
Verification of the Heap Manager
of an Operating System using Separation Logic

Nicolas Marti† Reynald Affeldt‡ Akinori Yonezawa†‡
nicolas at yl.is.s.u-tokyo.ac.jp reynald.affeldt at aist.go.jp yonezawa at yl.is.s.u-tokyo.ac.jp

†Department of Computer Science, ‡Research Center for Information Security,
University of Tokyo National Institute of Advanced Industrial Science and Technology

ABSTRACT
In order to ensure memory properties of an operating sys-
tem, it is important to verify the implementation of its heap
manager. In the case of an existing operating system, such
a verification is a difficult task because the heap manager
is usually written in a low-level language that makes use
of pointers, and it is usually not written with verification
in mind. Our main contribution in this paper is to verify
the heap manager of an existing operating system, namely
Topsy. For this purpose, we use separation logic, an exten-
sion of Hoare logic to deal with pointers. Thanks to our
verification, we found several issues in the original source
code. Another output of our verification is our Coq imple-
mentation of separation logic.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation — Formal Methods; D.4.6 [Operating Systems]:
Reliability — Verification; F.3.1 [Logics and Meanings
of Programs]: Mechanical verification

General Terms
Verification

Keywords
Operating systems, Dynamic memory allocation, Mechani-
cal verification

1. INTRODUCTION
In order to ensure memory properties of an operating sys-

tem, it is important to verify the implementation of its heap
manager. The heap manager is the set of functions that
provides the operating system with dynamic memory al-
location. Incorrect implementation of these functions can
invalidate essential memory properties. For example, task

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPACE 2006 Charleston, South Carolina USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

isolation, the property that user processes cannot tamper
with the memory of kernel processes, is such a property:
the relation with dynamic memory allocation comes from
the fact that privilege levels of processes are usually stored
in dynamically allocated memory blocks (see [5] for a de-
tailed illustration).

However, the verification of the heap manager of an exist-
ing operating system is a difficult task because it is usually
written in a low-level language that makes use of pointers,
and it is usually not written with verification in mind. For
these reasons, the verification of dynamic memory alloca-
tion is sometimes considered as a challenge for mechanical
verification [7].

Our main contribution in this paper is to verify the heap
manager of an existing operating system, namely Topsy [2].
For this purpose, we use separation logic [1], an extension
of Hoare logic to deal with pointers, and we implement the
whole verification in the Coq proof assistant [4]. In fact,
the heap manager proves harder to deal with than dynamic
memory allocation facilities verified in previous studies (see
Sect. 6.1 for a comparison). A direct side-effect of our ap-
proach of using an existing heap manager is to provide ad-
vanced debugging. Indeed, our verification highlights sev-
eral issues in the original source code (see Sect. 5.4 for a
discussion).

We chose the Topsy operating system as a test-bed for
formal verification of memory properties. Topsy was initially
created for educational use and has recently evolved into an
embedded operating system for network cards [3]. It is well-
suited for mechanical verification because it is small and
simple, yet it provides a realistic use-case because it includes
most classical features of operating systems.

The paper is organized as follows. In Sect. 2, we give an
overview of Topsy heap manager, and we explain our veri-
fication goal and approach. In Sect. 3, we formally specify
the underlying data structure used by the heap manager.
In Sect. 4, we explain the formal verification of the heap
manager using a pencil-and-paper version of our mechanical
proof. In Sect. 5, we give an overview of our Coq implemen-
tation of separation logic and of the verification in itself,
and we discuss issues found in the original source code of
the heap manager. In Sect. 6, we conclude, and comment
on related and future work.

2. VERIFICATION GOAL AND APPROACH
In this section, we give an overview of the Topsy heap

manager, and we explain our verification goal and approach.

General information about Topsy (including a browsable
source code) is available online [2].

2.1 Topsy Heap Manager
The heap manager of Topsy is the set of functions that

provides the operating system with dynamic memory allo-
cation. These functions and related variables are defined in
the files Memory/MMHeapMemory.{h,c}, with some macros in
the file Topsy/Configuration.h.

2.1.1 The Heap
The heap is the area of memory reserved by Topsy for

the heap manager. The latter divides the heap into allo-
cated and free memory blocks: allocated blocks are memory
blocks in use by programs, and free blocks form a pool of
memory available for new allocations. In order to make
an optimal use of the memory, the repartition of allocated
and free memory blocks in Topsy form a partition of the
heap. This is achieved by implementing memory blocks as
a simply-linked list. In the following, we refer to this data
structure as a heap-list. See Fig. 1 for a concrete example of
a heap-list.

allocated block
block sizeA

l
l
o
c

A
l
l
o
cfree block

block sizeF
r
e
e

nu
ll

Figure 1: A heap-list with one allocated block and
one free block

In a heap-list, each block consists of a two-fields header
and an array of memory. The first field gives information
on the status of the block (allocated or free, corresponding
to the Alloc and Free flags); the second field is a pointer
to the next block, which starts just after the current block.
Observe that the size of the arrays of memory associated to
blocks can be computed using the values of pointers. (In
this paper, when we talk about the size of a block, we talk
about its “effective” size, that is the size of the array of
memory associated to it, this excludes the header.) The ter-
minal block of the heap-list always consists of a sole header,
marked as allocated, and pointing to null.

2.1.2 Initialization
Initialization of the heap manager is provided by the fol-

lowing function:

Error hmInit (Address addr) { . . . }

Concretely, hmInit initializes the heap-list by building a
heap-list with a single free block that spans the whole heap.
The argument is the starting location of the heap. The size
of the heap-list is defined by the macro KERNELHEAPSIZE.
The function always returns HM INITOK.

