
Toward Formal Construction of

Assembly Arithmetic Functions from Pseudo-code∗

Reynald Affeldt

National Institute of Advanced Indutrial Science and Technology (AIST)

Research Center for Information Security (RCIS)

Abstract

Most cryptographic software relies on arithmetic functions, and these functions must be
implemented correctly and efficiently. In practice, they are written by hand directly in as-
sembly and undergo costly testing. Proof-assistants provide a way to avoid testing without
sacrificing efficiency, but formal verification of low-level code is technically difficult. We pro-
pose a way to address the scalability issues raised by the formal verification of large arithmetic
functions. We advocate formal construction from pseudo-code to split the effort into formal
verification of an idealized implementation written in pseudo-code and a formal proof that
this pseudo-code simulates the target assembly program. In this setting, properties of the
assembly program can be derived from proofs at the simpler level of pseudo-code. As for
the formal proof of the simulation, it can be made systematic, in particular when the tar-
get assembly program is built out of a library of more basic but already verified arithmetic
functions. We illustrate this approach with preliminary but concrete examples.

1 Introduction

Much cryptography used in practice is based on number theory and cryptographic software there-
fore relies on arithmetic functions. They must be implemented efficiently because cryptography
requires much calculation, that is often bound to happen interactively. Needless to say, arithmetic
functions must also be implemented correctly; correctness is all the more important as most high-
level security properties rely on it. As a practical consequence, arithmetic functions are written
by hand directly in assembly and undergo costly testing. The importance of the testing phase
is actually emphasized by certification of cryptographic algorithms (e.g., the North American
Cryptographic Algorithm Validation Program).

In theory, we can improve the above situation by using proof-assistants because they provide
a way to model arithmetic functions faithfully and to verify them formally, thus avoiding testing
without sacrificing efficiency. In addition, proof-assistants, compared to other formal methods,
have the advantage of providing proofs checkable by third-parties, thus paving the way for formal
verification of further security properties.

However, formal verification in proof-assistants of assembly arithmetic functions is technically
difficult. This is mainly because assembly programs (actually, low-level code in general, see for
example [15] for illustrations other than arithmetic functions) leads to formal proofs cluttered with
low-level details, such as precise information about the size or the alignment of data structures
in the (finite) memory of the computer. These details are a hindrance to scalability when formal
verification is carried out directly on an assembly program.

We propose as an approach to improve scalability of formal verification of assembly arithmetic
functions to split the effort into a formal proof about an implementation in pseudo-code and a
formal proof that this idealized implementation simulates the target assembly program. This

∗This work was presented at the 12th JSSST Workshop on Programming and Programming Languages
(http://isw3.kankyo-u.ac.jp/ppl2010).

1

facilitates formal verification because many properties (such as functional correctness) can be
established at the simpler level of pseudo-code and then “transported” by generic lemmas at the
level of assembly. Also, the formal proof of simulation can be built systematically, by composing
assembly programs for which Hoare-logic triples, simulation proofs, termination proofs, etc. are
readily available as a library. In fact, the potential benefits of this approach can already by
appreciated by looking at our previous work. In [14], we formally verify in the Coq proof assistant
a hand-written program of more than 200 assembly instructions by reusing the formal proof of a
semantically equivalent 2-lines Coq function. Although it is not specified in terms of a simulation,
the link between both proofs can actually be seen as such. This case study is all the more
convincing as the property of interest here is a non-trivial security property, specified in terms
of probability and number theory, already requiring a significant proof effort for the 2-lines Coq
function [11].

We also expect our approach to improve reusability and readability. Formal proofs about
idealized implementations are reusable because largely independent from assembly programs: the
effects of local modifications of the latter should be limited to the formal proof of simulation.
We also want to emphasize reusability of simulation proofs for basic arithmetic functions used as
subroutines to build larger arithmetic functions. Besides reusability, our approach has also the
desirable side-effect of improving readability by letting functional correctness be expressed at the
level of pseudo-code.

Formal construction of assembly functions from pseudo-code is closely related to but different
from formally-verified compilation. First, it targets pseudo-code, a high-level language with an
unbounded memory and, in the case of arithmetic functions, manipulating data such as arbitrary-
precision integers. Therefore, the end-languages that we are dealing with when constructing
assembly functions from pseudo-code are much more apart than the end-languages of a compiler
pass. Second, as explained above, formal construction by way of simulation allows for flexible
modifications of the target assembly programs. In contrast, a compiler is deterministic and one
may not always have an adequate formal translation validation scheme at hand for the intended
modification. To summarize, it seems difficult to come up with a certified compiler for pseudo-
code that generates efficient assembly and accommodates seamlessly (i.e., without invalidating the
formal proof) local re-engineering of its output.

