numbers.P [variable, in Infotheo.proba]
weak_law_of_large_numbers.A [variable, in Infotheo.proba]
weak_law_of_large_numbers [section, in Infotheo.proba]
Wght [module, in Infotheo.channel_coding_direct]
wght_o_PI [lemma, in Infotheo.channel_coding_direct]
Wght.d [definition, in Infotheo.channel_coding_direct]
Wght.pmf [definition, in Infotheo.channel_coding_direct]
Wght.pmf0 [lemma, in Infotheo.channel_coding_direct]
Wght.pmf1 [lemma, in Infotheo.channel_coding_direct]
Wght.Wght_sect.n [variable, in Infotheo.channel_coding_direct]
Wght.Wght_sect.P [variable, in Infotheo.channel_coding_direct]
Wght.Wght_sect.M [variable, in Infotheo.channel_coding_direct]
Wght.Wght_sect.A [variable, in Infotheo.channel_coding_direct]
Wght.Wght_sect [section, in Infotheo.channel_coding_direct]
wH [definition, in Infotheo.hamming]
wHb_2 [lemma, in Infotheo.hamming]
wHb_1 [lemma, in Infotheo.hamming]
wH_ham_detect_ub [lemma, in Infotheo.hamming_code]
wH_7_rev7 [lemma, in Infotheo.hamming]
wH_7 [lemma, in Infotheo.hamming]
wH_3 [lemma, in Infotheo.hamming]
wH_two_pow [lemma, in Infotheo.hamming]
wH_2 [lemma, in Infotheo.hamming]
wH_1 [lemma, in Infotheo.hamming]
wH_perm_mx [lemma, in Infotheo.hamming]
wH_m_card [lemma, in Infotheo.hamming]
wH_col_1 [lemma, in Infotheo.hamming]
wH_def [lemma, in Infotheo.hamming]
wH_opp [lemma, in Infotheo.hamming]
wH_wH_b [lemma, in Infotheo.hamming]
wH0 [lemma, in Infotheo.hamming]
wH0_helper [lemma, in Infotheo.hamming]
wH0_helper2 [lemma, in Infotheo.hamming]
wlln [lemma, in Infotheo.proba]
wolfowitz [lemma, in Infotheo.proba]
wolfowitz_counting.A [variable, in Infotheo.proba]
wolfowitz_counting.k [variable, in Infotheo.proba]
wolfowitz_counting.P [variable, in Infotheo.proba]
wolfowitz_counting.B [variable, in Infotheo.proba]
wolfowitz_counting [section, in Infotheo.proba]


X

xlnx [definition, in Infotheo.ln_facts]
xlnx_delta_bound [lemma, in Infotheo.ln_facts]
xlnx_delta [definition, in Infotheo.ln_facts]
xlnx_ineq [lemma, in Infotheo.ln_facts]
xlnx_sect.diff_xlnx [section, in Infotheo.ln_facts]
xlnx_decreasing_0_Rinv_e [lemma, in Infotheo.ln_facts]
xlnx_sdecreasing_0_Rinv_e [lemma, in Infotheo.ln_facts]
xlnx_sdecreasing_0_Rinv_e_helper [lemma, in Infotheo.ln_facts]
xlnx_total_xlnx [lemma, in Infotheo.ln_facts]
xlnx_sect.xlnx.xlnx_total [variable, in Infotheo.ln_facts]
xlnx_neg [lemma, in Infotheo.ln_facts]
xlnx_1 [lemma, in Infotheo.ln_facts]
xlnx_0 [lemma, in Infotheo.ln_facts]
xlnx_sect.xlnx [section, in Infotheo.ln_facts]
xlnx_sect [section, in Infotheo.ln_facts]
xlnx_entropy [lemma, in Infotheo.entropy]
xOs [definition, in Infotheo.natbin]
x_x2_max [lemma, in Infotheo.Reals_ext]
x_x2_eq [lemma, in Infotheo.Reals_ext]


Y

y [definition, in Infotheo.stopping_set]
yE [lemma, in Infotheo.stopping_set]
yEsti [lemma, in Infotheo.stopping_set]
y_stars_alphal [lemma, in Infotheo.stopping_set]
y_stars_alphaS [lemma, in Infotheo.stopping_set]
y_stars_alpha0 [lemma, in Infotheo.stopping_set]
y_stars [definition, in Infotheo.stopping_set]


Z

zip_nilr [lemma, in Infotheo.degree_profile]
zip_nill [lemma, in Infotheo.degree_profile]
zip_perm_tuple [lemma, in Infotheo.ssr_ext]
zip_mask [lemma, in Infotheo.ssr_ext]
zip_swap [lemma, in Infotheo.ssr_ext]


other

_ BEC( _ ) _ (bec_scope) [notation, in Infotheo.ldpc_erasure]
_ <=m _ (bec_scope) [notation, in Infotheo.ldpc_erasure]
_ `( _ | _ ) (channel_scope) [notation, in Infotheo.ldpc]
`I( _ ; _ ) (channel_scope) [notation, in Infotheo.channel]
`H( _ | _ ) (channel_scope) [notation, in Infotheo.channel]
`H( _ , _ ) (channel_scope) [notation, in Infotheo.channel]
`J( _ , _ ) (channel_scope) [notation, in Infotheo.channel]
`H( _ `o _ ) (channel_scope) [notation, in Infotheo.channel]
`O( _ , _ ) (channel_scope) [notation, in Infotheo.channel]
_ ``^ _ ( _ | _ ) (channel_scope) [notation, in Infotheo.channel]
_ ``^ _ (| _ ) (channel_scope) [notation, in Infotheo.channel]
_ ``^ _ (channel_scope) [notation, in Infotheo.channel]
`Ch_ _ ( _ , _ ) (channel_scope) [notation, in Infotheo.channel]
`Ch_ _ ( _ , _ ) (channel_scope) [notation, in Infotheo.channel]
`Ch_1*( _ , _ ) (channel_scope) [notation, in Infotheo.channel]
`Ch_1( _ , _ ) (channel_scope) [notation, in Infotheo.channel]
echa( _ , _ ) (channel_code_scope) [notation, in Infotheo.channel_code]
e( _ , _ ) (channel_code_scope) [notation, in Infotheo.channel_code]
scha( _ , _ ) (channel_code_scope) [notation, in Infotheo.success_decode_bound]
_ < [notation, in Infotheo.conditional_divergence]
_ << _ | _ (channel_scope) [notation, in Infotheo.conditional_divergence]
D( _ || _ ) (divergence_scope) [notation, in Infotheo.divergence]
D( _ || _ | _ ) (divergence_scope) [notation, in Infotheo.conditional_divergence]
`H (entropy_scope) [notation, in Infotheo.entropy]
`JTS (jtyp_seq_scope) [notation, in Infotheo.joint_typ_seq]
\min^ _ _( _ in _ ) _ (min_scope) [notation, in Infotheo.Rbigop_max]
N( _ , _ | _ , _ ) (num_occ_scope) [notation, in Infotheo.num_occ]
N( _ | _ ) (num_occ_scope) [notation, in Infotheo.num_occ]
_ '_ _ `^^ _ , _ ( _ | _ ) (proba_scope) [notation, in Infotheo.pproba]
_ `^^ _ , _ ( _ | _ ) (proba_scope) [notation, in Infotheo.pproba]
_ \=isum _ (proba_scope) [notation, in Infotheo.proba]
_ \=sum _ (proba_scope) [notation, in Infotheo.proba]
_ \= _ @+ _ (proba_scope) [notation, in Infotheo.proba]
_ _| _ |_ _ (proba_scope) [notation, in Infotheo.proba]
`V (proba_scope) [notation, in Infotheo.proba]
`E (proba_scope) [notation, in Infotheo.proba]
--log _ (proba_scope) [notation, in Infotheo.proba]
Pr[ _ = _ ] (proba_scope) [notation, in Infotheo.proba]
`p_ _ (proba_scope) [notation, in Infotheo.proba]
{ rvar _ } (proba_scope) [notation, in Infotheo.proba]
_ `x _ (proba_scope) [notation, in Infotheo.proba]
_ `^ _ (proba_scope) [notation, in Infotheo.proba]
`U _ (proba_scope) [notation, in Infotheo.proba]
{ dist _ } (proba_scope) [notation, in Infotheo.proba]
_ >b _ (Rb_scope) [notation, in Infotheo.Rssr]
_ [notation, in Infotheo.Rssr]
_ [notation, in Infotheo.Rssr]
_ [notation, in Infotheo.Rssr]
_ [notation, in Infotheo.Rssr]
_ >b= _ (Rb_scope) [notation, in Infotheo.Rssr]
_ < [notation, in Infotheo.Reals_ext]
_ << _ (reals_ext_scope) [notation, in Infotheo.Reals_ext]
+| _ | (reals_ext_scope) [notation, in Infotheo.Reals_ext]
max( _ , _ ) (reals_ext_scope) [notation, in Infotheo.Reals_ext]
min( _ , _ ) (reals_ext_scope) [notation, in Infotheo.Reals_ext]
_ -> R+ (reals_ext_scope) [notation, in Infotheo.Reals_ext]
'gen[ _ ] (ring_scope) [notation, in Infotheo.cyclic_code]
\rmax_ ( _ : _ ) _ (R_scope) [notation, in Infotheo.Rbigop_max]
\rmax_ ( _ <- _ ) _ (R_scope) [notation, in Infotheo.Rbigop_max]
\rmax_ ( _ <- _ | _ ) _ (R_scope) [notation, in Infotheo.Rbigop_max]
\rmax_ ( _ | _ ) _ (R_scope) [notation, in Infotheo.Rbigop_max]
\rmax_ ( _ in _ ) _ (R_scope) [notation, in Infotheo.Rbigop_max]
\rmul_ ( _ < _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rmul_ ( _ < _ | _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rmul_ ( _ in _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rmul_ ( _ : _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rmul_ ( _ : _ | _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rmul_ ( _ | _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rsum_ ( _ in _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rsum_ ( _ in _ | _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rsum_ ( _ < _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rsum_ ( _ : _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rsum_ ( _ : _ | _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rsum_ ( _ | _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rsum_ ( _ <= _ < _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
\rsum_ ( _ <- _ ) _ (R_scope) [notation, in Infotheo.Rbigop]
esrc( _ , _ ) (source_code_scope) [notation, in Infotheo.source_code]
_ # _ (sub_vec_scope) [notation, in Infotheo.summary]
\rsum_ ( _ # _ , _ ) _ (summary_scope) [notation, in Infotheo.summary]
_ \_ _ (tuple_ext_scope) [notation, in Infotheo.ssr_ext]
`tO( _ ) (types_scope) [notation, in Infotheo.jtypes]
\nu^{ _ } ( _ ) (types_scope) [notation, in Infotheo.jtypes]
\nu_ _ ^{ _ , _ } ( _ ) (types_scope) [notation, in Infotheo.jtypes]
_ .-shell _ (types_scope) [notation, in Infotheo.jtypes]
P_ _ ( _ , _ ) (types_scope) [notation, in Infotheo.jtypes]
_ .-typed_code _ (types_scope) [notation, in Infotheo.types]
T_{ _ } (types_scope) [notation, in Infotheo.types]
P_ _ ( _ ) (types_scope) [notation, in Infotheo.types]
`TS (typ_seq_scope) [notation, in Infotheo.typ_seq]
d( _ , _ ) (variation_distance_scope) [notation, in Infotheo.variation_dist]
_ `[ _ := _ ] (vec_ext_scope) [notation, in Infotheo.ssralg_ext]
_ ``_ _ (vec_ext_scope) [notation, in Infotheo.ssralg_ext]
_ .-err'rV[ _ ]_ _ [notation, in Infotheo.cyclic_decoding]
_ \^2 [notation, in Infotheo.proba]
_ \-cst _ [notation, in Infotheo.proba]
_ \+cst _ [notation, in Infotheo.proba]
_ \-_( _ ) _ [notation, in Infotheo.proba]
_ \+_( _ ) _ [notation, in Infotheo.proba]
_ '/ _ [notation, in Infotheo.proba]
_ \cst* _ [notation, in Infotheo.proba]
0 [notation, in Infotheo.partition_inequality]
1 [notation, in Infotheo.partition_inequality]
\gen_( _ , _ ) [notation, in Infotheo.reed_solomon]
\omega_( _ , _ ) [notation, in Infotheo.cyclic_decoding]
\omega_( _ , _ ) [notation, in Infotheo.cyclic_decoding]
\omega1_( _ , _ , _ ) [notation, in Infotheo.cyclic_decoding]
\omega2_( _ , _ , _ , _ ) [notation, in Infotheo.cyclic_decoding]
\rsum_{ _ } _ [notation, in Infotheo.log_sum]
\sigma_( _ , _ , _ ) [notation, in Infotheo.cyclic_decoding]
\sigma_( _ , _ ) [notation, in Infotheo.cyclic_decoding]
\synp_( _ , _ , _ ) [notation, in Infotheo.cyclic_decoding]
`[ _ ]_ _ [notation, in Infotheo.cyclic_code]



Notation Index

A

_ * _ [in Infotheo.Rbigop]
*%M [in Infotheo.Rbigop]
'M_ ( _ , _ ) (type_scope) [in Infotheo.linearcode]
`F( _ , _ ) [in Infotheo.tanner_partition]
`V( _ , _ ) [in Infotheo.tanner_partition]
`F [in Infotheo.tanner_partition]
`V [in Infotheo.tanner_partition]
`F [in Infotheo.ldpc_algo_proof]
`F( _ , _ ) [in Infotheo.ldpc_algo_proof]
`V [in Infotheo.ldpc_algo_proof]
`V( _ , _ ) [in Infotheo.ldpc_algo_proof]
`F( _ , _ ) [in Infotheo.ldpc]
`V( _ , _ ) [in Infotheo.ldpc]
`F [in Infotheo.ldpc]
`V [in Infotheo.ldpc]


C

`Ch_1* [in Infotheo.channel]
`Ch_1 [in Infotheo.channel]
echa( _ , _ ) [in Infotheo.channel_code]
e( _ , _ ) [in Infotheo.channel_code]
'gen [in Infotheo.cyclic_code]