2.1.3 Allocation
Allocation is provided by the following function:

Error hmAlloc (Address ∗ addressPtr ,
unsigned long int s i z e) { . . . }

The role of hmAlloc is to insert new blocks marked as al-
located into the heap-list. The first argument is a pointer
provided by the user to get back the address of the allocated

block, the second argument is the desired size. In case of
successful allocation, the pointer contains the address of the
newly allocated block and the value HM ALLOCOK is returned,
otherwise the value HM ALLOCFAILED is returned.

In order to limit fragmentation, hmAlloc makes several
manipulations over free blocks. Precisely, it performs com-
paction of contiguous free blocks and splitting of free blocks.

2.1.4 Deallocation
Deallocation is provided by the following function:

Error hmFree (Address addre s s) { . . . }

Concretely, hmFree turns allocated blocks into free ones.
The argument corresponds to the address of the allocated
block to free. The function returns HM FREEOK if the block
was successfully deallocated, otherwise it returns the value
HM FREEFAILED.

2.2 Verification Goal
Our goal is to verify that the implementation of the Topsy

heap manager is “correct”. By correct, we mean that the
heap manager provides the intended service: the allocation
function allocates “fresh” memory blocks (they do not over-
ride previously allocated memory blocks), the deallocation
function turns the status of blocks into free (except the
ending empty block), the three functions together correctly
manage the heap-list data structure (the allocation and deal-
location functions do not modify unrelated memory blocks,
and the three functions preserve the heap-list structure).
Guaranteeing the allocation of fresh memory blocks and the
non-modification of unrelated memory blocks is a necessary
condition to ensure that the heap manager preserves exclu-
sive usage of allocated blocks.

Formal specification goals corresponding to the above in-
formal discussion are explained later in Sect. 4.

2.3 Verification Approach
Our approach is to use separation logic to formally specify

and mechanically verify the goal informally stated above
directly on the source code of the Topsy heap manager.

Although all the verification has been performed in the
Coq proof assistant, we use the more convenient pencil-and-
paper notation of separation logic to write assertions; the
correspondence with the implementation is illustrated in
Sect. 5.3. Concerning the source code of the Topsy heap
manager, we comment on its Coq version because it more
closely matches specifications. Evidence of the correspon-
dence with the original C source code is given in Sect. 5.2.

3. THE HEAP-LIST DATA STRUCTURE
In this section, we formally specify the heap-list data

structure and state its main properties.

3.1 The Heap-list Type
We formally specify the heap-list data structure that un-

derlies the heap manager using a predicate: Heap-list l x y

holds for a contiguous area of memory that contains a heap-
list starting at location x, and whose last block points to
location y; since the terminal block of a heap-list points to
null, y=0 for a heap-list that covers all the heap. Informa-
tion about the blocks contained in this heap-list is captured
by the first parameter of the predicate: l is a (Coq) list of

triples (location, size, status) characterizing the sequence of
blocks.

Separation logic is very convenient to specify the heap-
list data structure. In particular, the property that blocks
are disjoint can be expressed directly using the separating
conjunction. In addition, the fact the blocks form a partition
of the heap can be represented using pointer arithmetic, that
separation logic also handles.

Before giving the definition of the predicate Heap-list, we
first define a predicate Array that characterizes sets of con-
tiguous locations (∗ is the separating conjunction, ε holds for
an empty area of memory, and 7→ is the maps-to assertion
of separation logic):

Array l sz
def
= (sz=0 ∧ ε) ∨

(sz > 0) ∧ (∃e.(l 7→ e) ∗ Array (l+1) (sz−1))

We now give the definition of the predicate Heap-list. It
takes the form of a recursive definition with three disjunctive
clauses (:: is the list constructor):

Heap-list (l : (loc×nat×status) list) (x : loc) (y : loc)
def
=

l=nil ∧ (x 7→ , null) ∧ y=0 ∨
l=nil ∧ x=y ≥ 0 ∧ ε ∨
∃size.∃status.∃l′.

(status=Alloc∨ status=Free) ∧
l=(x, size, status) :: l′ ∧ x > 0 ∧
(x 7→ status, x+2+size) ∗

Array (x+2) size ∗ Heap-list l′ (x+2+size) y

The first clause holds for the terminal block (the one point-
ing to null). The second clause holds for empty heap-lists.
The third clause holds for a memory block (allocated or
free) such that its header points to an immediately follow-
ing heap-list. Observe that the definition of the heap-list
guarantees that there is no lost space between two blocks.

3.2 Main Properties of Heap-lists
We summarize the properties that are at the heart of the

formal verification of the heap manager. They take the form
of lemmas that make precise the conditions under which one
can change the status of blocks, compact blocks, and split
blocks. Since these operations rely on destructive updates,
the properties in questions are expressed using the separat-
ing implication (noted −∗).

3.2.1 Change of Status
The following lemma is used to change the status of a

block (from free to allocated, the symmetric lemma is simi-
lar):

Change-status:

Heap-list (l1++((x, size,) ::nil)++l2) x0 0 →
(x 7→)∗

((x 7→ Alloc) −∗
Heap-list (l1++((x, size, Alloc) ::nil)++l2) x0 0)

The left-hand side of the implication states the existence of
some block x. The right-hand size of the implication is of the
form (x 7→)∗((x 7→ Alloc)−∗ . . .): this captures destructive
update of the status field of the block x. The conclusion of
the lemma states the change of status to allocated.