Contribution In this paper, we set up an experimental framework in the Coq proof-assistant [2]
to formally verify hand-written arithmetic functions in assembly by reusing proofs for programs
written in pseudo-code. More precisely, we aim at organizing verification as follows: (1) a for-
mal proof about imperative pseudo-code, (2) a formal proof that the pseudo-code simulates the
assembly program, and (3) a lemma to transform Hoare-logic triples about the pseudo-code into
Separation-logic triples about the assembly program. For this purpose, we extend two existing
formalizations:

• A formalization of Hoare logic1 for structured imperative programs with an unbounded
number of variables that we use in this paper with arbitrary-precision integers, the data
structure of interest when dealing with arithmetic functions.
• A formalization of Separation logic for SmartMIPS assembly programs [8], an instruction

set designed for the implementation of efficient cryptography. This formalization is biased
toward structured assembly programs but it can also deal with gotos through certified com-
pilation ([9], formalized in [14]). For the sake of simplicity, we stick to structured assembly
programs in this paper.

On top of these two formalizations, we instrument a notion of simulation. As a preliminary
experiment, we apply the resulting formalization to the prelude of an assembly program that

1This formalization is in fact a more general formalization of Separation logic to deal with mutable memory.
Technically, this will cause small discrepancies between the intended lemmas and lemmas actually formalized.
For example, we sometimes need to “reinforce” lemmas with conditions on the absence of dynamic allocation in
pseudo-code even though we actually never intend to use it here. We prefer this situation to the burden of managing
another, less-general formalization of Hoare logic.

implements the binary extended binary GCD algorithm2, an important algorithm used in cryp-
tography to compute for example inverses modulo. Despite the limitations of our framework in its
current state (in particular, a large-scale experiment still to be completed), we hope to provide a
concrete evaluation of the effort toward formal construction of number-theory based cryptographic
schemes.

Outline In Sect. 2, we give an overview of the existing frameworks for pseudo-code and assembly
that we use in this paper. In Sect. 3, we give as an example a program in pseudo-code and an
implementation in assembly and explain informally the relation between the Hoare-logic triple for
the former and the Separation-logic triple for the latter. In Sect. 4, we formalize the notion of
simulation between pseudo-code and assembly. In Sect. 5, we define for the case of arithmetic
functions a concrete relation between states in the pseudo-code and states in the assembly. We
also provide a lemma that transforms Hoare-logic triples for pseudo-code into Separation-logic
triples for the assembly, thus reducing the effort of formal proof of assembly to formal proof of
pseudo-code and its simulation. In Sect. 6, we explain in detail examples of simulation proofs. To
better appreciate the organization of the formal proofs, we also give a schematic overview of the
whole framework in Coq. We discuss related work in Sect. 7 and conclude in Sect. 8. (For the
sake of completeness, Appendix A explains some technical lemmas used in Sect. 6.)

2 Formalization of Pseudo-code and Assembly

Generic Notations Prop is the canonical type in Coq for propositions, e.g., True : Prop.
Logical symbols (⇒, ∧, ∨, ∀, ∃, etc.) have to be understood as the corresponding Coq constructs.
Anonymous functions are written with the usual λ notation. Relations are understood as functions
with codomain Prop. When the names of the parameters of a function or a relation are not relevant,
we use for conciseness “·” as a place-holder. We note B the type of Coq booleans and Z the type
of (arbitrary-precision) integers.

232 is abbreviated as β. The remainder of x modulo n is noted x mod n. The length of a list l
is noted |l|.

int n is the type of machine integers encoded as bitstrings of n bits. Constants of this type
are annotated with the length of the underlying bitstring, e.g., 032 for the 32-bit constant zero,
116 for the 16-bit constant one, etc. This type comes with various functions that mimic computer
instructions, for example, right-shift of x by k is noted x � k. The function (·)int n→Z interprets
a n-bit bitstring as an unsigned integer.

Multi-precision integers are encoded as lists of machine integers. Given a list l of machine words
of type int 32,

∑
k l is the value, as an integer in Z, of the multi-precision integer corresponding

to the first k machine integers of l.
We use finite maps in several places, in particular to encode mutable memory and stores of

variables. For a map m, if x ∈ dom (m), then the image y of x is such that m(x) = Some(y); if
x /∈ dom (m), we have m(x) = None. The codomain of m is noted codom (m). The fact that two
maps m1,m2 have disjoint domains is noted m1 ⊥ m2 . m|d is the projection of the map m on
the domain d. m− d is the map m from which entries from domain d have been removed.