D

'V _ [in Infotheo.checksum]
`Ch_ _ [in Infotheo.channel]


E

`H [in Infotheo.entropy]
`l [in Infotheo.cyclic_decoding]
`q_ [in Infotheo.cyclic_decoding]
`u_ [in Infotheo.cyclic_decoding]
`v_ [in Infotheo.cyclic_decoding]
`r_ [in Infotheo.cyclic_decoding]
`r0 [in Infotheo.cyclic_decoding]
`r_ [in Infotheo.reed_solomon]
divp_errloc_vstop [in Infotheo.reed_solomon]
`v_ [in Infotheo.reed_solomon]
`u_ [in Infotheo.reed_solomon]
keyq [in Infotheo.reed_solomon]
`r0 [in Infotheo.reed_solomon]
`v [in Infotheo.euclid]
`q [in Infotheo.euclid]
`r [in Infotheo.euclid]


G

`F [in Infotheo.stopping_set]
`V [in Infotheo.stopping_set]


H

_ `b_ _ [in Infotheo.hamming]


J

`JTS [in Infotheo.joint_typ_seq]


K

q [in Infotheo.cyclic_decoding]
\omega2_( _ , _ ) [in Infotheo.cyclic_decoding]


L

`V [in Infotheo.ldpc]
`F [in Infotheo.ldpc]
_ <=m _ [in Infotheo.ldpc_erasure]


M

Pr[ _ >= _ ] (proba_scope) [in Infotheo.proba]


N

`F( _ , _ ) [in Infotheo.tanner]
`F [in Infotheo.tanner]
`V( _ , _ ) [in Infotheo.tanner]
`V [in Infotheo.tanner]


P

[ node _ # _ | _ ] (set_scope) [in Infotheo.degree_profile]
0 [in Infotheo.pinsker]
1 [in Infotheo.pinsker]
'V [in Infotheo.checksum]
`F [in Infotheo.stopping_set]


S

max( _ , _ ) (reals_ext_scope) [in Infotheo.source_coding_fl_converse]
`F [in Infotheo.stopping_set]
`V [in Infotheo.stopping_set]
`F [in Infotheo.stopping_set]
`V [in Infotheo.stopping_set]
`V [in Infotheo.ldpc_erasure]
`F [in Infotheo.stopping_set]
`V [in Infotheo.stopping_set]
`F [in Infotheo.ldpc]
`V [in Infotheo.ldpc]
`F( _ , _ ) [in Infotheo.ldpc]
`V( _ , _ ) [in Infotheo.ldpc]
_ # _ [in Infotheo.summary]
beta [in Infotheo.ldpc]
alpha [in Infotheo.ldpc]
`F( _ , _ ) [in Infotheo.ldpc]
`V( _ , _ ) [in Infotheo.ldpc]
`F [in Infotheo.ldpc]
`V [in Infotheo.ldpc]
_ <=M _ [in Infotheo.ldpc_erasure]
_ <=M _ [in Infotheo.ldpc_erasure]
`F [in Infotheo.ldpc_erasure]
`V [in Infotheo.ldpc_erasure]
N( 1 | _ ) [in Infotheo.ldpc_erasure]
N( 0 | _ ) [in Infotheo.ldpc_erasure]
_ \=isum _ (proba_scope) [in Infotheo.proba]
_ \=sum _ (proba_scope) [in Infotheo.proba]
+%M [in Infotheo.channel_coding_direct]
*%M [in Infotheo.channel_coding_direct]
+%M [in Infotheo.Rbigop]
*%M [in Infotheo.Rbigop]
\synp_( _ ) [in Infotheo.cyclic_decoding]
'G [in Infotheo.linearcode]
'H [in Infotheo.linearcode]
'H [in Infotheo.linearcode]
'G [in Infotheo.linearcode]
'A [in Infotheo.linearcode]


T

`F( _ , _ ) [in Infotheo.tanner_partition]
`V( _ , _ ) [in Infotheo.tanner_partition]
`F [in Infotheo.tanner_partition]
`V [in Infotheo.tanner_partition]
`F( _ , _ ) [in Infotheo.tanner_partition]
`V( _ , _ ) [in Infotheo.tanner_partition]
`F [in Infotheo.tanner_partition]
`V [in Infotheo.tanner_partition]


V

d( _ , _ ) [in Infotheo.variation_dist]
`F [in Infotheo.summary_tanner]
'V [in Infotheo.summary_tanner]
`F( _ , _ ) [in Infotheo.summary_tanner]
`V( _ , _ ) [in Infotheo.summary_tanner]
`F [in Infotheo.summary_tanner]
'V [in Infotheo.summary_tanner]
`F( _ , _ ) [in Infotheo.summary_tanner]
`V( _ , _ ) [in Infotheo.summary_tanner]
`F [in Infotheo.summary_tanner]
'V [in Infotheo.summary_tanner]
`F( _ , _ ) [in Infotheo.summary_tanner]
`V( _ , _ ) [in Infotheo.summary_tanner]


other

_ BEC( _ ) _ (bec_scope) [in Infotheo.ldpc_erasure]
_ <=m _ (bec_scope) [in Infotheo.ldpc_erasure]
_ `( _ | _ ) (channel_scope) [in Infotheo.ldpc]
`I( _ ; _ ) (channel_scope) [in Infotheo.channel]
`H( _ | _ ) (channel_scope) [in Infotheo.channel]
`H( _ , _ ) (channel_scope) [in Infotheo.channel]
`J( _ , _ ) (channel_scope) [in Infotheo.channel]
`H( _ `o _ ) (channel_scope) [in Infotheo.channel]
`O( _ , _ ) (channel_scope) [in Infotheo.channel]
_ ``^ _ ( _ | _ ) (channel_scope) [in Infotheo.channel]
_ ``^ _ (| _ ) (channel_scope) [in Infotheo.channel]
_ ``^ _ (channel_scope) [in Infotheo.channel]
`Ch_ _ ( _ , _ ) (channel_scope) [in Infotheo.channel]
`Ch_ _ ( _ , _ ) (channel_scope) [in Infotheo.channel]
`Ch_1*( _ , _ ) (channel_scope) [in Infotheo.channel]
`Ch_1( _ , _ ) (channel_scope) [in Infotheo.channel]
echa( _ , _ ) (channel_code_scope) [in Infotheo.channel_code]
e( _ , _ ) (channel_code_scope) [in Infotheo.channel_code]
scha( _ , _ ) (channel_code_scope) [in Infotheo.success_decode_bound]
_ < [in Infotheo.conditional_divergence]
_ << _ | _ (channel_scope) [in Infotheo.conditional_divergence]
D( _ || _ ) (divergence_scope) [in Infotheo.divergence]
D( _ || _ | _ ) (divergence_scope) [in Infotheo.conditional_divergence]
`H (entropy_scope) [in Infotheo.entropy]
`JTS (jtyp_seq_scope) [in Infotheo.joint_typ_seq]
\min^ _ _( _ in _ ) _ (min_scope) [in Infotheo.Rbigop_max]
N( _ , _ | _ , _ ) (num_occ_scope) [in Infotheo.num_occ]
N( _ | _ ) (num_occ_scope) [in Infotheo.num_occ]
_ '_ _ `^^ _ , _ ( _ | _ ) (proba_scope) [in Infotheo.pproba]
_ `^^ _ , _ ( _ | _ ) (proba_scope) [in Infotheo.pproba]
_ \=isum _ (proba_scope) [in Infotheo.proba]
_ \=sum _ (proba_scope) [in Infotheo.proba]
_ \= _ @+ _ (proba_scope) [in Infotheo.proba]
_ _| _ |_ _ (proba_scope) [in Infotheo.proba]
`V (proba_scope) [in Infotheo.proba]
`E (proba_scope) [in Infotheo.proba]
--log _ (proba_scope) [in Infotheo.proba]
Pr[ _ = _ ] (proba_scope) [in Infotheo.proba]
`p_ _ (proba_scope) [in Infotheo.proba]
{ rvar _ } (proba_scope) [in Infotheo.proba]
_ `x _ (proba_scope) [in Infotheo.proba]
_ `^ _ (proba_scope) [in Infotheo.proba]
`U _ (proba_scope) [in Infotheo.proba]
{ dist _ } (proba_scope) [in Infotheo.proba]
_ >b _ (Rb_scope) [in Infotheo.Rssr]
_ [in Infotheo.Rssr]
_ [in Infotheo.Rssr]
_ [in Infotheo.Rssr]
_ [in Infotheo.Rssr]
_ >b= _ (Rb_scope) [in Infotheo.Rssr]
_ < [in Infotheo.Reals_ext]
_ << _ (reals_ext_scope) [in Infotheo.Reals_ext]
+| _ | (reals_ext_scope) [in Infotheo.Reals_ext]
max( _ , _ ) (reals_ext_scope) [in Infotheo.Reals_ext]
min( _ , _ ) (reals_ext_scope) [in Infotheo.Reals_ext]
_ -> R+ (reals_ext_scope) [in Infotheo.Reals_ext]
'gen[ _ ] (ring_scope) [in Infotheo.cyclic_code]
\rmax_ ( _ : _ ) _ (R_scope) [in Infotheo.Rbigop_max]
\rmax_ ( _ <- _ ) _ (R_scope) [in Infotheo.Rbigop_max]
\rmax_ ( _ <- _ | _ ) _ (R_scope) [in Infotheo.Rbigop_max]
\rmax_ ( _ | _ ) _ (R_scope) [in Infotheo.Rbigop_max]
\rmax_ ( _ in _ ) _ (R_scope) [in Infotheo.Rbigop_max]
\rmul_ ( _ < _ ) _ (R_scope) [in Infotheo.Rbigop]
\rmul_ ( _ < _ | _ ) _ (R_scope) [in Infotheo.Rbigop]
\rmul_ ( _ in _ ) _ (R_scope) [in Infotheo.Rbigop]
\rmul_ ( _ : _ ) _ (R_scope) [in Infotheo.Rbigop]
\rmul_ ( _ : _ | _ ) _ (R_scope) [in Infotheo.Rbigop]
\rmul_ ( _ | _ ) _ (R_scope) [in Infotheo.Rbigop]
\rsum_ ( _ in _ ) _ (R_scope) [in Infotheo.Rbigop]
\rsum_ ( _ in _ | _ ) _ (R_scope) [in Infotheo.Rbigop]
\rsum_ ( _ < _ ) _ (R_scope) [in Infotheo.Rbigop]
\rsum_ ( _ : _ ) _ (R_scope) [in Infotheo.Rbigop]
\rsum_ ( _ : _ | _ ) _ (R_scope) [in Infotheo.Rbigop]
\rsum_ ( _ | _ ) _ (R_scope) [in Infotheo.Rbigop]
\rsum_ ( _ <= _ < _ ) _ (R_scope) [in Infotheo.Rbigop]
\rsum_ ( _ <- _ ) _ (R_scope) [in Infotheo.Rbigop]
esrc( _ , _ ) (source_code_scope) [in Infotheo.source_code]
_ # _ (sub_vec_scope) [in Infotheo.summary]
\rsum_ ( _ # _ , _ ) _ (summary_scope) [in Infotheo.summary]
_ \_ _ (tuple_ext_scope) [in Infotheo.ssr_ext]
`tO( _ ) (types_scope) [in Infotheo.jtypes]
\nu^{ _ } ( _ ) (types_scope) [in Infotheo.jtypes]
\nu_ _ ^{ _ , _ } ( _ ) (types_scope) [in Infotheo.jtypes]
_ .-shell _ (types_scope) [in Infotheo.jtypes]
P_ _ ( _ , _ ) (types_scope) [in Infotheo.jtypes]
_ .-typed_code _ (types_scope) [in Infotheo.types]
T_{ _ } (types_scope) [in Infotheo.types]
P_ _ ( _ ) (types_scope) [in Infotheo.types]
`TS (typ_seq_scope) [in Infotheo.typ_seq]
d( _ , _ ) (variation_distance_scope) [in Infotheo.variation_dist]
_ `[ _ := _ ] (vec_ext_scope) [in Infotheo.ssralg_ext]
_ ``_ _ (vec_ext_scope) [in Infotheo.ssralg_ext]
_ .-err'rV[ _ ]_ _ [in Infotheo.cyclic_decoding]
_ \^2 [in Infotheo.proba]
_ \-cst _ [in Infotheo.proba]
_ \+cst _ [in Infotheo.proba]
_ \-_( _ ) _ [in Infotheo.proba]
_ \+_( _ ) _ [in Infotheo.proba]
_ '/ _ [in Infotheo.proba]
_ \cst* _ [in Infotheo.proba]
0 [in Infotheo.partition_inequality]
1 [in Infotheo.partition_inequality]
\gen_( _ , _ ) [in Infotheo.reed_solomon]
\omega_( _ , _ ) [in Infotheo.cyclic_decoding]
\omega_( _ , _ ) [in Infotheo.cyclic_decoding]
\omega1_( _ , _ , _ ) [in Infotheo.cyclic_decoding]
\omega2_( _ , _ , _ , _ ) [in Infotheo.cyclic_decoding]
\rsum_{ _ } _ [in Infotheo.log_sum]
\sigma_( _ , _ , _ ) [in Infotheo.cyclic_decoding]
\sigma_( _ , _ ) [in Infotheo.cyclic_decoding]
\synp_( _ , _ , _ ) [in Infotheo.cyclic_decoding]
`[ _ ]_ _ [in Infotheo.cyclic_code]



Module Index

B

BDDecoding_m [in Infotheo.mceliece]
BSC [in Infotheo.binary_symmetric_channel]


C

Channel1 [in Infotheo.channel]
ComputationGraph [in Infotheo.degree_profile]
CyclicCode_prop_m [in Infotheo.cyclic_code]
CyclicCode_m [in Infotheo.cyclic_code]


D

DegreeDistribution [in Infotheo.degree_profile]
DMC [in Infotheo.channel]


E

EC [in Infotheo.erasure_channel]
Errloc [in Infotheo.cyclic_decoding]
Errloc_errloc [in Infotheo.cyclic_decoding]
Euclid [in Infotheo.euclid]


H

HammingCode [in Infotheo.hamming_code]
HammingCodeSystematic [in Infotheo.hamming_code]
HammingMetricBitstring [in Infotheo.hamming]