3.2.2 Compaction
The following lemma expresses concatenation of contigu-

ous free blocks:

Compaction:

Heap-list (l1++((x, size1, Free) ::spareblock ::nil)++l2) x0 0 →
(x+1 7→ address spareblock)∗
((x+1 7→ address nextblock) −∗
Heap-list (l1++((x, size1+2+size2, Free) ::nil)++l2) x0 0)

where
address spareblock = x+2+size1

spareblock = (adress spareblock, size2, Free)
address nextblock = x+size1+4+size2

The left-hand side of the implication states the existence of
some block x immediately followed by some “spare block”.
The right-hand side of the implication captures the destruc-
tive update of the next field of the block x: this block is
made to point to the next block following the spare block.
As a result, the block x sees its size increased by the size
the of the spare block. Compaction is pictured in Fig. 2.

nextblock
spareblock

x x+size +4+size

Compaction Splitting

nextblocksize +2+sizeF
r
e
e

F
r
e
e

F
r
e
e

size size

x +2+size

1 2

21

21

2

Figure 2: Compaction and Splitting of Blocks

3.2.3 Splitting
The following lemma is used for splitting a free block in

two:

Splitting:

Heap-list (l1++((x, size1+2+size2, Free) ::nil)++l2) x0 0 →
((x+3+size1 7→)∗
((x+3+size1 7→ address nextblock) −∗
((address spareblock 7→)∗
((address spareblock 7→ Free) −∗
((x+1 7→)∗
((x+1 7→ address spareblock) −∗
Heap-list (l1++((x, size1, Free) ::spareblock ::nil)++l2) x0 0))))))

where
address spareblock = x+2+size1

spareblock = (adress spareblock, size2, Free)
address nextblock = x+size1+4+size2

The left-hand size of the implication states the existence of a
block x of size size1+2+size2. The conclusion of the lemma
states the splitting of this block into a block x of size size1,
and a new “spare block” of size size2. The three destructive
updates represent the modifications of the headers that are
necessary to introduce the new spare block: (1) link from
the spare block to the next block, (2) spare block status

set to Free, and (3) link from block x to the spare block.
Splitting is pictured in Fig. 2 (together with compaction).

4. FORMAL VERIFICATION
In this section, we explain the formal verification of the

functions of the Topsy heap manager. For each function
(initialization, allocation, deallocation), we give its formal
specification using Hoare triples. We explain in details the
verification of the allocation function, which is the most in-
volved.

4.1 Formal Verification of Initialization
The initialization function hmInit transforms a given area

of memory, starting at location hmStart and of fixed length
KERNELHEAPSIZE, into an initial heap-list. This initial heap-
list consists of a single free block that spans the whole heap.
Using the Array and Heap-list predicates, the formal specifi-
cation of hmInit becomes:�

Array hmStart KERNELHEAPSIZE �
(hmInit hmStart KERNELHEAPSIZE)�

Heap-list ((hmStart, KERNELHEAPSIZE−4, Free) ::nil)
hmStart 0 �

The size of the array of memory corresponding to the free
block is the size of the whole area of memory minus the size
of the headers (including the header of the terminal block).

The verification of hmInit amounts to the symbolic eval-
uation of the function and check that the resulting heap-list
is an instance of the eponymous predicate. Despite its ap-
parent simplicity, this function turns out to be buggy, as we
explain in Sect. 5.4.

4.2 Formal Verification of Allocation
The allocation function hmAlloc is implemented by search-

ing for a large-enough free block in the heap-list, possibly
performing compaction of free blocks in the process. If an
adequate block is found, it is split into an allocated block
(whose location is returned) and a free block (available for
further allocations); otherwise, an error is returned.

The specification of the allocation function consists in
checking that (1) newly allocated blocks do not use already
allocated locations (they are “fresh”) and (2) already allo-
cated blocks are not modified. In the pre-condition, we iso-
late some already allocated block (block (x, sizex, Alloc) be-
low), and its contents (captured by the predicate Init-array,
and by listx, a list of cell values, which length is sizex). Note
that the variables that are not existentially quantified in an
assertion are universally quantified. In the post-condition,
we ensure that the newly allocated block (starting at some
location y) has the appropriate size, that it does not over-
ride the already allocated block, and that the contents of
the latter are unchanged. The second disjunction in the
post-condition applies when allocation fails:�

∃l.Heap-list l hmStart 0 ∧ (x, sizex, Alloc) ∈ l ∧
Init-array (x+2) (listx) �

(hmAlloc result size entry cptr fnd stts nptr sz)������� ������
∃l.Heap-list l hmStart 0 ∧ (x, sizex, Alloc) ∈ l ∧

Init-array (x+2) (listx) ∧�		
 ∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Alloc) ∈ l ∧
entry=y ∧ result=entry+2 ∧ x 6= y

∨
result=0

�
���
� ������������

The predicate Init-array is built on the model of the pred-
icate Array:

Init-array l lst
def
= (lst = nil) ∨

(lst=hd :: tl)∧ ((l 7→ hd) ∗ Init-array (l+1) tl)

The whole formal verification of hmAlloc is summarized in
Fig. 3. For the sake of explanation, we decompose the veri-
fication in three phases matching the underlying implemen-
tation (traversal, compaction, splitting, in the next three
sections).

4.2.1 Traversal
The first phase of allocation consists in traversing the

heap-list to find a large-enough free block. It is implemented
by the function findFree whose main arguments are the re-
quired size (variable size) and an integer to be filled with
the location of an appropriate block if any (variable entry)
(other arguments represent local variables of the function).
Taken in isolation, verification of findFree consists in veri-
fying the following Hoare triple:�

∃l.Heap-list l hmStart 0 ∧ (x, sizex, Alloc) ∈ l ∧
Init-array (x+2) (listx) �

(findFree size entry fnd sz stts)������� ������
∃l. Heap-list l hmStart 0 ∧ (x, sizex, Alloc) ∈ l ∧

Init-array (x+2) (listx) ∧�		
 ∃y.∃sizey.sizey ≥ size ∧
(y, sizey, Free) ∈ l ∧ entry=y

∨
entry = 0

� ���
� ������������

The post-condition asserts that the search succeeds and the
return value corresponds to the starting location of a large-
enough free block, or the search fails, in which case the re-
turn value is null. (We have omitted the predicate result=
0 in pre/post-conditions for readability.)