2.1 Pseudo-code

The pseudo-code is an imperative language with (arbitrary-precision) integers, assignments, and
structured control-flow.

Variables are ranged over by x, y, . . . and carry integers as values. States of pseudo-code pro-
grams are ranged over by s and are finite maps from variables to values, or stores for short. For
assignments, there is a language of arithmetic expressions ranged over by e; for branching struc-
tures, there is a language of boolean expressions ranged over by b. The value of the expression e
(resp. b) in state s is noted JeKs (resp. JbKs) and belongs to Z (resp. B).

2At the time of this writing, this experiment is still in progress but we are confident that the main issues have
been addressed. See Sect. 6 for details about what has been achieved and what remains to do.

Pseudo-code programs are ranged over by p. They are made of the two one-step com-
mands skip and x:=e and of the following control-flow commands: p1 ; p2, while (b) {p}, and

if b then p1 else p2. The (big-step) operational semantics is given by the relation s
p−→ s′ that

represents the execution of program p starting from state s and resulting in state s′.
Assertions in Hoare-logic triples are shallow-encoded, i.e., they are functions from states

to Prop. All usual assertions can be defined this way; they connect to programs by sharing
the same language of expressions.

For any assertions P,Q and program p, the Hoare-logic triples are noted {P} p {Q}. The
formalization of Hoare-logic axioms is standard (details can be found in [7]).

2.2 Assembly

The assembly we are dealing with is a formalization of the SmartMIPS instruction set [4].
There are 32 general-purpose registers ranged over by rx, ry, rk, rg, . . . whose contents have

type int 32. Among them, there is in particular a special register reg_zero constantly holding 032.
Since this is assembly, the syntax does not require any language of expressions; yet, to simplify
notations, we introduce a small language ranged other by b for binary tests that are used in
control-flow instructions (for example, the test of inequality between the contents of two registers
is noted rx 6= ry).

There are about 30 one-step instructions taken from the standard documentation [4]. These
instructions can be put together using the following control-flow commands3 (assembly code is
ranged over by c): c1 ; c2, while(b){c}, and if b then c1 else c2.

A state of an assembly program is a pair of a store and a heap. Here, stores (ranged over by st)
are finite maps from registers to 32-bit integers (this includes not only general-purpose registers
but also the MIPS multiplier, an additional set of three registers dedicated to cryptographic com-
putations). Heaps (ranged over by h) are finite maps from natural numbers to 32-bit integers: we
actually restrict ourselves to assembly programs that address memory by words, as customary with
MIPS. States can actually be either safe states, prefixed with Some, or error states, noted None.

The (big-step) operational semantics for assembly is noted s � c _ s′ (details can be found
in [8, 14]). This semantics is deterministic:

Lemma 2.1 (Determinism). For any s, c, s′, s′′ such that s � c_ s′ and s � c_ s′′ then s′ = s′′.

Assertions in Separation-logic triples are functions from (safe) states to Prop. Even though
assembly has no arithmetic expressions, we introduce a small language of arithmetic expressions
ranged over by e to ease the writing of assertions. Given e (a register, an arithmetic expression,
or a boolean test), JeK

st
(of type int 32) represents the value of e in the store st. As an example

of assertion λst, h. (e Z⇒ l) st h holds in a store st and a heap h when h starts at the JeK
st

th word

and contains consecutively the |l| words of l.
Separation-logic triples are noted [P] c [Q] and their definitions follow [5], modulo restrictions

to accommodate finite memory (only β bytes).

3 Simulation of Arithmetic Functions: Illustrating Exam-
ple

This section illustrates with an example the relation between a Hoare-logic triple for pseudo-code
and a Separation-logic triple for assembly. The program in question is division by 2. In pseudo-
code, it amounts to a single instruction: x:=x / 2. The assembly implementation below performs
in-place multi-precision division by 2. It uses repeated logical right shifts and implements its own

3Even though we restrict ourselves to structured assembly in this paper, our framework is more general in the
sense that it provides also a formally-verified compiler to compile structured control-flow to labeled instructions
and gotos [14]. This facility will let us accommodate gotos, but, for the sake of clarity, this paper does not deal
with this issue.

overflow (more precisely, underflow) detection/propagation:

multi_div2 k a i tmp prev next
def
=

addiu i k 016 ; start at the most-significant word
addiu prev reg_zero 016 ; initialize overflow flag to 0
while(i 6= reg_zero){ loop until the least-significant word
addiu i i −116 ;