J

JointDist [in Infotheo.channel]
jtype [in Infotheo.jtypes]


K

Key [in Infotheo.cyclic_decoding]


L

LCode_m [in Infotheo.linearcode]
LCode0_m [in Infotheo.linearcode]
LCode1_m [in Infotheo.linearcode]
Letter [in Infotheo.ldpc_erasure]


M

MarginalPosteriorProbabiliy [in Infotheo.pproba]
maxsubset [in Infotheo.max_subset]
McEliece [in Infotheo.mceliece]


N

NormalizedDegreeDistribution [in Infotheo.degree_profile]


O

OutDist [in Infotheo.channel]
OutType [in Infotheo.jtypes]


P

PartialComputationGraph [in Infotheo.degree_profile]
PosteriorProbability [in Infotheo.pproba]
ProdDist [in Infotheo.proba]


R

RS [in Infotheo.reed_solomon]
RS_encoder [in Infotheo.reed_solomon]


S

SysLCode_prop_m [in Infotheo.linearcode]
SysLCode_m [in Infotheo.linearcode]


T

Tanner [in Infotheo.tanner]
TreeEnsemble [in Infotheo.degree_profile]
TupleDist [in Infotheo.proba]
Two_set [in Infotheo.ssr_ext]
type [in Infotheo.types]


U

Uniform [in Infotheo.proba]
UniformSupport [in Infotheo.proba]


W

Wght [in Infotheo.channel_coding_direct]



Variable Index

A

Abelian.op [in Infotheo.Rbigop]
AboutCasts.R [in Infotheo.linearcode]
AboutCasts2.F [in Infotheo.linearcode]
AboutFinSet.A [in Infotheo.linearcode]
AboutPermPid.R [in Infotheo.ssralg_ext]
AboutPoly.R [in Infotheo.poly_ext]
AboutRank.F [in Infotheo.ssralg_ext]
AboutRingType.F [in Infotheo.ssralg_ext]
AboutRowTuple.A [in Infotheo.ssralg_ext]
AboutRowTuple.B [in Infotheo.ssralg_ext]
acyclic_tanner_rel.Hacyclic [in Infotheo.tanner_partition]
acyclic_tanner_rel.H [in Infotheo.tanner_partition]
acyclic_tanner_rel.n [in Infotheo.tanner_partition]
acyclic_tanner_rel.m [in Infotheo.tanner_partition]
aep_k0_constant.P [in Infotheo.aep]
aep_k0_constant.A [in Infotheo.aep]
AEP.A [in Infotheo.aep]
AEP.epsilon [in Infotheo.aep]
AEP.Hepsilon [in Infotheo.aep]
AEP.n [in Infotheo.aep]
AEP.P [in Infotheo.aep]
AlgoProof.alpha' [in Infotheo.ldpc_algo_proof]
AlgoProof.B [in Infotheo.ldpc_algo_proof]
AlgoProof.beta' [in Infotheo.ldpc_algo_proof]
AlgoProof.C [in Infotheo.ldpc_algo_proof]
AlgoProof.C_not_empty [in Infotheo.ldpc_algo_proof]
AlgoProof.d [in Infotheo.ldpc_algo_proof]
AlgoProof.H [in Infotheo.ldpc_algo_proof]
AlgoProof.Hvb [in Infotheo.ldpc_algo_proof]
AlgoProof.id' [in Infotheo.ldpc_algo_proof]
AlgoProof.m [in Infotheo.ldpc_algo_proof]
AlgoProof.n [in Infotheo.ldpc_algo_proof]
AlgoProof.n' [in Infotheo.ldpc_algo_proof]
AlgoProof.p01 [in Infotheo.ldpc_algo_proof]
AlgoProof.rW [in Infotheo.ldpc_algo_proof]
AlgoProof.tanner_connected [in Infotheo.ldpc_algo_proof]
AlgoProof.tanner_acyclic [in Infotheo.ldpc_algo_proof]
AlgoProof.tn_tree' [in Infotheo.ldpc_algo_proof]
AlgoProof.vb [in Infotheo.ldpc_algo_proof]
AlgoProof.W [in Infotheo.ldpc_algo_proof]
Algo.id [in Infotheo.ldpc_algo]
Algo.tn_tree' [in Infotheo.ldpc_algo]
alpha_beta_sect.y [in Infotheo.ldpc]
alpha_beta_sect.W [in Infotheo.ldpc]
alpha_beta_sect.B [in Infotheo.ldpc]
alpha_beta_sect.H [in Infotheo.ldpc]
alpha_beta_sect.n [in Infotheo.ldpc]
alpha_beta_sect.n' [in Infotheo.ldpc]
alpha_beta_sect.m [in Infotheo.ldpc]


B

BCH_cyclic.t [in Infotheo.bch]
BCH_cyclic.a [in Infotheo.bch]
BCH_cyclic.n [in Infotheo.bch]
BCH_cyclic.F [in Infotheo.bch]
BCH_def.t_n [in Infotheo.bch]
BCH_def.t [in Infotheo.bch]
BCH_def.nonzero_alphas [in Infotheo.bch]
BCH_def.uniq_alphas [in Infotheo.bch]
BCH_def.alphas [in Infotheo.bch]
BCH_def.n [in Infotheo.bch]
BCH_def.F [in Infotheo.bch]
bdist_sect.Hp [in Infotheo.proba]
bdist_sect.p [in Infotheo.proba]
bdist_sect.HA [in Infotheo.proba]
bdist_sect.A [in Infotheo.proba]
bigrmax_sect.s [in Infotheo.Rbigop_max]
bigrmax_sect.F [in Infotheo.Rbigop_max]
bigrmax_sect.A [in Infotheo.Rbigop_max]
big_sums_tuples.A [in Infotheo.Rbigop]
big_sums_rV2.A [in Infotheo.Rbigop]
big_sums_rV.A [in Infotheo.Rbigop]
big_sums_prods.B [in Infotheo.Rbigop]
big_sums_prods.A [in Infotheo.Rbigop]
bipart_lem.Q_A [in Infotheo.partition_inequality]
bipart_lem.P_A [in Infotheo.partition_inequality]
bipart_lem.P_dom_by_Q [in Infotheo.partition_inequality]
bipart_lem.Q [in Infotheo.partition_inequality]
bipart_lem.P [in Infotheo.partition_inequality]
bipart_lem.cov [in Infotheo.partition_inequality]
bipart_lem.dis [in Infotheo.partition_inequality]
bipart_lem.A_ [in Infotheo.partition_inequality]
bipart_lem.A [in Infotheo.partition_inequality]
bipart_sect.P [in Infotheo.partition_inequality]
bipart_sect.cov [in Infotheo.partition_inequality]
bipart_sect.dis [in Infotheo.partition_inequality]
bipart_sect.A_ [in Infotheo.partition_inequality]
bipart_sect.A [in Infotheo.partition_inequality]
bsc_capacity_theorem.p_01 [in Infotheo.binary_symmetric_channel]
bsc_capacity_theorem.p_01' [in Infotheo.binary_symmetric_channel]
bsc_capacity_theorem.p [in Infotheo.binary_symmetric_channel]
bsc_capacity_theorem.card_A [in Infotheo.binary_symmetric_channel]
bsc_capacity_theorem.A [in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.p_01 [in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.p_01' [in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.p [in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.P [in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.card_A [in Infotheo.binary_symmetric_channel]
bsc_capacity_proof.A [in Infotheo.binary_symmetric_channel]
BSC.BSC_sect.p_01 [in Infotheo.binary_symmetric_channel]
BSC.BSC_sect.p [in Infotheo.binary_symmetric_channel]
BSC.BSC_sect.card_A [in Infotheo.binary_symmetric_channel]
BSC.BSC_sect.A [in Infotheo.binary_symmetric_channel]
BuildTreeOk.H [in Infotheo.ldpc_algo_proof]
BuildTreeOk.id' [in Infotheo.ldpc_algo_proof]
BuildTreeOk.m [in Infotheo.ldpc_algo_proof]
BuildTreeOk.n [in Infotheo.ldpc_algo_proof]
BuildTreeOk.rW [in Infotheo.ldpc_algo_proof]
BuildTreeOk.tanner_connected [in Infotheo.ldpc_algo_proof]
BuildTreeOk.tanner_acyclic [in Infotheo.ldpc_algo_proof]
BuildTreeTest.F [in Infotheo.ldpc_algo_proof]
BuildTreeTest.H [in Infotheo.ldpc_algo_proof]
BuildTreeTest.id' [in Infotheo.ldpc_algo_proof]
BuildTreeTest.m [in Infotheo.ldpc_algo_proof]
BuildTreeTest.n [in Infotheo.ldpc_algo_proof]
BuildTreeTest.rW [in Infotheo.ldpc_algo_proof]
BuildTree.H [in Infotheo.ldpc_algo]
BuildTree.m [in Infotheo.ldpc_algo]
BuildTree.n [in Infotheo.ldpc_algo]
BuildTree.n' [in Infotheo.ldpc_algo]
BuildTree.rW [in Infotheo.ldpc_algo]


C

cansort.A [in Infotheo.num_occ]
cansort.n [in Infotheo.num_occ]
cansort.order_surgery.ta_cansorted [in Infotheo.num_occ]
cansort.ta [in Infotheo.num_occ]
capacity_definition.B [in Infotheo.channel]
capacity_definition.A [in Infotheo.channel]
card_perm_shell.Bnot0 [in Infotheo.jtypes]
card_perm_shell.Vctyp [in Infotheo.jtypes]
card_perm_shell.Hta [in Infotheo.jtypes]
card_perm_shell.V [in Infotheo.jtypes]
card_perm_shell.ta [in Infotheo.jtypes]
card_perm_shell.P [in Infotheo.jtypes]
card_perm_shell.n [in Infotheo.jtypes]
card_perm_shell.n' [in Infotheo.jtypes]
card_perm_shell.B [in Infotheo.jtypes]
card_perm_shell.A [in Infotheo.jtypes]
card_shell_ub.Bnot0 [in Infotheo.jtypes]
card_shell_ub.ta_sorted [in Infotheo.jtypes]
card_shell_ub.Vctyp [in Infotheo.jtypes]
card_shell_ub.Hta [in Infotheo.jtypes]
card_shell_ub.ta [in Infotheo.jtypes]
card_shell_ub.P [in Infotheo.jtypes]
card_shell_ub.V [in Infotheo.jtypes]
card_shell_ub.n [in Infotheo.jtypes]
card_shell_ub.n' [in Infotheo.jtypes]
card_shell_ub.B [in Infotheo.jtypes]
card_shell_ub.A [in Infotheo.jtypes]
cdiv_spec.W [in Infotheo.conditional_divergence]
cdiv_spec.V [in Infotheo.conditional_divergence]
cdiv_spec.P [in Infotheo.conditional_divergence]
cdiv_spec.n [in Infotheo.conditional_divergence]
cdiv_spec.B [in Infotheo.conditional_divergence]
cdiv_spec.A [in Infotheo.conditional_divergence]
channel_coding_theorem.Hc [in Infotheo.channel_coding_direct]
channel_coding_theorem.cap [in Infotheo.channel_coding_direct]
channel_coding_theorem.W [in Infotheo.channel_coding_direct]
channel_coding_theorem.B [in Infotheo.channel_coding_direct]
channel_coding_theorem.A [in Infotheo.channel_coding_direct]
channel_coding_converse.minRate_cap [in Infotheo.channel_coding_converse]
channel_coding_converse.minRate [in Infotheo.channel_coding_converse]
channel_coding_converse.eps_gt0 [in Infotheo.channel_coding_converse]
channel_coding_converse.epsilon [in Infotheo.channel_coding_converse]
channel_coding_converse.w_cap [in Infotheo.channel_coding_converse]
channel_coding_converse.cap [in Infotheo.channel_coding_converse]
channel_coding_converse.W [in Infotheo.channel_coding_converse]
channel_coding_converse.B [in Infotheo.channel_coding_converse]
channel_coding_converse.A [in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.Bnot0 [in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.Anot0 [in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.HminRate [in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.minRate [in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.Hc [in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.cap [in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.W [in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.B [in Infotheo.channel_coding_converse]
channel_coding_converse_intermediate_lemma.A [in Infotheo.channel_coding_converse]
Channel1.Channel1_sect.B [in Infotheo.channel]
Channel1.Channel1_sect.A [in Infotheo.channel]
characterization_of_error_vector.a_nontrivial [in Infotheo.cyclic_decoding]
characterization_of_error_vector.a_neq0 [in Infotheo.cyclic_decoding]
characterization_of_error_vector.t [in Infotheo.cyclic_decoding]
characterization_of_error_vector.e [in Infotheo.cyclic_decoding]
characterization_of_error_vector.n [in Infotheo.cyclic_decoding]
characterization_of_error_vector.a [in Infotheo.cyclic_decoding]
characterization_of_error_vector.F [in Infotheo.cyclic_decoding]
charac_bdist_sect.card_A [in Infotheo.proba]
charac_bdist_sect.Q [in Infotheo.proba]
charac_bdist_sect.P [in Infotheo.proba]
charac_bdist_sect.A [in Infotheo.proba]
chebyshev.A [in Infotheo.proba]
chebyshev.X [in Infotheo.proba]
code_definition.n [in Infotheo.channel_code]
code_definition.M [in Infotheo.channel_code]
code_definition.B [in Infotheo.channel_code]
code_definition.A [in Infotheo.channel_code]
code_error_rate.sc [in Infotheo.source_code]
code_error_rate.k [in Infotheo.source_code]
code_error_rate.P [in Infotheo.source_code]
code_error_rate.B [in Infotheo.source_code]
code_error_rate.A [in Infotheo.source_code]
ComputationGraph.comp_graph_def.hemi_comp_graph.L [in Infotheo.degree_profile]
ComputationGraph.comp_graph_def.E [in Infotheo.degree_profile]
ComputationGraph.comp_graph_def.K [in Infotheo.degree_profile]
conditional_entropy_prop.P [in Infotheo.channel]
conditional_entropy_prop.W [in Infotheo.channel]
conditional_entropy_prop.B [in Infotheo.channel]
conditional_entropy_prop.A [in Infotheo.channel]
conditional_entropy.P [in Infotheo.channel]
conditional_entropy.W [in Infotheo.channel]
conditional_entropy.B [in Infotheo.channel]
conditional_entropy.A [in Infotheo.channel]
conditional_divergence_prop.V_dom_by_W [in Infotheo.conditional_divergence]
conditional_divergence_prop.P [in Infotheo.conditional_divergence]
conditional_divergence_prop.W [in Infotheo.conditional_divergence]
conditional_divergence_prop.V [in Infotheo.conditional_divergence]
conditional_divergence_prop.B [in Infotheo.conditional_divergence]
conditional_divergence_prop.A [in Infotheo.conditional_divergence]
conditional_divergence_def.P [in Infotheo.conditional_divergence]
conditional_divergence_def.W [in Infotheo.conditional_divergence]
conditional_divergence_def.V [in Infotheo.conditional_divergence]
conditional_divergence_def.B [in Infotheo.conditional_divergence]
conditional_divergence_def.A [in Infotheo.conditional_divergence]
condition_equivalence.P [in Infotheo.conditional_divergence]
condition_equivalence.W [in Infotheo.conditional_divergence]
condition_equivalence.V [in Infotheo.conditional_divergence]
condition_equivalence.B [in Infotheo.conditional_divergence]
condition_equivalence.A [in Infotheo.conditional_divergence]
cond_type_equiv_sect.V [in Infotheo.jtypes]
cond_type_equiv_sect.B [in Infotheo.jtypes]
cond_type_equiv_sect.P [in Infotheo.jtypes]
cond_type_equiv_sect.n [in Infotheo.jtypes]
cond_type_equiv_sect.A [in Infotheo.jtypes]
cond_type_prop.B [in Infotheo.jtypes]
cond_type_prop.P [in Infotheo.jtypes]
cond_type_prop.n [in Infotheo.jtypes]
cond_type_prop.A [in Infotheo.jtypes]
cond_type_def.B [in Infotheo.jtypes]
cond_type_def.P [in Infotheo.jtypes]
cond_type_def.n [in Infotheo.jtypes]
cond_type_def.A [in Infotheo.jtypes]
CyclicCode_prop_m.cycliccode.C [in Infotheo.cyclic_code]
CyclicCode_prop_m.cycliccode.F [in Infotheo.cyclic_code]
CyclicCode_prop_m.cycliccode.n [in Infotheo.cyclic_code]
CyclicCode_prop_m.cycliccode.n' [in Infotheo.cyclic_code]
CyclicCode_m.generator.C_not_trivial [in Infotheo.cyclic_code]
CyclicCode_m.generator.C [in Infotheo.cyclic_code]
CyclicCode_m.generator.n [in Infotheo.cyclic_code]
CyclicCode_m.generator.F [in Infotheo.cyclic_code]
CyclicCode_m.cyclic_code_def.n [in Infotheo.cyclic_code]
CyclicCode_m.cyclic_code_def.F [in Infotheo.cyclic_code]