The verification of findFree is displayed in Fig. 4. The
traversal is implemented as a loop. It makes use of the vari-
ables entry, stts, and sz to keep track of the location of
current block, its status, and its size. The traversal termi-
nates either if it finds a large-enough free block (in which
case the variable fnd in set to non-zero), or if it reaches the
end of the heap-list (entry is null).

4.2.2 Compaction
The compaction phase only occurs when the traversal

fails. Its role is to merge all the contiguous free blocks of the
heap-list, so that a new traversal can take place and hope-
fully succeeds. Compaction is implemented by the function
compact. Its specification amounts to assert that it preserves
the heap-list structure:�

∃l.Heap-list l hmStart 0 ∧ (x, sizex, Alloc) ∈ l ∧
Init-array (x+2) (listx) ∧ cptr=hmStart �

(compact cptr nptr stts)�
∃l.Heap-list l hmStart 0 ∧ (x, sizex, Alloc) ∈ l ∧

Init-array (x+2) (listx) �
(We have omitted the predicate result= 0 ∧ entry= 0 for
readability.)

The verification of compaction is displayed in Fig. 5. It
is technically involved because it features two nested loops
(and therefore large invariants), and because variables are
overloaded (the variable stts is used both to hold integers

Definition hmAlloc result size entry
�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) �

cptr fnd stts nptr sz :=

1 result <- null;
�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 �

2 findFree size entry fnd sz stts;

���� ��� ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧�

∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧ entry=y

∨
entry=0

�� � ������
3 ifte (entry == null) thendo (

�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧

entry=0 �
4 cptr <- hmStart;

�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧

entry=0 ∧ cptr=hmStart �
5 compact cptr nptr stts;

�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧

entry=0 �
6 findFree size entry fnd sz stts;

���� ��� ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧�

∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧ entry=y

∨
entry=0

�� � ������
7) elsedo (

�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧

∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧ entry=y �
8 skip;

�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧

∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧ entry=y �
9)

���� ��� ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧�

∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧ entry=y

∨
entry=0

�� � ������
10 ifte (entry == null) thendo (

�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧

result=0 ∧ entry=0 �
(* HM ALLOCFAILED is equal to 0 *)

11 result <- HM ALLOCFAILED;

�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧

result=0 ∧ entry=0 �
12) elsedo (

�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧

∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧ entry=y ∧ x 6= y �
13 split entry size cptr sz;

�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧ result=0 ∧

∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Alloc) ∈ l ∧ entry=y ∧ x 6= y �
14 result <- entry + 2;

�� � ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Alloc) ∈ l ∧

entry=y ∧ result=entry+2 ∧ x 6= y

� ��
15).

������ ����� ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧�		
 ∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Alloc) ∈ l ∧
entry=y ∧ result=entry+2 ∧ x 6= y

∨
result=0

�
���
� ����������

Hp(l)
def
= Heap-list l hmStart 0

Figure 3: Sketch of hmAlloc proof (the proofs for grayed instructions appear in Fig. 4, Fig. 5, and Fig. 6)

Definition findFree size entry fnd sz stts :=
�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) �

1 entry <- hmStart;
�

. . . �
2 stts <-* (entry -.> status);

�
. . . �

3 fnd <- 0;

���� ��� ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
entry=hmStart ∧

∃status.(status=Alloc∨ status=Free) ∧ stts=status∧
∃size′.(hmStart, size′, status) ∈ l ∧ fnd=0

� ������

4 while ((entry =/= null) &&& (fnd =/= 1)) (

������������������������� ������������������������

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx)
∧�																			

�															

∃bloc adr.entry=bloc adr ∧ bloc adr > 0 ∧

fnd=1 ∧
∃size′.size′ ≥ size ∧ (bloc adr, size′, Free) ∈ l

∨
fnd=0 ∧

∃status.(status=Alloc∨ status=Free) ∧
stts=status∧ ∃size′.(bloc adr, size′, Free) ∈ l

∨
fnd=0 ∧

(Heap-list l hmStart bloc adr ∗
Heap-list nil bloc adr 0)

� ����������������
∨

entry=0

� ��������������������

� ��
5 stts <-* (entry -.> status);

�
. . . �

6 ENTRYSIZE entry sz;
�

. . . �
7 ifte ((stts == Free) &&& (sz >>= size)) thendo

�
. . . �

8 fnd <- 1

���� ��� ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃bloc adr.entry=bloc adr ∧ bloc adr > 0 ∧

fnd=1 ∧
∃size′.size′ ≥ size ∧ (bloc adr, size′, Free) ∈ l

� ������
9 elsedo

�
. . . �

10 entry <-* (entry -.> next)
�

. . . �
11).

������ ����� ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧�		
 ∃y.∃sizey. sizey ≥ size ∧
(y, sizey, Free) ∈ l ∧ entry=y

∨
entry = 0

�
���
� ����������

Hp(l)
def
= Heap-list l hmStart 0, only relevant assertions are displayed, the loop invariant is boxed

Figure 4: Sketch of findFree proof (partial proof of hmAlloc in Fig. 3)

and pointers). To summarize the code, the first loop does
a list traversal; when the current block is free, it enters the
nested loop, that compacts the current block with its suc-
cessors if the latter are also free. As emphasized in the proof
sketch, the heart of the verification of compact is the appli-
cation of the Compaction lemma given in Sect. 3.2.2.