}
load ith word

lwxs tmp i a ;
andi next tmp 116 ; detect potential overflow
srl tmp tmp 15 ; shift the loaded word
or tmp tmp prev ; insert the overflow detected at the previous iteration
addiu prev next 016 ;

}
set detected overflow to most-significant bit position

sll prev prev 315 ;
sll next i 25 ;

}
set index for storing back the shifted word

addu next a next ;
sw tmp 016 next} store back the shifted word

The Hoare-logic triple for the pseudo-code of division by 2 is straightforward. It can be stated
as follows: for any variable x and for any integer vx (a ghost variable, intuitively the value of x),
we have {λs. JxKs = vx}x:=x / 2 {λs. JxKs = vx/2}.

The Separation-logic triple for assembly is more involved because one needs to take into account
various restrictions about the registers and the values they carry. Examples of such restrictions
are the fact that some instructions require data to be aligned at word-boundaries (i.e., are multiple
of 4 (bytes)), or the fact that addressable memory is finite (β bytes). In the pre-condition of the
following Separation-logic triple, the multi-precision integer A stored in memory is pointed to by
register a and its length is stored in register k. In the post-condition, the multi-precision integer
at the same position is noted A′ and the fact that it is the quotient of A divided by 2 is captured
by an equality relation between A and A′.

Lemma 3.1 (Separation-logic Triple for Multi-precision Division by 2). For any pairwise distinct
non-zero registers k, a, i, tmp, prev, next, for any strictly positive nk, for any na, va such that
4× na+ 4× nk < β and (va)int 32→Z = 4× na, for any list A of length nk, we have:[

λs, h. JaK
s

= va ∧
(
JkK

s

)
int 32→Z

= nk ∧ (a Z⇒ A) s h
]

multi_div2 k a i tmp prev next λs, h. ∃A′. |A′| = nk ∧ JaK
s

= va ∧
(
JkK

s

)
int 32→Z

= nk ∧ (a Z⇒ A′) s h ∧

2×
∑
nk A

′ +
(
JprevK

s
� 31

)
int 32→Z

=
∑
nk A

In this example, the relation between both triples is that the effect of the pseudo-code on the

contents of the variable x is the same as the effect of the assembly program on the contents of the
memory pointed to by register a. In other words, if x and a initially “point to” the same value,
they still “point to” the same value after execution of both programs. We specify this relation
formally in Sect. 5 and this is simulation w.r.t. this relation that we aim at formalizing.

4 Formalization of Simulation

To bridge Hoare-logic triples for pseudo-code and Separation-logic triples for assembly, we intro-
duce a notion of simulation. Simulation techniques have a long history and a wide field of applica-
tion that encompasses concurrent systems. There exist generic definitions of simulations [1], but
since we do not intend to use concurrency, we refer instead to definitions biased toward imperative
programs [10, 12, 13].

The notions of simulations below are parameterized by a relation R between, on the one hand,
a store of variables for the pseudo-code, and, on the other hand, a register-file and a heap for the
assembly.

Forward simulation states that the executions of two programs p and c preserve a relation R
under some initial condition I. The initial condition is important to accommodate assembly
programs that may fail to preserve the relation R under some exceptional circumstances (e.g.,
overflows).

Definition 4.1 (Forward Simulation). p ≤IR c
def
= ∀s, st, h. R s st h ⇒ I s st h ⇒ ∀s′. s p−→

s′ ⇒ ∃st′, h′. Some(st, h) � c_ Some(st′, h′) ∧R s′ st′ h′

We introduce a notion of relational Hoare logic [6] that is used in composition lemmas to
establish propagation of initial conditions (see Lemmas 4.1 and 4.4):

Definition 4.2 (Relational Hoare Logic). p ∼ c : P Q def
= ∀s, st, h. P s st h ⇒ ∀s′. s p−→ s′ ⇒

∀st′, h′. Some(st, h) � c_ Some(st′, h′) ⇒ Q s′ st′ h′

Forward simulation is preserved by sequential composition:

Lemma 4.1 (Simulation of Sequences). ∀R, p, c, p′, c′,P,Q. p ∼ c : P Q ⇒ p ≤PR c ⇒
p′ ≤QR c′ ⇒ p ; p′ ≤PR c ; c′

Hereafter, we assume that we work with terminating programs. This is a reasonable assumption
for our purpose since arithmetic functions are in general terminating programs. In this context,
forward simulation is actually equivalent to partial forward simulation, a definition that is easier
to work with formally:

Definition 4.3 (Partial Forward Simulation). p .IR c
def
= p ∼ c : λs, st, h. R s st h ∧ I s st h

R

In general, this definition has the defect that any pseudo-code program simulates a non-
terminating assembly program, but under the assumption that the assembly program terminates
it implies forward simulation:

Definition 4.4. safely terminating R c
def
= ∀s, st, h. R s st h ⇒ ∃st′, h′. Some(st, h) � c _

Some(st′, h′)

Lemma 4.2. ∀R, I, p, c. p .IR c ⇒ safely terminating R c ⇒ p ≤IR c

Moreover, since the execution of assembly is deterministic (Lemma 2.1), we also have that
forward simulation implies backward simulation4 (under the assumption that the pseudo-code
terminates):

Definition 4.5 (Backward Simulation). p ≥IR c
def
= ∀s, st, h. R s st h ⇒ I s st h ⇒

∀st′, h′. Some(st, h) � c_ Some(st′, h′) ⇒ ∃s′. s p−→ s′ ∧R s′ st′ h′

Definition 4.6. terminating p
def
= ∀s. ∃s′. s p−→ s′

Lemma 4.3. ∀R, I, p, c. terminating p ⇒ p ≤IR c ⇒ p ≥IR c

We define a notion of simulation between a boolean expression b for the pseudo-code and a
pair of an assembly snippet pre b and of boolean test post b about registers’ contents:

Definition 4.7 (Simulation of Boolean Expressions).

b ≤R 〈pre b, post b〉
def
= ∀s, st, h. R s st h ⇒(

JbKs ⇒ ∃st′. Some(st, h) � pre b_ Some(st′, h) ∧ Jpost bK
st′

)
∧(

¬JbKs ⇒ ∃st′. Some(st, h) � pre b_ Some(st′, h) ∧ ¬Jpost bK
st′

)
4This is the notion of backward simulation from [13], that departs from the definition of backward simulation

in the theory of automata [1].

To prove a simulation between a while-loop in pseudo-code and a while-loop in assembly, it
essentially suffices to prove simulation between the boolean tests of the while-loops and the code
in the body of the while-loops. In addition, the initial condition must be set to an invariant
preserved by the body of the while-loops.

Definition 4.8 (Invariant Relation). invcR
def
= ∀s, st, h. R s st h ⇒ ∀st′, h′. Some(st, h) � c _

Some(st′, h′) ⇒ R s st′ h′

Lemma 4.4 (Simulation of While-loops).

∀b, pre b, post b, p, c,R, I. invpre b λs, st, h. R s st h ∧ I s st h ⇒
p ∼ c : λs, st, h. I s st h ∧ Jpost bK

st
∧ JbKs I ⇒

b ≤R 〈pre b, post b〉 ⇒ p ≤
λs,st,h. I s st h∧Jpost bK

st
∧JbKs

R c ⇒
while (b) {p} ≤IR pre b ; while(post b){c ; pre b}

5 Formalization of Simulation for Arithmetic Functions

We provide a concrete example of relation for arithmetic functions. This is actually the formaliza-
tion of the relation informally explained in Sect. 3. We instantiate the generic definitions of Sect. 4
with this relation and provide an additional lemma to derive properties of assembly programs from
Hoare-logic triple for pseudo-code that simulates them.

5.1 Formal Manipulation of Heaps

The formalization of simulation for arithmetic functions calls for precise statements about heaps.
The formalization of those statements and their formal manipulation cause technical difficulties.
In order to facilitate the formalization, we introduce (and instrument) the following definitions for
heaps.

Projection h|a,k is the projection of the heap h to the interval-domain starting at a and of
length k. The following abbreviation will be useful:

h|[rx,rk)st
def
= h|(

JrxK
st

)
int 32→Z

÷4,
(

JrkK
st

)
int 32→Z

Here, division by 4 comes from the fact that memory in our formalization of assembly is word-
addressable by default.