D

DegreeDistribution.Lambda_definition.K [in Infotheo.degree_profile]
delta_parity.H [in Infotheo.checksum]
delta_parity.m [in Infotheo.checksum]
delta_parity.n [in Infotheo.checksum]
dH_BSC.f [in Infotheo.binary_symmetric_channel]
dH_BSC.c [in Infotheo.binary_symmetric_channel]
dH_BSC.n [in Infotheo.binary_symmetric_channel]
dH_BSC.M [in Infotheo.binary_symmetric_channel]
dH_BSC.W [in Infotheo.binary_symmetric_channel]
dH_BSC.card_F2 [in Infotheo.binary_symmetric_channel]
dH_BSC.p_01 [in Infotheo.binary_symmetric_channel]
dH_BSC.p [in Infotheo.binary_symmetric_channel]
distribution_definition.A [in Infotheo.proba]
divergence_lemmas.P_dom_by_Q [in Infotheo.divergence]
divergence_lemmas.Q [in Infotheo.divergence]
divergence_lemmas.P [in Infotheo.divergence]
divergence_lemmas.A [in Infotheo.divergence]
divergence_def.Q [in Infotheo.divergence]
divergence_def.P [in Infotheo.divergence]
divergence_def.A [in Infotheo.divergence]
dmc_cdiv_cond_entropy_spec_sect.Htb [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.Vctyp [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.Hta [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.tb [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.ta [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.V [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.P [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.n [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.n' [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.W [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.B [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_spec_sect.A [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.Hn [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.Htb [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.HV [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.Hta [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.W0_V0 [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.tb [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.ta [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.V [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.P [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.n [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.W [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.B [in Infotheo.conditional_divergence]
dmc_cdiv_cond_entropy_sect.A [in Infotheo.conditional_divergence]
DMC.DMC_sect.n [in Infotheo.channel]
DMC.DMC_sect.W [in Infotheo.channel]
DMC.DMC_sect.B [in Infotheo.channel]
DMC.DMC_sect.A [in Infotheo.channel]


E

EC.EC_prob.q [in Infotheo.erasure_channel]
EC.EC_prob.BEC [in Infotheo.erasure_channel]
EC.EC_prob.erp_01 [in Infotheo.erasure_channel]
EC.EC_prob.erp [in Infotheo.erasure_channel]
EC.EC_prob.P [in Infotheo.erasure_channel]
EC.EC_prob.card_X [in Infotheo.erasure_channel]
EC.EC_prob.X [in Infotheo.erasure_channel]
EC.EC_sect.p_01 [in Infotheo.erasure_channel]
EC.EC_sect.p [in Infotheo.erasure_channel]
EC.EC_sect.A [in Infotheo.erasure_channel]
encoder_and_decoder.HS [in Infotheo.source_coding_fl_direct]
encoder_and_decoder.Hdef [in Infotheo.source_coding_fl_direct]
encoder_and_decoder.def [in Infotheo.source_coding_fl_direct]
encoder_and_decoder.S [in Infotheo.source_coding_fl_direct]
encoder_and_decoder.k [in Infotheo.source_coding_fl_direct]
encoder_and_decoder.n [in Infotheo.source_coding_fl_direct]
encoder_and_decoder.P [in Infotheo.source_coding_fl_direct]
encoder_and_decoder.A [in Infotheo.source_coding_fl_direct]
enc_pre_img_partition.c [in Infotheo.types]
enc_pre_img_partition.n [in Infotheo.types]
enc_pre_img_partition.n' [in Infotheo.types]
enc_pre_img_partition.M [in Infotheo.types]
enc_pre_img_partition.B [in Infotheo.types]
enc_pre_img_partition.A [in Infotheo.types]
entropy_definition.P_pos [in Infotheo.entropy]
entropy_definition.P [in Infotheo.entropy]
entropy_definition.A [in Infotheo.entropy]
enum_val.p [in Infotheo.degree_profile]
enum_val.x [in Infotheo.degree_profile]
enum_val.T [in Infotheo.degree_profile]
errevalE.a [in Infotheo.cyclic_decoding]
errevalE.a_neq0 [in Infotheo.cyclic_decoding]
errevalE.F [in Infotheo.cyclic_decoding]
errevalE.n [in Infotheo.cyclic_decoding]
errevalE.t [in Infotheo.cyclic_decoding]
errlocP.a [in Infotheo.cyclic_decoding]
errlocP.a_nontrivial [in Infotheo.cyclic_decoding]
errlocP.a_unit [in Infotheo.cyclic_decoding]
errlocP.card_supp [in Infotheo.cyclic_decoding]
errlocP.e [in Infotheo.cyclic_decoding]
errlocP.F [in Infotheo.cyclic_decoding]
errlocP.n [in Infotheo.cyclic_decoding]
errlocP.t [in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.a_neq0 [in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.e [in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.t [in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.n [in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.a [in Infotheo.cyclic_decoding]
Errloc_errloc.errloc_errloc.F [in Infotheo.cyclic_decoding]
Errloc.errloc_spec.p [in Infotheo.cyclic_decoding]
Errloc.errloc_spec.t [in Infotheo.cyclic_decoding]
Errloc.errloc_spec.y [in Infotheo.cyclic_decoding]
Errloc.errloc_spec.n [in Infotheo.cyclic_decoding]
Errloc.errloc_spec.a [in Infotheo.cyclic_decoding]
Errloc.errloc_spec.F [in Infotheo.cyclic_decoding]
error_exponent_lower_bound.minRate_cap [in Infotheo.error_exponent]
error_exponent_lower_bound.minRate [in Infotheo.error_exponent]
error_exponent_lower_bound.W_cap [in Infotheo.error_exponent]
error_exponent_lower_bound.cap [in Infotheo.error_exponent]
error_exponent_lower_bound.W [in Infotheo.error_exponent]
error_exponent_lower_bound.Bnot0 [in Infotheo.error_exponent]
error_exponent_lower_bound.B [in Infotheo.error_exponent]
error_exponent_lower_bound.A [in Infotheo.error_exponent]
error_evaluator_polynomial.e [in Infotheo.cyclic_decoding]
error_evaluator_polynomial.t [in Infotheo.cyclic_decoding]
error_evaluator_polynomial.a_neq0 [in Infotheo.cyclic_decoding]
error_evaluator_polynomial.n [in Infotheo.cyclic_decoding]
error_evaluator_polynomial.a [in Infotheo.cyclic_decoding]
error_evaluator_polynomial.F [in Infotheo.cyclic_decoding]
error_evaluator_polynomial_def.y [in Infotheo.cyclic_decoding]
error_evaluator_polynomial_def.n [in Infotheo.cyclic_decoding]
error_evaluator_polynomial_def.a [in Infotheo.cyclic_decoding]
error_evaluator_polynomial_def.F [in Infotheo.cyclic_decoding]
error_locator_polynomial.a_nontrivial [in Infotheo.cyclic_decoding]
error_locator_polynomial.a_neq0 [in Infotheo.cyclic_decoding]
error_locator_polynomial.n [in Infotheo.cyclic_decoding]
error_locator_polynomial.a [in Infotheo.cyclic_decoding]
error_locator_polynomial.F [in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.when_syndrome_is_0.synp0 [in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.t [in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.y [in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.n [in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.a [in Infotheo.cyclic_decoding]
euclid_satisfies_ErrlocBC.F [in Infotheo.cyclic_decoding]
euclid_satisfies_Errloc.a_nontrivial [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.a_neq0 [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.stop [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.td [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.c_is_cw [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.d [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.yce [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.e [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.t [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.c [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.y [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.n [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.a [in Infotheo.reed_solomon]
euclid_satisfies_Errloc.F [in Infotheo.reed_solomon]
euclid_stop.tr0 [in Infotheo.euclid]
euclid_stop.r1_r0 [in Infotheo.euclid]
euclid_stop.r1 [in Infotheo.euclid]
euclid_stop.r0 [in Infotheo.euclid]
euclid_stop.t [in Infotheo.euclid]
euclid_stop.y [in Infotheo.euclid]
euclid_stop.n [in Infotheo.euclid]
euclid_stop.F [in Infotheo.euclid]
Euclid.euclid_algo.r1_r0 [in Infotheo.euclid]
Euclid.euclid_algo.uv_sect.P1 [in Infotheo.euclid]
Euclid.euclid_algo.uv_sect.P0 [in Infotheo.euclid]
Euclid.euclid_algo.r1 [in Infotheo.euclid]
Euclid.euclid_algo.r0 [in Infotheo.euclid]
Euclid.euclid_algo.t [in Infotheo.euclid]
Euclid.euclid_algo.F [in Infotheo.euclid]
expected_value_for_standard_random_variables.Y [in Infotheo.proba]
expected_value_for_standard_random_variables.X [in Infotheo.proba]
expected_value_for_standard_random_variables.A [in Infotheo.proba]
expected_value_definition.X [in Infotheo.proba]
expected_value_definition.A [in Infotheo.proba]
exp_lb_sect.exp_dev_ge0 [in Infotheo.Reals_ext]
exp_lb_sect.exp_dev_gt0 [in Infotheo.Reals_ext]
exp_lb_sect.exp_dev_rec [in Infotheo.Reals_ext]
exp_lb_sect.derivable_exp_dev [in Infotheo.Reals_ext]
exp_lb_sect.exp_dev [in Infotheo.Reals_ext]
extension.A [in Infotheo.source_code]
extension.B [in Infotheo.source_code]
Extras.A [in Infotheo.ldpc_algo_proof]
Extras.Flatten.B [in Infotheo.ldpc_algo_proof]
Extras.Flatten.f [in Infotheo.ldpc_algo_proof]
Extras.g [in Infotheo.ldpc_algo_proof]


F

finset_ops.bigop.P [in Infotheo.degree_profile]
finset_ops.bigop.F [in Infotheo.degree_profile]
finset_ops.bigop.A [in Infotheo.degree_profile]
finset_ops.bigop.op [in Infotheo.degree_profile]
finset_ops.bigop.idx [in Infotheo.degree_profile]
finset_ops.bigop.R [in Infotheo.degree_profile]
finset_ops.trivIset.C [in Infotheo.degree_profile]
finset_ops.trivIset.x [in Infotheo.degree_profile]
finset_ops.T [in Infotheo.degree_profile]
finset_ext.A [in Infotheo.ssr_ext]
first_partition.g [in Infotheo.subgraph_partition]
first_partition.V [in Infotheo.subgraph_partition]


G

generalized_key_equation.q [in Infotheo.cyclic_decoding]
generalized_key_equation.keycond_p [in Infotheo.cyclic_decoding]
generalized_key_equation.card_supp [in Infotheo.cyclic_decoding]
generalized_key_equation.t [in Infotheo.cyclic_decoding]
generalized_key_equation.p [in Infotheo.cyclic_decoding]
generalized_key_equation.e [in Infotheo.cyclic_decoding]
generalized_key_equation.n [in Infotheo.cyclic_decoding]
generalized_key_equation.a [in Infotheo.cyclic_decoding]
generalized_key_equation.F [in Infotheo.cyclic_decoding]
goal.c [in Infotheo.stopping_set]
goal.E [in Infotheo.stopping_set]
goal.H [in Infotheo.stopping_set]
goal.Hc [in Infotheo.stopping_set]
goal.m [in Infotheo.stopping_set]
goal.m' [in Infotheo.stopping_set]
goal.n [in Infotheo.stopping_set]
goal.n' [in Infotheo.stopping_set]
goal.y_stars_def.alpha [in Infotheo.stopping_set]
graph_class.V [in Infotheo.subgraph_partition]
graph_property.g [in Infotheo.subgraph_partition]
graph_property.V [in Infotheo.subgraph_partition]