4.2.3 Splitting
The role of the splitting phase is to split the block found

into two blocks of appropriate sizes. This is implemented by
the function split. Concretely, it transforms a free block
into an allocated one, eventually into a couple of allocat-
ed/free blocks to save space. The pre-condition asserts that
there is a free block of size greater than size starting at
the location pointed by entry (this is the block found by
the list traversal). The post-condition asserts the existence
of an allocated block of size greater than size (which is in
general smaller than the original free block used to be):���� ��� ∃l.Heap-list l hmStart 0 ∧ (x, sizex, Alloc) ∈ l ∧

Init-array (x+2) (listx) ∧
∃y.∃sizey.sizey ≥ size ∧

(y, sizey, Free) ∈ l ∧ entry=y ∧ x 6= y

� ������
(split entry size cptr sz)���� ��� ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧

Init-array (x+2) (listx) ∧
∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Alloc) ∈ l ∧

entry=y ∧ x 6= y

� ������
(We have omitted the predicate result=0 for readability.)

The verification of split is displayed in Fig. 6. The func-
tion first computes the size of the block pointed by entry,
and then decides if there it is large enough to be split. In
this case, it builds a new header inside the data and modify
the links so that the original free block is split into a cou-
ple of free blocks. Finally, the function changes the status of
the block pointed by entry to Alloc. Observe that both the
splitting and the change of status are handled directly by the
lemmas Splitting and Change-status given in Sect. 3.2.1
and Sect. 3.2.3.

4.3 Formal Verification of Deallocation
The deallocation function hmFree is implemented as a list

traversal; if it runs into the address passed to it, it frees the
corresponding block, and fails otherwise. In addition, we
must also check that it does not modify allocated blocks:�

∃l.Heap-list l hmStart 0 ∧ (x, sizex, status) ∈ l ∧
(y, sizey, status′) ∈ l ∧ y 6= x ∧ Init-array (x+2) (listx) �

(hmFree (y+2) entry cptr nptr result)�
∃l.Heap-list l hmStart 0 ∧ (x, sizex, status) ∈ l ∧

(y, sizey, Free) ∈ l ∧ y 6= x ∧ Init-array (x+2) (listx) �
The main difficulty of this verification was to identify a

bug that allows for deallocation of the terminal block (see de-
tails in Sect 5.4). The formal verification amounts to check
the preservation of a loop invariant and an application of
a Change-status lemma. The proof sketch is omitted for
lack of space.

5. IMPLEMENTATION IN COQ
In this section, we comment on the practical side of our

verification. We first give an overview of our implementation
of separation logic in Coq. Second, we comment on the

translation of C source code into Coq. Then, we illustrate
the Coq implementation with some predicates and lemmas
used during the verification. Last, we explain several issues
in the original source code of the Topsy heap manager we
found during verification.

5.1 Separation Logic in Coq
The heart of our implementation of separation logic in

Coq is a module interface for heaps. This interface defines
heaps as partial functions from natural numbers (type nat

in Coq) to signed integers (type Z in Coq). The module is
implemented using lists.

Using the module interface for heaps, we implement sep-
aration logic as defined by Reynolds in [1]. We define sep-
arating connectives by a shallow embedding, i.e., they are
implemented as functions from heaps to the type Prop of
Coq, enabling mixed use of separating connectives with Coq
connectives. This has the advantage to simplify the writ-
ing of assertions. All Reynolds’ axioms appear as Coq lem-
mas, proved sound. This basic implementation is extended
with standard lemmas such as the frame rule and a weakest-
precondition generator.

For the sake of completeness, we provide malloc and free
commands, although our verification of the Topsy heap man-
ager now provides us with an alternative solution for dy-
namic memory allocation. Indeed, we can consider specifi-
cations of hmAlloc and hmFree to be axioms and use them to
verify programs. For example, let us consider the following
sample specification:�

Heap-list l hmStart 0 ∧ (x, 1, Alloc) ∈ l ∧ (x 7→ e) ∗ T �
(hmAlloc y 1 entry cptr fnd stts nptr sz);

(ifte ((var e y) =/= (nat e 0)) thendo

((var e y) *<- (int e v))

elsedo

skip)�
Heap-list l hmStart 0 ∧ (x, 1, Alloc) ∈ l ∧

(y > 0 → (x 7→ e) ∗ (y 7→ v) ∗ T) �
The program allocates a new block using hmAlloc, stores its
location into variable y, and stores some value v into the
block. The post-condition asserts that, in case of successful
allocation, the newly allocated block is separated from any
previously allocated one. This specification is easily prov-
able using the specification of hmAlloc proved in Sect. 4.2.

We develop many other reusable lemmas and tactics dur-
ing our experiment. In particular, tactics to decide dis-
jointness and equality for heaps turned out to be very im-
portant. In practice, proofs of disjointness and equality of
heaps are ubiquitous, but tedious because one always needs
to prove disjointness to make unions of heaps commute.
This situation rapidly leads to intricate proofs. For exam-
ple, let us consider the proof of the lemma Splitting given
in Sect. 3.2.3. This lemma features three destructive up-
dates, that are responsible in its proof for the creation of
27 sub-heaps, 16 hypotheses of equality and 13 hypotheses
of disjointness. With these hypotheses, we need to prove
several goals of disjointness and equality. Fortunately, the
tactic language of Coq provides us with a means to automate
such reasoning.

The whole library is summarized in Table 1.