Difference The following abbreviation will be useful: h− [rx, rk)st
def
= h− dom

(
h|[rx,rk)st

)
Constructions of Heaps from Lists (v)

Z
k−→int n

is a partial function that takes an integer v

and returns a multi-precision integer of length k with integers of type int n encoding the value v
(if space allows). The following abbreviation will be useful:

(v)
Z

rk,st−−−→int 32

def
= (v)

Z
(JrkK

st)int 32→Z−−−−−−−−−−→int 32

list to heap x l is the heap that starts at x and in which the contents of l are stored consecutively
(it therefore has |l| entries by construction). The following abbreviation will be useful:

list to heap rx, rk, st v
def
= list to heap

((
JrxK

st

)
int 32→Z

÷ 4
)

(v)
Z

rk,st−−−→int 32

5.2 Implementation Relations

First, we define a relation (x, s) ∼ ((rk, rx) , (st, h)) between a variable x in a store s in pseudo-
code and a pair of registers (rk, rx) in a state (st, h) in assembly. Intuitively, on the one hand,
x contains some non-negative integer v; on the other hand, rx points to a position in the heap h
where are stored rk 32-bit integers that encode v as an unsigned multi-precision integer.

Definition 5.1 (Implementation of a Variable).

(x, s) ∼ ((rk, rx) , (st, h))
def
=

let nk :=
(
JrkK

st

)
int 32→Z

in let vx :=
(
JrxK

st

)
int 32→Z

in let nx := vx÷ 4 in

h = list to heap nx (JxKs)Z nk−−→int 32
∧ 0 < nk ∧ vx+ 4× nk < β ∧ vx mod 4 = 0 ∧ 0 ≤ JxKs < βnk

Now, we can define a relation between a store s for the pseudo-code and a state (st, h) for
the assembly. Intuitively, it means that each variable in s is implemented in the state (st, h), in
the sense of the above relation (Definition 5.1). This new relation noted s ∼rk,d (st, h) below is
indexed by a register rk that holds the size of multi-precision integers in assembly and a finite
map d that associates variables with registers.

Definition 5.2 (Implementation of States).

s ∼rk,d (st, h)
def
=
(
∀x, rx. d(x) = Some(rx) ⇒ (x, s) ∼

(
(rk, rx) ,

(
st, h|[rx,rk)st

)))
∧(

∀x, y. x 6= y ⇒ ∀rx, ry. d(x) = Some(rx) ⇒ d(y) = Some(ry) ⇒ h|[rx,rk)st ⊥ h|[ry,rk)st
)

Instantiation of Simulation Relations We can instantiate the generic definitions of Sect. 4
with the concrete relation for arithmetic functions:

p /Irk,d c
def
= p .I·∼rk,d(·,·) c

p 5Irk,d c
def
= p ≤I·∼rk,d(·,·) c

b 5rk,d 〈pre b, post b〉
def
= b ≤·∼rk,d(·,·) 〈pre b, post b〉

5.3 From Pseudo-code Hoare-logic Triple to Assembly

As explained in the introduction, we want to formally prove properties of assembly implemen-
tations by reusing formal proofs about pseudo-code. This is the approach that we use in [14]
to prove unpredictability for an assembly implementation of a pseudo-random number generator.
The lemma below generalizes this approach. It shows that one can formally prove a property for
an assembly program given (1) a formal proof for a pseudo-code program, (2) a proof of forward
simulation, and (3) two state-transformation functions (encode and decode below). We think that
the proof of forward simulation can be reasonably easy to perform provided an adequate library
of basic arithmetic functions (Sect. 6.2 illustrates this point). The two state-transformation func-
tions build an assembly state from a pseudo-code state (respectively, a pseudo-code state from an
assembly state) in a way compatible with the implementation relation for arithmetic functions, as
expressed below by the conditions (enc) and (dec). (cmd vars(p) are the variables that appear in
the pseudo-code p.)

Lemma 5.1.

∀rk, d, p, c. safely terminating (· ∼rk,d (·, ·)) c ⇒ terminating p ⇒ cmd vars(p) ⊆ dom (d) ⇒
∀encode, decode.

(∀s. s ∼rk,d encode d s) ⇒ (enc)
(∀s. decode d s ∼rk,d s ∧ dom (decode d s) = dom (d)) ⇒ (dec)

p /Irk,d c ⇒
∀P0, Pf . {P0} p {Pf} ⇒
∀s.
[λst, h. encode d s = (st, h) ∧ P0 s ∧ I s st h] c [λst, h. Pf (decode d (st, h) ∪ (s− dom (d)))]

It is not difficult to prove this lemma using Lemma 4.3 but it remains to validate it by ensuring
that the hypotheses do not preclude applicability in general. We defer this to future work.

6 Examples of Formal Proofs of Simulation

6.1 Simulation of Division by 2

We show how to prove simulation between the two programs of Sect. 3 (division by 2). Such a
simulation proof is already interesting in itself because it relates an arguably hard-to-read assembly
program to a single instruction of pseudo-code, and therefore constitutes a form of high-level
specification. But the real end of such a simulation proof is to integrate a library to be reused to
prove by composition simulation of larger programs, as done in the next section.