H

HammingCodeSystematic.hammingcode_error_distance.phi [in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance.f [in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance.hamH [in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance.n [in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance.r [in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_error_distance.r' [in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_systematic.hamH [in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_systematic.n [in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_systematic.m [in Infotheo.hamming_code]
HammingCodeSystematic.hammingcode_systematic.m' [in Infotheo.hamming_code]
hammingcode_mindistdecoding.Hham_scode [in Infotheo.hamming_code]
hammingcode_mindistdecoding.Hham_scode_corr [in Infotheo.hamming_code]
hammingcode_mindistdecoding.ham_scode [in Infotheo.hamming_code]
hammingcode_mindistdecoding.hamH [in Infotheo.hamming_code]
hammingcode_mindistdecoding.n [in Infotheo.hamming_code]
hammingcode_mindistdecoding.m [in Infotheo.hamming_code]
hammingcode_mindistdecoding.m' [in Infotheo.hamming_code]
hammingcode_mindist.hamC [in Infotheo.hamming_code]
hammingcode_mindist.m [in Infotheo.hamming_code]
hammingcode_mindist.two_m [in Infotheo.hamming_code]
hammingcode_mindist.hamH [in Infotheo.hamming_code]
hammingcode_mindist.n [in Infotheo.hamming_code]
hammingcode_mindist.m' [in Infotheo.hamming_code]
HammingCode.hamming_code_def.n [in Infotheo.hamming_code]
HammingCode.hamming_code_def.m [in Infotheo.hamming_code]
HammingCode.hamming_code_def.m' [in Infotheo.hamming_code]
hamming_code_error_rate_sect.n [in Infotheo.hamming_code]
hamming_code_error_rate_sect.m [in Infotheo.hamming_code]
hamming_code_error_rate_sect.m' [in Infotheo.hamming_code]
hamming_code_error_rate_sect.W [in Infotheo.hamming_code]
hamming_code_error_rate_sect.card_F2 [in Infotheo.hamming_code]
hamming_code_error_rate_sect.p_01 [in Infotheo.hamming_code]
hamming_code_error_rate_sect.p [in Infotheo.hamming_code]
hamming_code_error_rate_sect.M_not_0 [in Infotheo.hamming_code]
hamming_code_error_rate_sect.M [in Infotheo.hamming_code]


I

identically_distributed.n [in Infotheo.proba]
identically_distributed.P [in Infotheo.proba]
identically_distributed.A [in Infotheo.proba]
imset2.aT1 [in Infotheo.degree_profile]
imset2.aT2 [in Infotheo.degree_profile]
imset2.D1 [in Infotheo.degree_profile]
imset2.D2 [in Infotheo.degree_profile]
imset2.f [in Infotheo.degree_profile]
imset2.rT [in Infotheo.degree_profile]
independent_random_variables.P [in Infotheo.proba]
independent_random_variables.Y [in Infotheo.proba]
independent_random_variables.n [in Infotheo.proba]
independent_random_variables.X [in Infotheo.proba]
independent_random_variables.A [in Infotheo.proba]


J

JointDist.JointDist_sect.W [in Infotheo.channel]
JointDist.JointDist_sect.P [in Infotheo.channel]
JointDist.JointDist_sect.B [in Infotheo.channel]
JointDist.JointDist_sect.A [in Infotheo.channel]
joint_typ_seq_definition.epsilon [in Infotheo.joint_typ_seq]
joint_typ_seq_definition.n [in Infotheo.joint_typ_seq]
joint_typ_seq_definition.W [in Infotheo.joint_typ_seq]
joint_typ_seq_definition.P [in Infotheo.joint_typ_seq]
joint_typ_seq_definition.B [in Infotheo.joint_typ_seq]
joint_typ_seq_definition.A [in Infotheo.joint_typ_seq]
joint_dom_sect.P [in Infotheo.conditional_divergence]
joint_dom_sect.W [in Infotheo.conditional_divergence]
joint_dom_sect.V [in Infotheo.conditional_divergence]
joint_dom_sect.B [in Infotheo.conditional_divergence]
joint_dom_sect.A [in Infotheo.conditional_divergence]
joint_dist.P [in Infotheo.proba]
joint_dist.P2 [in Infotheo.proba]
joint_dist.n [in Infotheo.proba]
joint_dist.P1 [in Infotheo.proba]
joint_dist.A [in Infotheo.proba]
joint_typicality_decoding.HM [in Infotheo.channel_coding_direct]
joint_typicality_decoding.n [in Infotheo.channel_coding_direct]
joint_typicality_decoding.M [in Infotheo.channel_coding_direct]
joint_typicality_decoding.B [in Infotheo.channel_coding_direct]
joint_typicality_decoding.A [in Infotheo.channel_coding_direct]
jtype_facts.ta [in Infotheo.jtypes]
jtype_facts.n [in Infotheo.jtypes]
jtype_facts.B [in Infotheo.jtypes]
jtype_facts.A [in Infotheo.jtypes]
jtype.jtype_def.n [in Infotheo.jtypes]
jtype.jtype_def.B [in Infotheo.jtypes]
jtype.jtype_def.A [in Infotheo.jtypes]
jtyp_seq_transmitted.He [in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.n [in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.epsilon [in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.W [in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.P [in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.B [in Infotheo.joint_typ_seq]
jtyp_seq_transmitted.A [in Infotheo.joint_typ_seq]
jtyp_seq_upper.epsilon [in Infotheo.joint_typ_seq]
jtyp_seq_upper.n [in Infotheo.joint_typ_seq]
jtyp_seq_upper.W [in Infotheo.joint_typ_seq]
jtyp_seq_upper.P [in Infotheo.joint_typ_seq]
jtyp_seq_upper.B [in Infotheo.joint_typ_seq]
jtyp_seq_upper.A [in Infotheo.joint_typ_seq]


K

kernel_sect.H [in Infotheo.linearcode]
kernel_sect.m [in Infotheo.linearcode]
kernel_sect.n [in Infotheo.linearcode]
kernel_sect.F [in Infotheo.linearcode]
keycond_errloc.card_supp [in Infotheo.cyclic_decoding]
keycond_errloc.t [in Infotheo.cyclic_decoding]
keycond_errloc.a_neq0 [in Infotheo.cyclic_decoding]
keycond_errloc.e [in Infotheo.cyclic_decoding]
keycond_errloc.n [in Infotheo.cyclic_decoding]
keycond_errloc.a [in Infotheo.cyclic_decoding]
keycond_errloc.F [in Infotheo.cyclic_decoding]
key_equation_prop.a_nontrivial [in Infotheo.cyclic_decoding]
key_equation_prop.keycond_p [in Infotheo.cyclic_decoding]
key_equation_prop.errloc_deg_ub [in Infotheo.cyclic_decoding]
key_equation_prop.p [in Infotheo.cyclic_decoding]
key_equation_prop.card_supp [in Infotheo.cyclic_decoding]
key_equation_prop.a_neq0 [in Infotheo.cyclic_decoding]
key_equation_prop.e [in Infotheo.cyclic_decoding]
key_equation_prop.t [in Infotheo.cyclic_decoding]
key_equation_prop.n [in Infotheo.cyclic_decoding]
key_equation_prop.a [in Infotheo.cyclic_decoding]
key_equation_prop.F [in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.a_neq0 [in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.t [in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.t' [in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.y [in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.n [in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.a [in Infotheo.cyclic_decoding]
Key.key_equation_remainder_quotient.F [in Infotheo.cyclic_decoding]


L

largest_subset_verifying_stopset.E [in Infotheo.stopping_set]
largest_subset_verifying_stopset.H [in Infotheo.stopping_set]
largest_subset_verifying_stopset.n [in Infotheo.stopping_set]
largest_subset_verifying_stopset.m [in Infotheo.stopping_set]
largest_subset_verifying_stopset.n' [in Infotheo.stopping_set]
largest_subset_verifying_stopset.m' [in Infotheo.stopping_set]
LCode_m.lcode_section.C_not_trivial [in Infotheo.linearcode]
LCode_m.lcode_section.Hdecode_nearest [in Infotheo.linearcode]
LCode_m.lcode_section.C [in Infotheo.linearcode]
LCode_m.lcode_section.k [in Infotheo.linearcode]
LCode_m.lcode_section.n [in Infotheo.linearcode]
LCode0_m.lcode0.C [in Infotheo.linearcode]
LCode0_m.lcode0.F [in Infotheo.linearcode]
LCode0_m.lcode0.n [in Infotheo.linearcode]
ldpc_approx_algo.tb [in Infotheo.ldpc]
ldpc_approx_algo.W [in Infotheo.ldpc]
ldpc_approx_algo.B [in Infotheo.ldpc]
ldpc_approx_algo.H [in Infotheo.ldpc]
ldpc_approx_algo.n [in Infotheo.ldpc]
ldpc_approx_algo.m [in Infotheo.ldpc]


M

MAP_decoding_prop.P [in Infotheo.decoding]
MAP_decoding_prop.codewords_non_empty [in Infotheo.decoding]
MAP_decoding_prop.c [in Infotheo.decoding]
MAP_decoding_prop.n [in Infotheo.decoding]
MAP_decoding_prop.M [in Infotheo.decoding]
MAP_decoding_prop.W [in Infotheo.decoding]
MAP_decoding_prop.B [in Infotheo.decoding]
MAP_decoding_prop.A [in Infotheo.decoding]
MAP_decoding_sect.P [in Infotheo.decoding]
MAP_decoding_sect.c [in Infotheo.decoding]
MAP_decoding_sect.n [in Infotheo.decoding]
MAP_decoding_sect.M [in Infotheo.decoding]
MAP_decoding_sect.W [in Infotheo.decoding]
MAP_decoding_sect.B [in Infotheo.decoding]
MAP_decoding_sect.A [in Infotheo.decoding]
map_mlog_prop.P [in Infotheo.aep]
map_mlog_prop.A [in Infotheo.aep]
MarginalPosteriorProbabiliy.marginal_post_proba.f' [in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.H [in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.y [in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.W [in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.B [in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.P [in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.A [in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.m [in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.n [in Infotheo.pproba]
MarginalPosteriorProbabiliy.marginal_post_proba.n' [in Infotheo.pproba]
markov_inquality.X_nonneg [in Infotheo.proba]
markov_inquality.X [in Infotheo.proba]
markov_inquality.A [in Infotheo.proba]
MaxFintype.I [in Infotheo.arg_rmax]
MaxFintype.i0 [in Infotheo.arg_rmax]
MaxFintype.ord [in Infotheo.arg_rmax]
MaxFintype.ord_inv [in Infotheo.arg_rmax]
MaxFintype.P [in Infotheo.arg_rmax]
MaxFintype.P_not_pred0 [in Infotheo.arg_rmax]
MaxFintype.reflexive_ord_inv [in Infotheo.arg_rmax]
MaxFintype.reflexive_ord [in Infotheo.arg_rmax]
MaxFintype.total_ord_inv [in Infotheo.arg_rmax]
MaxFintype.total_ord [in Infotheo.arg_rmax]
MaxFintype.transitive_ord_inv [in Infotheo.arg_rmax]
MaxFintype.transitive_ord [in Infotheo.arg_rmax]
maximum_likelihood_decoding_prop.c_ML [in Infotheo.decoding]
maximum_likelihood_decoding_prop.P [in Infotheo.decoding]
maximum_likelihood_decoding_prop.codewords_non_empty [in Infotheo.decoding]
maximum_likelihood_decoding_prop.c [in Infotheo.decoding]
maximum_likelihood_decoding_prop.n [in Infotheo.decoding]
maximum_likelihood_decoding_prop.M_not_0 [in Infotheo.decoding]
maximum_likelihood_decoding_prop.M [in Infotheo.decoding]
maximum_likelihood_decoding_prop.W [in Infotheo.decoding]
maximum_likelihood_decoding_prop.B [in Infotheo.decoding]
maximum_likelihood_decoding_prop.A [in Infotheo.decoding]
maximum_likelihood_decoding_sect.P [in Infotheo.decoding]
maximum_likelihood_decoding_sect.c [in Infotheo.decoding]
maximum_likelihood_decoding_sect.n [in Infotheo.decoding]
maximum_likelihood_decoding_sect.M [in Infotheo.decoding]
maximum_likelihood_decoding_sect.W [in Infotheo.decoding]
maximum_likelihood_decoding_sect.B [in Infotheo.decoding]
maximum_likelihood_decoding_sect.A [in Infotheo.decoding]
maxsubset.A [in Infotheo.max_subset]
max_subset_satisfying_P.PU [in Infotheo.max_subset]
max_subset_satisfying_P.P0 [in Infotheo.max_subset]
max_subset_satisfying_P.P [in Infotheo.max_subset]
max_subset_satisfying_P.A [in Infotheo.max_subset]
McEliece.CSM [in Infotheo.mceliece]
McEliece.C' [in Infotheo.mceliece]
McEliece.HC [in Infotheo.mceliece]
McEliece.Hdimlen [in Infotheo.mceliece]
McEliece.k [in Infotheo.mceliece]
McEliece.n [in Infotheo.mceliece]
McEliece.n' [in Infotheo.mceliece]
MD_ML_decoding.P [in Infotheo.decoding]
MD_ML_decoding.c_not_empty [in Infotheo.decoding]
MD_ML_decoding.c [in Infotheo.decoding]
MD_ML_decoding.n [in Infotheo.decoding]
MD_ML_decoding.M [in Infotheo.decoding]
MD_ML_decoding.W [in Infotheo.decoding]
MD_ML_decoding.card_F2 [in Infotheo.decoding]
MD_ML_decoding.p_01 [in Infotheo.decoding]
MD_ML_decoding.p [in Infotheo.decoding]
MinFintype.arg_pred_min [in Infotheo.arg_rmax]
MinFintype.exFP [in Infotheo.arg_rmax]
MinFintype.FP [in Infotheo.arg_rmax]
MinFintype.FP_F [in Infotheo.arg_rmax]
MinFintype.I [in Infotheo.arg_rmax]
MinFintype.i0 [in Infotheo.arg_rmax]
MinFintype.ord [in Infotheo.arg_rmax]
MinFintype.P [in Infotheo.arg_rmax]
MinFintype.Pi0 [in Infotheo.arg_rmax]
MinFintype.P_not_pred0 [in Infotheo.arg_rmax]
MinFintype.reflexive_ord [in Infotheo.arg_rmax]
MinFintype.total_ord [in Infotheo.arg_rmax]
MinFintype.transitive_ord [in Infotheo.arg_rmax]
minimum_distance_decoding_sect.cnot0 [in Infotheo.decoding]
minimum_distance_decoding_sect.c [in Infotheo.decoding]
minimum_distance_decoding_sect.n [in Infotheo.decoding]
minimum_distance_decoding_sect.M [in Infotheo.decoding]
MPM_condition.c [in Infotheo.ldpc]
MPM_condition.C [in Infotheo.ldpc]
MPM_condition.m [in Infotheo.ldpc]
MPM_condition.n [in Infotheo.ldpc]
MPM_condition.n' [in Infotheo.ldpc]
MPM_condition.W [in Infotheo.ldpc]
mutinfo_distance_bound.cdiv_bounds [in Infotheo.error_exponent]
mutinfo_distance_bound.cdiv_ub [in Infotheo.error_exponent]
mutinfo_distance_bound.V_dom_by_W [in Infotheo.error_exponent]
mutinfo_distance_bound.P [in Infotheo.error_exponent]
mutinfo_distance_bound.W [in Infotheo.error_exponent]
mutinfo_distance_bound.V [in Infotheo.error_exponent]
mutinfo_distance_bound.B [in Infotheo.error_exponent]
mutinfo_distance_bound.A [in Infotheo.error_exponent]
mutual_information_section.B [in Infotheo.channel]
mutual_information_section.A [in Infotheo.channel]
MyPartitions.I [in Infotheo.ldpc]
MyPartitions.MyBigOps.idx [in Infotheo.ldpc]
MyPartitions.MyBigOps.op [in Infotheo.ldpc]
MyPartitions.MyBigOps.R [in Infotheo.ldpc]
MyPartitions.MyBigOps.rhs [in Infotheo.ldpc]
MyPartitions.MyBigOps.rhs_cond [in Infotheo.ldpc]
MyPartitions.T [in Infotheo.ldpc]