5.2 Translation from C Source Code
As stated in Sect. 2, we verify directly the source code of

Definition compact cptr nptr stts :=

�
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ cptr=hmStart ∧

Init-array (x+2) (listx) �
1

(* cptr points to the current block *)

while (cptr =/= null) (

������������� ������������
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧

Init-array (x+2) (listx) ∧ ∃y.cptr=y

∧�					
 ∃sz.∃st.∃l1.∃l2.

l=(l1++((y, sz, st) ::nil)++l2)
∨

(Heap-list l hmStart y ∗ Heap-list nil y 0)
∨

y = 0

�
������
� ������������������������

2 stts <-* (cptr -.> status);
�

. . . �
3 ifte (stts == Free) thendo (

�
. . . �

4 nptr <-* (cptr -.> next);
�

. . . �

5
(* nptr points to the block

next to cptr *)

while (nptr =/= null) (

������������������������� ������������������������

∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧
Init-array (x+2) (listx) ∧ ∃y.cptr=y

∧�																	

∃sz.∃l1.∃l2.

l=(l1++((y, sz, Free) ::nil)++l2) ∧
nptr=y+2+sz

∨
∃sz.∃sz′.∃l1.∃l2.

l=(l1++((y, sz, Free) ::
(y+2+sz, sz′, Alloc) ::nil)++l2) ∧

nptr=y+2+sz

∨
∃sz.∃l1.

l=(l1++((y, sz, Free) ::nil)) ∧
nptr=0

�
������������������

� ��
6 stts <-* (nptr -.> status);

�
. . . �

7 ifte (stts == Free) thendo (
�

. . . �
8 stts <-* (nptr -.> next);

������� ������
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧

Init-array (x+2) (listx) ∧ ∃y.cptr=y

∧
∃sz.∃sz′.∃l1.∃l2.

l=(l1++((y, sz, Free) :: (y+2+sz, sz′, Free) ::nil)++l2) ∧
nptr=y+2+sz ∧ stts=y+4+sz+sz′

� ������������
Compaction

9 (cptr -.> next) *<- stts;

������� ������
∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧

Init-array (x+2) (listx) ∧ ∃y.cptr=y

∧
∃sz.∃sz′.∃l1.∃l2.

l=(l1++((y, sz + 2 + sz′, Free) ::nil)++l2) ∧
nptr=y+2+sz ∧ stts=y+4+sz+sz′

� ������������
10 nptr <- stts

�
. . . �

11) elsedo (
�

. . . �
12 nptr <- null

�
. . . �

13)
�

. . . �
14)

�
. . . �

15) elsedo (
�

. . . �
16 skip

�
. . . �

17)
�

. . . �
18 cptr <-* (cptr -.> next)

�
. . . �

19).
�

∃l.Hp(l) ∧ (x, size, Alloc) ∈ l ∧ Init-array (x+2) (listx) �
Hp(l)

def
= Heap-list l hmStart 0, only relevant assertions are displayed, loop invariants are boxed, the grayed area

corresponds to a heap-list lemma application

Figure 5: Sketch of compact proof (partial proof of hmAlloc in Fig. 3)

Definition split entry size cptr sz :=

�� � ∃l. Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧

entry=y ∧ x 6= y

� ��
1 ENTRYSIZE entry sz;

�� � ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧

entry=y ∧ x 6= y ∧ sz=sizey

� ��
2 ifte (sz >>= (size + LEFTOVER + 2) thendo (

�� � ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧

entry=y ∧ x 6= y ∧ sz=sizey

� ��
3 cptr <- (entry + 2 + size);

�
. . . �

4 sz <-* (entry -.> next);

���� ��� ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧
cptr=entry+2+size ∧ sz=y+2+sizey ∧

entry = y ∧ x 6= y

� ������
Splitting

5 (cptr -.> next) *<- sz;
�

. . . �
6 (cptr -.> status) *<- Free;

�
. . . �

7 (entry -.> next) *<- cptr

�� � ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧

entry=y ∧ x 6= y

� ��
8) elsedo (

�
. . . �

9 skip
�

. . . �
10);

�� � ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Free) ∈ l ∧

entry=y ∧ x 6= y

� ��
Change-status

11 (entry -.> status) *<- Allocated.

�� � ∃l.Hp(l) ∧ (x, sizex, Alloc) ∈ l ∧ Init-array (x+2) (listx) ∧
∃y.∃sizey.sizey ≥ size ∧ (y, sizey, Alloc) ∈ l ∧

entry=y ∧ x 6= y

� ��
Hp(l)

def
= Heap-list l hmStart 0, only relevant assertions are displayed, grayed areas correspond to a heap-list lemma

application

Figure 6: Sketch of split proof (partial proof of hmAlloc in Fig. 3)

Script file Contents (lines)

util.v Non-standard lemmas on integers, lists
(486)

heap.v Modules for locations, values, and heaps
(3044)

sep.v Separation logic assertions, Reynolds’
axioms, soundness, frame rule (2096)

vc.v Weakest-precondition generator (190)
contrib.v Lemmas on arrays, etc. (1310)
sep con tactic.v Tactics to decide disjointness and

equality for heaps (542)
examples.v Examples (700)

total size: 8428 lines

Table 1: Separation Logic Library

Topsy using separation logic. The programming language of
separation logic we implemented in Coq is closed enough to
the C programming language to enable almost direct trans-
lation (that we do by hand though). By way of example, let
us comment on the sample translation of one Topsy function
to its Coq counterpart. Fig. 7 displays side-by-side the origi-
nal findFree function and its Coq implementation. There is
almost a syntactic correspondence between both programs.
The main difference is the translation of the C instruction
break using an extra variable (namely, fnd) and a branch-
ing test in Coq. Also, we need to pass extra variables to the
Coq function to represent the return value and to serve as
local variables. These are trivial changes.