Lemma 6.1 (Partial Forward Simulation for Division by 2).

∀x, rk, rx, d, a0, a1, a2, a3.
list is set(rk :: rx :: a0 :: a1 :: a2 :: a3 :: reg_zero :: nil) ⇒
codom (d) ∩ (a0 :: a1 :: a2 :: a3 :: nil) = ∅ ⇒ x 6∈ dom (d) ⇒ rx 6∈ codom (d) ⇒
x:=x/2 /λ .Truerk,(x7→rx)]d multi_div2 rk rx a0 a1 a2 a3

Formal Proof Overview Under the hypotheses

Some(st, h) � multi_div2 rk rx a0 a1 a2 a3 _ Some(st′, h′) (1)

s
x:=x / 2−−−−−→ s′ (2)

s ∼rk,(x 7→rx)]d (st, h) (3)

we want to show that s′ ∼rk,(x7→rx)]d (st′, h′), what decomposes into two subgoals:

1. We show that for any pair (x′, rx′) of the map (x 7→ rx)] d, we have

(x′, s′) ∼
(
(rk, rx′) ,

(
st′, h′|[rx′,rk)st′

))
• If x′ ∈ dom (d) (i.e., x 6= x′), it boils down to show that h|[rx′,rk)st = h′|[rx′,rk)st′

. This
is a consequence of h − [rx, rk)st = h′ − [rx, rk)st′ that we prove as follows. We first
show that there exist st′′, h′′ such that

Some(st, h|[rx,rk)st) � multi_div2 rk rx a0 a1 a2 a3 _ Some(st′′, h′′)

using the Separation-logic triple (Lemma 3.1) and Lemma A.2. From there, the con-
clusion follows from Lemma A.3 and hypothesis (1).

• If x′ = x, it boils down to show that h′|[rx,rk)st′ = list to heap rx, rk, st JxKs′ . We
first instantiate the Separation-logic triple (Lemma 3.1) with the list (JxKs)

Z
rk,st−−−→int 32

.

Then by the frame rule and the soundness of Separation-logic, we find two heaps h1, h2
such that h′ = h1] h2 and (rx Z⇒ A′) st′ h1 holds with

∑
JrkK

st′
A′ = JxKs ÷ 2. By

hypothesis (2), we know that JxKs′ = JxKs ÷ 2. From the assertion (rx Z⇒ A′) st′ h1,

we finally prove that h′|[rx,rk)st′ = list to heap
((
JrxK

st′

)
int 32→Z

÷ 4
)
A′.

2. We show that for any two distinct variables x, y, h′|[rx,rk)st′ ⊥ h
′|[ry,rk)st′ with

(x 7→ rx)]d(x) = Some(rx) (resp. for y, ry, and k, rk). By hypothesis (3), heaps were disjoint
before execution. We can show that the registers in codom ((x 7→ rx)] d) are unchanged by
using Lemma A.1, and therefore heaps are still disjoint after the execution.

6.2 Simulation of the Prelude of Binary Extended GCD Algorithm

In this section, the simulation is essentially proved using the composition Lemmas 4.1 and 4.4 and
the simulation proofs for division and multiplication by 2.

The pseudo-code is the prelude of the the binary extended GCD algorithm [3]. It is an in-
teresting step because is reduces the size of data by means of mere shifts; the GCD is preserved
(modulo shifts) because when a and b are even, gcd(a, b) = 2× gcd(a/2, b/2). The corresponding
assembly program and the simulation are given below. Note that the invariant mainly limits the
size of g relatively to x and does not deal with any GCD property.

Lemma 6.2.

∀x, y, g, k, nx, ny, ng, nk, rx, ry, rg, rk, a0, a1, a2, a3. list is set(x :: y :: g :: k :: nil) ⇒
list is set(rk :: rx :: ry :: rg :: a0 :: a1 :: a2 :: a3 :: reg_zero :: nil) ⇒

while

(
x mod 2 == 0 &&
y mod 2 == 0

)
{x:=x / 2 ;
y:=y / 2 ;
g:=2 ∗ g}

5

λs, st, h.0 ≤ JgKs ∧ 0 < JxKs∧
0 <

(
JrkK

st

)
int 32→Z

∧

JxKs × JgKs < β

(
JrkK

st

)
int 32→Z

rk,

(x 7→ rx)]
(y 7→ ry)]
(g 7→ rg)]
(k 7→ rk)

multi_is_even rx a0 ;
multi_is_even ry a1 ;
and a0 a0 a1 ;
while(a0 6= reg_zero){
multi_div2 rk rx a0 a1 a2 a3 ;
multi_div2 rk ry a0 a1 a2 a3 ;
multi_mul2 rk rg a0 a1 a2 a3 ;
multi_is_even rx a0 ;
multi_is_even ry a1 ;
and a0 a0 a1}

Formal Proof Overview We apply Lemma 4.4 and get two simulation subgoals and two
relational Hoare logic subgoals. The relational Hoare logic subgoals are easily disposed of using
lemmas such as Lemma A.1. Let us focus on the two simulation subgoals.