N

next_graph.H [in Infotheo.tanner]
next_graph.n [in Infotheo.tanner]
next_graph.m [in Infotheo.tanner]
non_trivial_linear_binary_codes.C_not_trivial [in Infotheo.linearcode]
non_trivial_linear_binary_codes.C [in Infotheo.linearcode]
non_trivial_linear_binary_codes.n [in Infotheo.linearcode]
non_trivial_linear_codes.C_not_trivial [in Infotheo.linearcode]
non_trivial_linear_codes.C [in Infotheo.linearcode]
non_trivial_linear_codes.n [in Infotheo.linearcode]
non_trivial_linear_codes.F [in Infotheo.linearcode]
non_trivial_def.C [in Infotheo.linearcode]
non_trivial_def.n [in Infotheo.linearcode]
non_trivial_def.F [in Infotheo.linearcode]
non_typicality.epsilon [in Infotheo.joint_typ_seq]
non_typicality.n [in Infotheo.joint_typ_seq]
non_typicality.W [in Infotheo.joint_typ_seq]
non_typicality.P [in Infotheo.joint_typ_seq]
non_typicality.B [in Infotheo.joint_typ_seq]
non_typicality.A [in Infotheo.joint_typ_seq]
NormalizedDegreeDistribution.L_definition.K [in Infotheo.degree_profile]
num_occ_ext.H [in Infotheo.stopping_set]
num_occ_ext.n [in Infotheo.stopping_set]
num_occ_ext.m [in Infotheo.stopping_set]
num_co_occ_facts.tb [in Infotheo.num_occ]
num_co_occ_facts.ta [in Infotheo.num_occ]
num_co_occ_facts.n [in Infotheo.num_occ]
num_co_occ_facts.B [in Infotheo.num_occ]
num_co_occ_facts.A [in Infotheo.num_occ]
num_co_occ_tuple.tb [in Infotheo.num_occ]
num_co_occ_tuple.ta [in Infotheo.num_occ]
num_co_occ_tuple.b [in Infotheo.num_occ]
num_co_occ_tuple.a [in Infotheo.num_occ]
num_co_occ_tuple.n [in Infotheo.num_occ]
num_co_occ_tuple.B [in Infotheo.num_occ]
num_co_occ_tuple.A [in Infotheo.num_occ]
num_co_occ_prop.tb [in Infotheo.num_occ]
num_co_occ_prop.ta [in Infotheo.num_occ]
num_co_occ_prop.b [in Infotheo.num_occ]
num_co_occ_prop.a [in Infotheo.num_occ]
num_co_occ_prop.B [in Infotheo.num_occ]
num_co_occ_prop.A [in Infotheo.num_occ]
num_co_occ_def.tb [in Infotheo.num_occ]
num_co_occ_def.ta [in Infotheo.num_occ]
num_co_occ_def.b [in Infotheo.num_occ]
num_co_occ_def.a [in Infotheo.num_occ]
num_co_occ_def.B [in Infotheo.num_occ]
num_co_occ_def.A [in Infotheo.num_occ]
num_occ_tuple_facts.t [in Infotheo.num_occ]
num_occ_tuple_facts.n [in Infotheo.num_occ]
num_occ_tuple_facts.A [in Infotheo.num_occ]
num_occ_tuple.t [in Infotheo.num_occ]
num_occ_tuple.a [in Infotheo.num_occ]
num_occ_tuple.n [in Infotheo.num_occ]
num_occ_tuple.A [in Infotheo.num_occ]
num_occ_prop.t [in Infotheo.num_occ]
num_occ_prop.a [in Infotheo.num_occ]
num_occ_prop.A [in Infotheo.num_occ]
num_occ_def.t [in Infotheo.num_occ]
num_occ_def.a [in Infotheo.num_occ]
num_occ_def.A [in Infotheo.num_occ]


O

ordered_ranks.n [in Infotheo.ssr_ext]
ordered_ranks.X [in Infotheo.ssr_ext]
OutDist_prop.B [in Infotheo.channel]
OutDist_prop.A [in Infotheo.channel]
OutDist.OutDist_sect.W [in Infotheo.channel]
OutDist.OutDist_sect.P [in Infotheo.channel]
OutDist.OutDist_sect.B [in Infotheo.channel]
OutDist.OutDist_sect.A [in Infotheo.channel]
output_type_facts.Vctyp [in Infotheo.jtypes]
output_type_facts.Bnot0 [in Infotheo.jtypes]
output_type_facts.P [in Infotheo.jtypes]
output_type_facts.V [in Infotheo.jtypes]
output_type_facts.n [in Infotheo.jtypes]
output_type_facts.n' [in Infotheo.jtypes]
output_type_facts.B [in Infotheo.jtypes]
output_type_facts.A [in Infotheo.jtypes]
OutType.OutType_sect.V [in Infotheo.jtypes]
OutType.OutType_sect.n [in Infotheo.jtypes]
OutType.OutType_sect.n' [in Infotheo.jtypes]
OutType.OutType_sect.B [in Infotheo.jtypes]
OutType.OutType_sect.A [in Infotheo.jtypes]


P

Pad.A [in Infotheo.natbin]
Pad.def [in Infotheo.natbin]
PartialComputationGraph.border_step.step_ok.Hcond [in Infotheo.degree_profile]
PartialComputationGraph.border_step.step_ok.Htriv [in Infotheo.degree_profile]
PartialComputationGraph.border_step.step_id.Hid [in Infotheo.degree_profile]
PartialComputationGraph.border_step.step_edom [in Infotheo.degree_profile]
PartialComputationGraph.border_step.end_node [in Infotheo.degree_profile]
PartialComputationGraph.border_step.end_port [in Infotheo.degree_profile]
PartialComputationGraph.border_step.start_port [in Infotheo.degree_profile]
PartialComputationGraph.border_step.c [in Infotheo.degree_profile]
PartialComputationGraph.border_step.port [in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.step_dist.port [in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.correct_def.lam [in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.correct_def.h [in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.correct_def.port [in Infotheo.degree_profile]
PartialComputationGraph.graph_dist.K [in Infotheo.degree_profile]
PartialComputationGraph.graph_rel.c [in Infotheo.degree_profile]
PartialComputationGraph.graph_rel.port [in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.connected_step_out.Hcond [in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.connected_step_out.Htriv [in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.connected_step_out.Hc [in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.c' [in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.en [in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.ep [in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.connected_step.sp [in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.c [in Infotheo.degree_profile]
PartialComputationGraph.partial_graph_progress.port [in Infotheo.degree_profile]
PartialComputationGraph.pcomp_graph_def.port [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.tp [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.dest_ports' [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.build_graphs [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.lr [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.next_graphs [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.def_port [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.rho [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_dist.lam [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.tree_like_start_lemmas.Hrho [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.tree_like_start_lemmas.Hlam [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.next_graphs [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.Hmaxlen [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.tree_max [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.maxdeg [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.l [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.rho [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.lam [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.tree_like_start.def_port [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.tree_max [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.build_graphs [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.TuplePartial.def [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.TuplePartial.T [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.TuplePartial.s [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.TuplePartial.A [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.def_port [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_after.maxdeg [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.bnext [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.def_port [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.Hmax [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.maxdeg [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.tree_like_step_lemmas.Hi1 [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.tree_like_step_lemmas.Hsc [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.tree_like_step_lemmas.Htriv [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.tree_like_step_lemmas.i [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.Hpc [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_dist_out.U [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_dist_out.Hi [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_dist_out.i [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.Hsize_lambda [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.next_graphs [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.Hpb [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.Hc [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.p [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_port_out.Hp [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_port_out.p [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.dest_port_out.k [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.tree_like_step.c [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.prob_tree_like_border.lambda [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.K [in Infotheo.degree_profile]
PartialComputationGraph.prob_tree_like_neighbor.port [in Infotheo.degree_profile]
PartialComputationGraph.switch_step.switch_edom [in Infotheo.degree_profile]
PartialComputationGraph.switch_step.c [in Infotheo.degree_profile]
PartialComputationGraph.switch_step.port [in Infotheo.degree_profile]
path_ext.acyclic_g [in Infotheo.subgraph_partition]
path_ext.simple_g [in Infotheo.subgraph_partition]
path_ext.symmetric_g [in Infotheo.subgraph_partition]
path_ext.g [in Infotheo.subgraph_partition]
path_ext.V [in Infotheo.subgraph_partition]
path.f [in Infotheo.degree_profile]
path.f_morph [in Infotheo.degree_profile]
path.g [in Infotheo.degree_profile]
path.g' [in Infotheo.degree_profile]
path.T [in Infotheo.degree_profile]
pderivable_prop.f [in Infotheo.Ranalysis_ext]
pderivable_prop.b [in Infotheo.Ranalysis_ext]
pderivable_prop.a [in Infotheo.Ranalysis_ext]
perm_tuples_facts.B [in Infotheo.ssr_ext]
perm_tuples_facts.n [in Infotheo.ssr_ext]
perm_tuples_facts.A [in Infotheo.ssr_ext]
perm_tuples.s [in Infotheo.ssr_ext]
perm_tuples.n [in Infotheo.ssr_ext]
perm_tuples.A [in Infotheo.ssr_ext]
Pinsker_2.P_dom_by_Q [in Infotheo.pinsker]
Pinsker_2.card_A [in Infotheo.pinsker]
Pinsker_2.Q [in Infotheo.pinsker]
Pinsker_2.P [in Infotheo.pinsker]
Pinsker_2.A [in Infotheo.pinsker]
Pinsker_2_bdist.P_dom_by_Q [in Infotheo.pinsker]
Pinsker_2_bdist.Q [in Infotheo.pinsker]
Pinsker_2_bdist.P [in Infotheo.pinsker]
Pinsker_2_bdist.card_A [in Infotheo.pinsker]
Pinsker_2_bdist.A [in Infotheo.pinsker]
Pinsker_2_bdist.q01 [in Infotheo.pinsker]
Pinsker_2_bdist.p01 [in Infotheo.pinsker]
Pinsker_2_bdist.q [in Infotheo.pinsker]
Pinsker_2_bdist.p [in Infotheo.pinsker]
pinsker_fun_pos_sect.P_dom_by_Q [in Infotheo.pinsker_function]
pinsker_fun_pos_sect.card_A [in Infotheo.pinsker_function]
pinsker_fun_pos_sect.A [in Infotheo.pinsker_function]
pinsker_fun_pos_sect.q01 [in Infotheo.pinsker_function]
pinsker_fun_pos_sect.p01 [in Infotheo.pinsker_function]
pinsker_fun_pos_sect.q [in Infotheo.pinsker_function]
pinsker_fun_pos_sect.p [in Infotheo.pinsker_function]
pinsker_function_analysis.Hq [in Infotheo.pinsker_function]
pinsker_function_analysis.Hp [in Infotheo.pinsker_function]
pinsker_function_analysis.q [in Infotheo.pinsker_function]
pinsker_function_analysis.p [in Infotheo.pinsker_function]
Pinsker.A [in Infotheo.pinsker]
Pinsker.P [in Infotheo.pinsker]
Pinsker.P_dom_by_Q [in Infotheo.pinsker]
Pinsker.Q [in Infotheo.pinsker]
poly_ops.K [in Infotheo.degree_profile]
PosteriorProbability.PosteriorProbability_sect.receivable_y [in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.y [in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.P [in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.n [in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.W [in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.B [in Infotheo.pproba]
PosteriorProbability.PosteriorProbability_sect.A [in Infotheo.pproba]
post_proba_bsc_unif.Ha' [in Infotheo.ldpc]
post_proba_bsc_unif.a' [in Infotheo.ldpc]
post_proba_bsc_unif.P [in Infotheo.ldpc]
post_proba_bsc_unif.p_01 [in Infotheo.ldpc]
post_proba_bsc_unif.p_01' [in Infotheo.ldpc]
post_proba_bsc_unif.p [in Infotheo.ldpc]
post_proba_bsc_unif.card_A [in Infotheo.ldpc]
post_proba_bsc_unif.A [in Infotheo.ldpc]
post_proba_delta.Hy [in Infotheo.checksum]
post_proba_delta.y [in Infotheo.checksum]
post_proba_delta.HC [in Infotheo.checksum]
post_proba_delta.C [in Infotheo.checksum]
post_proba_delta.x [in Infotheo.checksum]
post_proba_delta.H [in Infotheo.checksum]
post_proba_delta.n [in Infotheo.checksum]
post_proba_delta.m [in Infotheo.checksum]
post_proba_delta.W [in Infotheo.checksum]
post_proba_delta.B [in Infotheo.checksum]
primitive_element.a_nontrivial [in Infotheo.cyclic_decoding]
primitive_element.n [in Infotheo.cyclic_decoding]
primitive_element.a_neq0 [in Infotheo.cyclic_decoding]
primitive_element.a [in Infotheo.cyclic_decoding]
primitive_element.F [in Infotheo.cyclic_decoding]
probability.A [in Infotheo.proba]
probability.P [in Infotheo.proba]
ProdDist.ProdDist_sect.P2 [in Infotheo.proba]
ProdDist.ProdDist_sect.P1 [in Infotheo.proba]
ProdDist.ProdDist_sect.B [in Infotheo.proba]
ProdDist.ProdDist_sect.A [in Infotheo.proba]
PROD_prop.H [in Infotheo.stopping_set]
PROD_prop.n [in Infotheo.stopping_set]
PROD_prop.m [in Infotheo.stopping_set]
prod_of_tuples_to_tuple_of_prods.B [in Infotheo.tuple_prod]
prod_of_tuples_to_tuple_of_prods.A [in Infotheo.tuple_prod]
prod_tuple_def.B [in Infotheo.tuple_prod]
prod_tuple_def.A [in Infotheo.tuple_prod]
Pr_tuple_prod_sect.n [in Infotheo.channel]
Pr_tuple_prod_sect.W [in Infotheo.channel]
Pr_tuple_prod_sect.P [in Infotheo.channel]
Pr_tuple_prod_sect.B [in Infotheo.channel]
Pr_tuple_prod_sect.A [in Infotheo.channel]
pr_def.A [in Infotheo.proba]
Pr_tuple_prod.Q [in Infotheo.proba]
Pr_tuple_prod.P [in Infotheo.proba]
Pr_tuple_prod.n [in Infotheo.proba]
Pr_tuple_prod.B [in Infotheo.proba]
Pr_tuple_prod.A [in Infotheo.proba]