5.3 Illustration of Formal Verification
We illustrate the Coq implementation of specifications

with some predicates and lemmas used during the verifi-
cation.

Here follows the Coq definition of the Heap-list predicate
defined in Sect. 3.1. It is implemented as an inductive data
type, with one constructor for each disjunctive clause. Be-
cause of the shallow embedding, the original signature is
extended with extra arguments store.v and heap.h, and
the resulting type is Prop. This definition makes use of the
separating connectives (...|-->(...::...)) and **, corre-
sponding respectively to the maps-to formula (7→ ,) and
the separating conjunction ∗. This definition also makes use
of another predicate Array whose definition is omitted for
lack of space. Given the explanation of Sect. 3.1, the rest of
the definition is self-explaining:

Inductive Heap_List :
list (loc*nat*expr)->loc->loc->store.s->heap.h->Prop :=
Heap_List_last: forall s next startl endl h,
endl=0 -> next=0 -> startl>0 ->
((nat_e startl) |--> (Alloc::(nat_e next)::nil)) s h ->
Heap_List nil startl endl s h

| Heap_List_trans: forall s startl endl h,
endl>0 -> startl=endl -> Emp s h ->
Heap_List nil startl endl s h

| Heap_List_suiv: forall
s h next startl endl h1 h2 hd_adr hd_size hd_expr tl,

heap.disjoint h1 h2 ->
heap.equal h (heap.union h1 h2) ->
hd_expr = Alloc \/ hd_expr = Free ->
next = (startl + 2 + hd_size) ->
startl = hd_adr ->
startl > 0 ->
(((nat_e startl) |--> (hd_expr::(nat_e next)::nil)) **
(Array (startl+2) (hd_size))) s h1 ->

Heap_List tl next endl s h2 ->

Heap_List
((hd_adr, hd_size,hd_expr)::tl) startl endl s h.

Here follows the Coq definition of the Compaction lemma
defined in Sect. 3.2.2 (proof omitted). This lemmas makes
use of the separating implication (noted -*). Given the one-
to-one correspondence with the original lemma, the rest of
the definition is self-explaining.

Lemma Heap_List_compact :
forall l1 l2 x1 sizex1 sizex2 startl s h,
startl > 0 ->
(Heap_List (l1 ++

((x1,sizex1,Free)::(x1+2+sizex1,sizex2,Free)::nil) ++
l2) startl 0) s h ->

(((nat_e x1 +e (int_e 1))|-> nat_e (x1+2+sizex1)) **
(((nat_e x1 +e (int_e 1))|-> nat_e (x1+sizex1+4+sizex2)) -*
(Heap_List (l1 ++

((x1, sizex1+2+sizex2, Free)::nil) ++
l2) startl 0))) s h.

Last, we show the Coq definition of the specification for
the compact function verified in Sect. 4.2.2. The Hoare
triples is noted {{...}}...{{...}} and corresponds to a
Coq lemma, that we need to prove in order to verify the
function:

Lemma compact_verif :
(* hypotheses omitted *)
{{fun s => fun h => exists l1, Heap_List l1 adr 0 s h /\

In (x,size,Alloc) l1 /\
eval (var_e hmStart) s = eval (nat_e adr) s /\
eval (var_e result) s = eval null s /\
eval (var_e cptr) s = eval (nat_e adr) s /\
(ArrayI (x+2) lx ** TT) s h}}

(compact cptr nptr stts)
{{fun s => fun h => exists l1, Heap_List l1 adr 0 s h /\

In (x,size,Alloc) l1 /\
eval (var_e hmStart) s = eval (nat_e adr) s /\
eval (var_e result) s = eval null s /\
(ArrayI (x+2) lx ** TT) s h}}.

The whole verification implementation is summarized in
Table 2.

Script file Contents (lines)

topsy hm.v Heap-list definition and properties (1519)
topsy hmInit.v Initialization code, specification,

and verification (401)
topsy hmAlloc.v Allocation code, specifications,

and verifications (4159)
topsy hmFree.v Deallocation code, specification,

and verification (1343)
example hmAlloc.v Example of Sect. 5.1 (417)

total size: 7839 lines

Table 2: Topsy Heap Manager Verification

5.4 Issues found in the Original Source Code
In this section, we explained the issues (including bugs)

that we found during verification.

5.4.1 Out of Range Initialization
When verifying the initialization function of the heap man-

ager (Sect. 4.1), we found out that the header of the termi-
nal block was actually written outside of the memory area
reserved for the heap manager. This illegal destructive up-
date made the Heap-list predicate unprovable because the

stat ic HmEntry findFree (unsigned long s i z e)
{
/∗ s t a r t i s a g l oba l va r i ab l e ∗/
HmEntry entry = s t a r t ;

while (entry != NULL) {
i f (entry−>s t a tu s == HM FREED

&& ENTRYSIZE(entry) >= s i z e) break ;
entry = entry−>next ;

}
return entry ;

}

Definition findFree size entry fnd sz stts :=
entry <- (var_e hmStart);
stts <-* (entry -.> status);
fnd <- (int_e 0);
(while ((var_e entry =/= null) &&& (var_e fnd =/= (int_e 1))) (
stts <-* (entry -.> status);
(ENTRYSIZE entry sz);
(ifte ((var_e stts == Free) &&&

(var_e sz >>= nat_e size)) thendo
fnd <- (int_e 1)
elsedo
(entry <-* (entry -.> next)))

)).