R

random_coding_good_code_existence.P [in Infotheo.channel_coding_direct]
random_coding_good_code_existence.W [in Infotheo.channel_coding_direct]
random_coding_good_code_existence.A [in Infotheo.channel_coding_direct]
random_coding_good_code_existence.B [in Infotheo.channel_coding_direct]
Rcomparison_rsum.Q [in Infotheo.Rbigop]
Rcomparison_rsum.P [in Infotheo.Rbigop]
Rcomparison_rsum.g [in Infotheo.Rbigop]
Rcomparison_rsum.f [in Infotheo.Rbigop]
Rcomparison_rsum.A [in Infotheo.Rbigop]
receivable_sect.P [in Infotheo.pproba]
receivable_sect.n [in Infotheo.pproba]
receivable_sect.W [in Infotheo.pproba]
receivable_sect.B [in Infotheo.pproba]
receivable_sect.A [in Infotheo.pproba]
reed_solomon_min_dist_errors.n [in Infotheo.reed_solomon]
reed_solomon_min_dist_errors.d [in Infotheo.reed_solomon]
reed_solomon_min_dist_errors.t [in Infotheo.reed_solomon]
regular_ldpc.n [in Infotheo.ldpc]
regular_ldpc.m [in Infotheo.ldpc]
rel.r1 [in Infotheo.degree_profile]
rel.r2 [in Infotheo.degree_profile]
rel.r3 [in Infotheo.degree_profile]
rel.T [in Infotheo.degree_profile]
repcode_sysform.dim [in Infotheo.repcode]
repcode_sysform.n [in Infotheo.repcode]
repcode_sysform.n' [in Infotheo.repcode]
rExtrema.F [in Infotheo.arg_rmax]
rExtrema.I [in Infotheo.arg_rmax]
rExtrema.i0 [in Infotheo.arg_rmax]
rExtrema.ord_F_Rle [in Infotheo.arg_rmax]
rExtrema.P [in Infotheo.arg_rmax]
rExtrema.P_not_pred0 [in Infotheo.arg_rmax]
rExtrema.reflexive_ord [in Infotheo.arg_rmax]
rExtrema.total_ord [in Infotheo.arg_rmax]
rExtrema.transitive_ord [in Infotheo.arg_rmax]
row_num_occ_sect.b [in Infotheo.jtypes]
row_num_occ_sect.a [in Infotheo.jtypes]
row_num_occ_sect.Hta [in Infotheo.jtypes]
row_num_occ_sect.ta [in Infotheo.jtypes]
row_num_occ_sect.H [in Infotheo.jtypes]
row_num_occ_sect.V [in Infotheo.jtypes]
row_num_occ_sect.B [in Infotheo.jtypes]
row_num_occ_sect.P [in Infotheo.jtypes]
row_num_occ_sect.n [in Infotheo.jtypes]
row_num_occ_sect.A [in Infotheo.jtypes]
rsum_row_of_tuple_sect.C [in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect.n [in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect.op [in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect.idx [in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect.R [in Infotheo.ssralg_ext]
rsum_row_of_tuple_sect.A [in Infotheo.ssralg_ext]
rsum_summary.n [in Infotheo.summary]
RS_encoder.a_nontrivial [in Infotheo.reed_solomon]
RS_encoder.a_neq0 [in Infotheo.reed_solomon]
RS_encoder.dn [in Infotheo.reed_solomon]
RS_encoder.d [in Infotheo.reed_solomon]
RS_encoder.n [in Infotheo.reed_solomon]
RS_encoder.n' [in Infotheo.reed_solomon]
RS_encoder.d' [in Infotheo.reed_solomon]
RS_encoder.a [in Infotheo.reed_solomon]
RS_encoder.F [in Infotheo.reed_solomon]
RS_generator_prop.a_nontrivial [in Infotheo.reed_solomon]
RS_generator_prop.a_neq0 [in Infotheo.reed_solomon]
RS_generator_prop.Hd [in Infotheo.reed_solomon]
RS_generator_prop.d [in Infotheo.reed_solomon]
RS_generator_prop.n [in Infotheo.reed_solomon]
RS_generator_prop.n' [in Infotheo.reed_solomon]
RS_generator_prop.d' [in Infotheo.reed_solomon]
RS_generator_prop.a [in Infotheo.reed_solomon]
RS_generator_prop.F [in Infotheo.reed_solomon]
RS_generator_prop0.dn [in Infotheo.reed_solomon]
RS_generator_prop0.d [in Infotheo.reed_solomon]
RS_generator_prop0.d' [in Infotheo.reed_solomon]
RS_generator_prop0.n [in Infotheo.reed_solomon]
RS_generator_prop0.a [in Infotheo.reed_solomon]
RS_generator_prop0.F [in Infotheo.reed_solomon]
RS_generator_def.d [in Infotheo.reed_solomon]
RS_generator_def.a [in Infotheo.reed_solomon]
RS_generator_def.F [in Infotheo.reed_solomon]
RS_nvstop_prop.td [in Infotheo.reed_solomon]
RS_nvstop_prop.c_is_cw [in Infotheo.reed_solomon]
RS_nvstop_prop.d [in Infotheo.reed_solomon]
RS_nvstop_prop.t [in Infotheo.reed_solomon]
RS_nvstop_prop.c [in Infotheo.reed_solomon]
RS_nvstop_prop.n [in Infotheo.reed_solomon]
RS_nvstop_prop.a [in Infotheo.reed_solomon]
RS_nvstop_prop.F [in Infotheo.reed_solomon]
RS.reed_solomon_definition.a_nontrivial [in Infotheo.reed_solomon]
RS.reed_solomon_definition.a_neq0 [in Infotheo.reed_solomon]
RS.reed_solomon_definition.dn [in Infotheo.reed_solomon]
RS.reed_solomon_definition.d1 [in Infotheo.reed_solomon]
RS.reed_solomon_definition.d [in Infotheo.reed_solomon]
RS.reed_solomon_definition.n [in Infotheo.reed_solomon]
RS.reed_solomon_definition.a [in Infotheo.reed_solomon]
RS.reed_solomon_definition.F [in Infotheo.reed_solomon]


S

scha_facts.n [in Infotheo.success_decode_bound]
scha_facts.Mnot0 [in Infotheo.success_decode_bound]
scha_facts.M [in Infotheo.success_decode_bound]
scha_facts.A [in Infotheo.success_decode_bound]
scha_facts.B [in Infotheo.success_decode_bound]
scha_def.n [in Infotheo.success_decode_bound]
scha_def.M [in Infotheo.success_decode_bound]
scha_def.A [in Infotheo.success_decode_bound]
scha_def.B [in Infotheo.success_decode_bound]
scode_fl_definition.n [in Infotheo.source_code]
scode_fl_definition.k [in Infotheo.source_code]
scode_fl_definition.A [in Infotheo.source_code]
scode_vl_definition.P [in Infotheo.source_code]
scode_vl_definition.f [in Infotheo.source_code]
scode_vl_definition.n [in Infotheo.source_code]
scode_vl_definition.k [in Infotheo.source_code]
scode_vl_definition.A [in Infotheo.source_code]
scode_definition.P [in Infotheo.source_code]
scode_definition.f [in Infotheo.source_code]
scode_definition.n [in Infotheo.source_code]
scode_definition.k [in Infotheo.source_code]
scode_definition.B [in Infotheo.source_code]
scode_definition.A [in Infotheo.source_code]
second_partition.acyclic_g [in Infotheo.subgraph_partition]
second_partition.symmetric_g [in Infotheo.subgraph_partition]
second_partition.g [in Infotheo.subgraph_partition]
second_partition.V [in Infotheo.subgraph_partition]
seq_eqType_ext.B [in Infotheo.ssr_ext]
seq_eqType_ext.A [in Infotheo.ssr_ext]
seq_ext.def [in Infotheo.ssr_ext]
seq_ext.B [in Infotheo.ssr_ext]
seq_ext.A [in Infotheo.ssr_ext]
seq.A [in Infotheo.degree_profile]
seq.B [in Infotheo.degree_profile]
shelled_tuples_perm_facts.s [in Infotheo.jtypes]
shelled_tuples_perm_facts.ta [in Infotheo.jtypes]
shelled_tuples_perm_facts.V [in Infotheo.jtypes]
shelled_tuples_perm_facts.n [in Infotheo.jtypes]
shelled_tuples_perm_facts.B [in Infotheo.jtypes]
shelled_tuples_perm_facts.A [in Infotheo.jtypes]
shelled_tuples_facts.Hta [in Infotheo.jtypes]
shelled_tuples_facts.P [in Infotheo.jtypes]
shelled_tuples_facts.Htb [in Infotheo.jtypes]
shelled_tuples_facts.tb [in Infotheo.jtypes]
shelled_tuples_facts.ta [in Infotheo.jtypes]
shelled_tuples_facts.V [in Infotheo.jtypes]
shelled_tuples_facts.n [in Infotheo.jtypes]
shelled_tuples_facts.n' [in Infotheo.jtypes]
shelled_tuples_facts.B [in Infotheo.jtypes]
shelled_tuples_facts.A [in Infotheo.jtypes]
shell_partition.Hta [in Infotheo.jtypes]
shell_partition.P [in Infotheo.jtypes]
shell_partition.ta [in Infotheo.jtypes]
shell_partition.Bnot0 [in Infotheo.jtypes]
shell_partition.Anot0 [in Infotheo.jtypes]
shell_partition.n [in Infotheo.jtypes]
shell_partition.n' [in Infotheo.jtypes]
shell_partition.B [in Infotheo.jtypes]
shell_partition.A [in Infotheo.jtypes]
shell_not_empty.Hta [in Infotheo.jtypes]
shell_not_empty.Hrow_num_occ [in Infotheo.jtypes]
shell_not_empty.P [in Infotheo.jtypes]
shell_not_empty.V [in Infotheo.jtypes]
shell_not_empty.ta [in Infotheo.jtypes]
shell_not_empty.n [in Infotheo.jtypes]
shell_not_empty.B [in Infotheo.jtypes]
shell_not_empty.A [in Infotheo.jtypes]
shell_not_empty_sorted.Hta [in Infotheo.jtypes]
shell_not_empty_sorted.Hrow_num_occ [in Infotheo.jtypes]
shell_not_empty_sorted.P [in Infotheo.jtypes]
shell_not_empty_sorted.V [in Infotheo.jtypes]
shell_not_empty_sorted.ta_sorted [in Infotheo.jtypes]
shell_not_empty_sorted.ta [in Infotheo.jtypes]
shell_not_empty_sorted.n [in Infotheo.jtypes]
shell_not_empty_sorted.B [in Infotheo.jtypes]
shell_not_empty_sorted.A [in Infotheo.jtypes]
shell_def.V [in Infotheo.jtypes]
shell_def.ta [in Infotheo.jtypes]
shell_def.n [in Infotheo.jtypes]
shell_def.B [in Infotheo.jtypes]
shell_def.A [in Infotheo.jtypes]
source_coding_direct.P [in Infotheo.source_coding_fl_direct]
source_coding_direct.A [in Infotheo.source_coding_fl_direct]
source_coding_direct'.k' [in Infotheo.source_coding_fl_direct]
source_coding_direct'.Hepsilon [in Infotheo.source_coding_fl_direct]
source_coding_direct'.epsilon [in Infotheo.source_coding_fl_direct]
source_coding_direct'.Hr [in Infotheo.source_coding_fl_direct]
source_coding_direct'.r [in Infotheo.source_coding_fl_direct]
source_coding_direct'.den [in Infotheo.source_coding_fl_direct]
source_coding_direct'.num [in Infotheo.source_coding_fl_direct]
source_coding_direct'.P [in Infotheo.source_coding_fl_direct]
source_coding_direct'.A [in Infotheo.source_coding_fl_direct]
source_coding_converse.P [in Infotheo.source_coding_fl_converse]
source_coding_converse.A [in Infotheo.source_coding_fl_converse]
source_coding_converse'.Hk [in Infotheo.source_coding_fl_converse]
source_coding_converse'.Hepsilon [in Infotheo.source_coding_fl_converse]
source_coding_converse'.epsilon [in Infotheo.source_coding_fl_converse]
source_coding_converse'.r_sc [in Infotheo.source_coding_fl_converse]
source_coding_converse'.sc [in Infotheo.source_coding_fl_converse]
source_coding_converse'.k [in Infotheo.source_coding_fl_converse]
source_coding_converse'.n [in Infotheo.source_coding_fl_converse]
source_coding_converse'.Hr [in Infotheo.source_coding_fl_converse]
source_coding_converse'.r [in Infotheo.source_coding_fl_converse]
source_coding_converse'.den [in Infotheo.source_coding_fl_converse]
source_coding_converse'.num [in Infotheo.source_coding_fl_converse]
source_coding_converse'.P [in Infotheo.source_coding_fl_converse]
source_coding_converse'.A [in Infotheo.source_coding_fl_converse]
Specification.alpha' [in Infotheo.ldpc_algo]
Specification.B [in Infotheo.ldpc_algo]
Specification.beta' [in Infotheo.ldpc_algo]
Specification.C [in Infotheo.ldpc_algo]
Specification.computed_tree [in Infotheo.ldpc_algo]
Specification.d [in Infotheo.ldpc_algo]
Specification.estimations [in Infotheo.ldpc_algo]
Specification.H [in Infotheo.ldpc_algo]
Specification.HC [in Infotheo.ldpc_algo]
Specification.Hy [in Infotheo.ldpc_algo]
Specification.id' [in Infotheo.ldpc_algo]
Specification.m [in Infotheo.ldpc_algo]
Specification.n [in Infotheo.ldpc_algo]
Specification.n' [in Infotheo.ldpc_algo]
Specification.p01 [in Infotheo.ldpc_algo]
Specification.rW [in Infotheo.ldpc_algo]
Specification.W [in Infotheo.ldpc_algo]
Specification.y [in Infotheo.ldpc_algo]
stopping_set_def.H [in Infotheo.stopping_set]
stopping_set_def.n [in Infotheo.stopping_set]
stopping_set_def.m [in Infotheo.stopping_set]
stopping_set_def.n' [in Infotheo.stopping_set]
stopping_set_def.m' [in Infotheo.stopping_set]
stopset_prop.s1ss [in Infotheo.stopping_set]
stopset_prop.s1 [in Infotheo.stopping_set]
stopset_prop.H [in Infotheo.stopping_set]
stopset_prop.m [in Infotheo.stopping_set]
stopset_prop.n [in Infotheo.stopping_set]
stopset_prop.n' [in Infotheo.stopping_set]
stopset_prop.m' [in Infotheo.stopping_set]
subgraph_definition.g [in Infotheo.subgraph_partition]
subgraph_definition.V [in Infotheo.subgraph_partition]
subscript_set.H [in Infotheo.ldpc_erasure]
subscript_set.n [in Infotheo.ldpc_erasure]
subscript_set.m [in Infotheo.ldpc_erasure]
subscript_set.n' [in Infotheo.ldpc_erasure]
subscript_set.m' [in Infotheo.ldpc_erasure]
subset_erasure_idx_sect.receivable_ys [in Infotheo.stopping_set]
subset_erasure_idx_sect.s1s2 [in Infotheo.stopping_set]
subset_erasure_idx_sect.stopset_s1 [in Infotheo.stopping_set]
subset_erasure_idx_sect.s2 [in Infotheo.stopping_set]
subset_erasure_idx_sect.ys [in Infotheo.stopping_set]
subset_erasure_idx_sect.s1 [in Infotheo.stopping_set]
subset_erasure_idx_sect.H [in Infotheo.stopping_set]
subset_erasure_idx_sect.m [in Infotheo.stopping_set]
subset_erasure_idx_sect.n [in Infotheo.stopping_set]
subset_erasure_idx_sect.n' [in Infotheo.stopping_set]
subset_erasure_idx_sect.m' [in Infotheo.stopping_set]
sub_vec_channel.tanner [in Infotheo.ldpc]
sub_vec_channel.H [in Infotheo.ldpc]
sub_vec_channel.m [in Infotheo.ldpc]
sub_vec_channel.tb [in Infotheo.ldpc]
sub_vec_channel.n [in Infotheo.ldpc]
sub_vec_channel.n' [in Infotheo.ldpc]
sub_vec_channel.W [in Infotheo.ldpc]
sub_vec_channel.B [in Infotheo.ldpc]
sub_vec_sect.A [in Infotheo.summary]
success_bound_sect.P0 [in Infotheo.success_decode_bound]
success_bound_sect.c [in Infotheo.success_decode_bound]
success_bound_sect.n [in Infotheo.success_decode_bound]
success_bound_sect.n' [in Infotheo.success_decode_bound]
success_bound_sect.Mnot0 [in Infotheo.success_decode_bound]
success_bound_sect.W [in Infotheo.success_decode_bound]
success_bound_sect.M [in Infotheo.success_decode_bound]
success_bound_sect.B [in Infotheo.success_decode_bound]
success_bound_sect.A [in Infotheo.success_decode_bound]
SumCoef.K [in Infotheo.degree_profile]
SumCoef.p [in Infotheo.degree_profile]
summary.A [in Infotheo.summary]
summary.n [in Infotheo.summary]
summary23.n [in Infotheo.summary]
sum_prod_correctness.tanner [in Infotheo.ldpc]
sum_prod_correctness.f [in Infotheo.ldpc]
sum_prod_correctness.Hy [in Infotheo.ldpc]
sum_prod_correctness.C_not_empty [in Infotheo.ldpc]
sum_prod_correctness.C [in Infotheo.ldpc]
sum_prod_correctness.y [in Infotheo.ldpc]
sum_prod_correctness.W [in Infotheo.ldpc]
sum_prod_correctness.B [in Infotheo.ldpc]
sum_prod_correctness.H [in Infotheo.ldpc]
sum_prod_correctness.n [in Infotheo.ldpc]
sum_prod_correctness.n' [in Infotheo.ldpc]
sum_prod_correctness.m [in Infotheo.ldpc]
sum_tuples_ctypes.sum_tuples_ctypes' [in Infotheo.jtypes]
sum_tuples_ctypes.Bnot0 [in Infotheo.jtypes]
sum_tuples_ctypes.Anot0 [in Infotheo.jtypes]
sum_tuples_ctypes.sum_tuples_ctypes'' [in Infotheo.jtypes]
sum_tuples_ctypes.Hta [in Infotheo.jtypes]
sum_tuples_ctypes.P [in Infotheo.jtypes]
sum_tuples_ctypes.ta [in Infotheo.jtypes]
sum_tuples_ctypes.n [in Infotheo.jtypes]
sum_tuples_ctypes.n' [in Infotheo.jtypes]
sum_tuples_ctypes.B [in Infotheo.jtypes]
sum_tuples_ctypes.A [in Infotheo.jtypes]
sum_num_occ_tuple.Bnot0 [in Infotheo.jtypes]
sum_num_occ_tuple.ta_sorted [in Infotheo.jtypes]
sum_num_occ_tuple.k [in Infotheo.jtypes]
sum_num_occ_tuple.ta [in Infotheo.jtypes]
sum_num_occ_tuple.n [in Infotheo.jtypes]
sum_num_occ_tuple.B [in Infotheo.jtypes]
sum_num_occ_tuple.A [in Infotheo.jtypes]
sum_messages_types.c [in Infotheo.types]
sum_messages_types.n [in Infotheo.types]
sum_messages_types.n' [in Infotheo.types]
sum_messages_types.M [in Infotheo.types]
sum_messages_types.B [in Infotheo.types]
sum_messages_types.A [in Infotheo.types]
sum_ops.K [in Infotheo.degree_profile]
sum_ops.T [in Infotheo.degree_profile]
Sum_Prod_decoding.receivable_y' [in Infotheo.ldpc_erasure]
Sum_Prod_decoding.receivable_as_a_variable.y'_le_y [in Infotheo.ldpc_erasure]
Sum_Prod_decoding.receivable_as_a_variable.Hy' [in Infotheo.ldpc_erasure]
Sum_Prod_decoding.receivable_as_a_variable.y' [in Infotheo.ldpc_erasure]
Sum_Prod_decoding.y [in Infotheo.ldpc_erasure]
Sum_Prod_decoding.H [in Infotheo.ldpc_erasure]
Sum_Prod_decoding.n [in Infotheo.ldpc_erasure]
Sum_Prod_decoding.m [in Infotheo.ldpc_erasure]
Sum_Prod_decoding.n' [in Infotheo.ldpc_erasure]
Sum_Prod_decoding.m' [in Infotheo.ldpc_erasure]
sum_n_independent_rand_var.A [in Infotheo.proba]
sum_n_independent_rand_var_def.A [in Infotheo.proba]
sum_n_rand_var.A [in Infotheo.proba]
sum_n_rand_var_def.A [in Infotheo.proba]
sum_two_rand_var.X [in Infotheo.proba]
sum_two_rand_var.X2 [in Infotheo.proba]
sum_two_rand_var.n [in Infotheo.proba]
sum_two_rand_var.X1 [in Infotheo.proba]
sum_two_rand_var.A [in Infotheo.proba]
sum_two_rand_var_def.X [in Infotheo.proba]
sum_two_rand_var_def.X2 [in Infotheo.proba]
sum_two_rand_var_def.n [in Infotheo.proba]
sum_two_rand_var_def.X1 [in Infotheo.proba]
sum_two_rand_var_def.A [in Infotheo.proba]
sum_rV_ffun.plus [in Infotheo.channel_coding_direct]
sum_rV_ffun.times [in Infotheo.channel_coding_direct]
sum_rV_ffun.R [in Infotheo.channel_coding_direct]
sum_tuple_ffun.plus [in Infotheo.Rbigop]
sum_tuple_ffun.times [in Infotheo.Rbigop]
sum_tuple_ffun.R [in Infotheo.Rbigop]
sum_dom_codom.A [in Infotheo.Rbigop]
support_set.e [in Infotheo.cyclic_decoding]
support_set.n [in Infotheo.cyclic_decoding]
support_set.F [in Infotheo.cyclic_decoding]
syndrome_polynomial.t [in Infotheo.cyclic_decoding]
syndrome_polynomial.n [in Infotheo.cyclic_decoding]
syndrome_polynomial.a [in Infotheo.cyclic_decoding]
syndrome_polynomial.F [in Infotheo.cyclic_decoding]
SysLCode_prop_m.systematiclinearcode.C [in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode.decode [in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode.CSM [in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode.dimlen [in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode.k [in Infotheo.linearcode]
SysLCode_prop_m.systematiclinearcode.n [in Infotheo.linearcode]
SysLCode_m.syslcode_def.CSM [in Infotheo.linearcode]
SysLCode_m.syslcode_def.dimlen [in Infotheo.linearcode]
SysLCode_m.syslcode_def.n [in Infotheo.linearcode]
SysLCode_m.syslcode_def.k [in Infotheo.linearcode]


T

take_shell_row_num_occ.Bnot0 [in Infotheo.jtypes]
take_shell_row_num_occ.ta_sorted [in Infotheo.jtypes]
take_shell_row_num_occ.Hrow_num_occ [in Infotheo.jtypes]
take_shell_row_num_occ.Hta [in Infotheo.jtypes]
take_shell_row_num_occ.ta [in Infotheo.jtypes]
take_shell_row_num_occ.P [in Infotheo.jtypes]
take_shell_row_num_occ.V [in Infotheo.jtypes]
take_shell_row_num_occ.n [in Infotheo.jtypes]
take_shell_row_num_occ.B [in Infotheo.jtypes]
take_shell_row_num_occ.A [in Infotheo.jtypes]
take_shell_def.V [in Infotheo.jtypes]
take_shell_def.ta [in Infotheo.jtypes]
take_shell_def.n [in Infotheo.jtypes]
take_shell_def.B [in Infotheo.jtypes]
take_shell_def.A [in Infotheo.jtypes]
tanner_partition.Hacyclic [in Infotheo.tanner_partition]
tanner_partition.Hconnect [in Infotheo.tanner_partition]
tanner_partition.H [in Infotheo.tanner_partition]
tanner_partition.n [in Infotheo.tanner_partition]
tanner_partition.n' [in Infotheo.tanner_partition]
tanner_partition.m [in Infotheo.tanner_partition]
tanner_rel_no_hypo.H [in Infotheo.tanner_partition]
tanner_rel_no_hypo.n [in Infotheo.tanner_partition]
tanner_rel_no_hypo.m [in Infotheo.tanner_partition]
tanner_relation.H [in Infotheo.tanner]
tanner_relation.n [in Infotheo.tanner]
tanner_relation.m [in Infotheo.tanner]
Tanner.tanner.V [in Infotheo.tanner]
third_partition.acyclic_g [in Infotheo.subgraph_partition]
third_partition.symmetric_g [in Infotheo.subgraph_partition]
third_partition.g [in Infotheo.subgraph_partition]
third_partition.V [in Infotheo.subgraph_partition]
TnTreeEq.EqTag.k [in Infotheo.ldpc_algo_proof]
TnTreeEq.EqTnTree.k [in Infotheo.ldpc_algo_proof]
TnTreeEq.i [in Infotheo.ldpc_algo_proof]
TnTreeEq.U [in Infotheo.ldpc_algo_proof]
TnTreeEq.V [in Infotheo.ldpc_algo_proof]
TreeEnsemble.definition.count_allpairs.abc [in Infotheo.degree_profile]
TreeEnsemble.definition.count_allpairs.c [in Infotheo.degree_profile]