Figure 7: Code Translation from C (on the left) to Coq (on the right)

latter holds for a fixed are of memory. We corrected this
bug by changing a single arithmetic operation, suggesting
a programming miss. In all fairness, we must say that this
bug was corrected in versions of Topsy posterior to the one
we are using for verification.

5.4.2 Useless Operations During Allocation
When verifying the allocation function (Sect. 4.2), we

found several useless operations that suggested immediate
improvements.

There were two identical variables assignments before call-
ing and at the beginning of the findFree function; this was
highlighted when writing the loop invariant in findFree.

Another useless operation is the possibility to allocate a
non-empty memory block (that is, a header and a non-empty
array of memory) when performing a null-size allocation.
Since null-size allocations are not filtered out, the alignment
calculation is applied anyway, resulting in a non-empty al-
location (in addition to the header). This was highlighted
when writing assertions. We improved the implementation
by forcing failure for null-size allocation.

5.4.3 Deallocation of the Terminal Block
When verifying the deallocation function (Sect. 4.3), we

found that it was possible to suppress allocable space with-
out performing any allocation. This is because it is possi-
ble to deallocate the terminal block of the heap-list to trick
compaction. The problem is better explained by the sam-
ple scenario in Fig. 8. In this scenario, the terminal block
is preceded by a free block. If we deallocate the terminal
block and try to allocate a too-large block, this will trigger
compaction and cause the leading free block to point to null.
This problem is easily identified by the Heap-list predicate
that enforces the terminal block to be marked as allocated.
We fixed this problem by adding a test over the next field
of the block to be deallocated in the deallocation function.

6. CONCLUSION
In this paper, we formally specified and verified the heap

manager of the Topsy operating system using separation
logic inside the Coq proof assistant. The verification ap-
proach proved very effective since it enables us to find bugs
in the original source code. In addition, this use case led
us to develop a Coq library of lemmas and tactics that are
reusable in the context of other experiments.

Deallocation

Compact

F
r
e
e

F
r
e
e

F
r
e
e

F
r
e
e

nu
ll

nu
ll

nu
ll

A
l
l
o
c

Figure 8: A scenario that illustrates the hmFree issue

6.1 Related Work
Our use case is reminiscent of work by Yu et al. that

propose an assembly language for proof-carrying code and
apply it to certification of dynamic storage allocation [8].
The main difference is that we deal with existing C code,
whose verification is more involved because it has not been
written with verification in mind. In particular, the heap-
list data structure has been designed to optimize space us-
age; this leads to trickier manipulations (e.g., nested loop
in compact), longer source code, and ultimately bugs, as we
saw in Sect. 5.4. Another difference between both allocators
is that the Topsy heap manager is a real allocation facility
in the sense that the allocation function is self-content (the
allocator of Yu et al. relies on a pre-existing allocator) and
that the deallocation function deallocated only valid blocks
(the deallocator of Yu et al. can deallocate partial blocks).

The implementation of separation logic we did in the Coq
proof assistant improves the work by Weber in Isabelle [9].
We think that our implementation is richer since it benefits
from a substantial use case. In particular, we have developed
several practical lemmas and tactics. Both implementations
also differ in the way they implement heaps: we use an ab-
stract data type implemented by means of modules for the
heap whereas Weber uses partial functions.

6.2 Future Work
Portions of code that only deal with assignments and

branching instructions should be handled automatically. For
that purpose, we plan to interface our Coq implementation
of separation logic with existing work on automation of ver-
ification of separation logic or alias types [10, 11].

7. REFERENCES
[1] John C. Reynolds. Separation Logic: A Logic for

Shared Mutable Data Structures. In 17th IEEE
Symposium on Logic in Computer Science (LICS
2002), p. 55–74. Invited lecture.

[2] Lukas Ruf and various contributors. TOPSY – A
Teachable Operating System.
http://www.topsy.net/.

[3] Lukas Ruf, Claudio Jeker, Boris Lutz, and Bernhard
Plattner. Topsy v3: A NodeOS For Network
Processors. In 2nd International Workshop on Active
Network Technologies and Applications (ANTA 2003).

[4] Various contributors. The Coq Proof assistant.
http://coq.inria.fr.

[5] Nicolas Marti, Reynald Affeldt and Akinori Yonezawa.
Towards Formal Verification of Memory Properties
using Separation Logic. In 22nd Workshop of the
Japan Society for Software Science and Technology
(JSSST 2005).

[6] Reynald Affeldt and Nicolas Marti. Towards Formal
Verification of Memory Properties using Separation
Logic. http:
//web.yl.is.s.u-tokyo.ac.jp/~affeldt/seplog.
Work in progress.

[7] Thierry Hubert and Claude Marché. A case study of C
source code verification: the Schorr-Waite algorithm.
In 3rd IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2005).

[8] Dachuan Yu, Nadeem Abdul Hamid, and Zhong Shao.
Building Certified Libraries for PCC: Dynamic
Storage Allocation. Science of Computer
Programming, 50(1-3):101–127. Elsevier, Mar. 2004.

[9] Tjark Weber. Towards Mechanized Program
Verification with Separation Logic. In 13th Conference
on Computer Science Logic (CSL 2004), volume 3210
of LNCS, p. 250–264. Springer.

[10] Josh Berdine, Cristiano Calcagno, and Peter W.
O’Hearn. Symbolic Execution with Separation Logic.
In 3rd Asian Symposium on Programming Languages
and Systems (APLAS 2005), volume 3780 of LNCS,
p. 52–68. Springer.

[11] Toshiyuki Maeda and Akinori Yonezawa. Writing
practical memory management code with a strictly
typed assembly language. In 3rd Workshop on
Semantics, Program Analysis, and Computing
Environments for Memory Management (SPACE
2006). Jan. 2006.