1. We have to prove that

x mod 2 == 0 && y mod 2 == 0 5

rk,

(x 7→ rx)]
(y 7→ ry)]
(g 7→ rg)]
(k 7→ rk)

〈
multi_is_even rx a0 ;
multi_is_even ry a1 ;
and a0 a0 a1

, a0 6= reg_zero

〉

There are two cases according to whether the boolean test is true or not. Let us treat the
case where the boolean test is true. The goal boils down to show under the hypotheses

Some(st, h) �
multi_is_even rx a0 ;
multi_is_even ry a1 ;
and a0 a0 a1

_ Some(st′, h′) (1)

s ∼rk,(x7→rx)](y 7→ry)](g 7→rg)](k 7→rk) (st, h) JxKs mod 2 = 0 JyKs mod 2 = 0

that Ja0K
st′
6= 032. By the Separation-logic triple of multi_is_even (Lemma 6.3 below)

and the soundness of Separation-logic applied to the two occurrences of multi_is_even in
hypothesis (1), we get that Ja0Kst′ = 132 and Ja1Kst′ = 132. By inversion of and a0 a0 a1, we

deduce that Ja0K
st′

= 132.

2. We have to prove that

x:=x / 2;
y:=y / 2;
g:=2 ∗ g

5

λs, st, h.0 ≤ JgKs ∧ 0 < JxKs∧
0 <

(
JrkK

st

)
int 32→Z

∧

JxKs × JgKs < β

(
JrkK

st

)
int 32→Z∧

Ja0 6= reg_zeroK
st
∧

Jx mod 2 == 0 && y mod 2 == 0Ks

rk,

(x 7→ rx)]
(y 7→ ry)]
(g 7→ rg)]
(k 7→ rk)

multi_div2 rk rx a0 a1 a2 a3 ;
multi_div2 rk ry a0 a1 a2 a3 ;
multi_mul2 rk rg a0 a1 a2 a3

We decompose this goal by Lemma 4.1 that requires us to provide a new initial condition for
the continuations of the programs. Since these continuations use multiplication by 2 whose
simulation holds under restriction (informally, the multiplied multi-precision integer should
not grow out of bounds), we refine the initial condition to take advantage of the fact that
division decreases the size of x:

λs, st, h. 0 ≤ JgKs ∧ 0 < JxKs ∧ JxKs × JgKs < β

(
JrkK

st

)
int 32→Z

−1

We now have to prove the simulation of division by 2

x:=x / 2 5λ .Truerk,(x 7→rx)](y 7→ry)](g 7→rg)](k 7→rk) multi_div2 rk rx a0 a1 a2 a3

which is given by Lemmas 6.1 and 4.2, and also the proof that

safely terminating (· ∼·,· (·, ·)) (multi_div2 rk rx a0 a1 a2 a3)

which is a traditional termination proof.

The proof then goes on similarly for the continuation of the programs, using once time
again the simulation of division by 2 and finally the simulation for multiplication by 2 (not
displayed here for lack of space, see [16] for details).

Lemma 6.3 (Separation-logic Triple for Multi-precision Parity Check). For all registers a, ret,
for all 0 < nk, for all lists A of length nk, we have:

[λs, h. (a Z⇒ A) s h]
multi_is_even a ret[

λs, h. (Zeven (
∑
nk A) ⇒ JretK

s
= 132) ∧ (Zodd (

∑
nk A) ⇒ JretK

s
= 032)

]
6.3 Overview of Coq Scripts

All the definitions, lemmas and examples explained in this paper are formalized in the Coq proof-
assistant. Figure 1 gives an overview of the whole formalization in terms of script files; details
are available online [16]. A large part of this formalization is adapted from previous work. New
scripts are marked as ?, scripts that required substantial improvements are marked as ∗.

lib/stdlib_ext/ Small extensions to the standard libraries
. . .

lib/contrib/ Contributed libraries�∗ finmap.v Finite maps�∗ machine_int.v Machine integers (type int n)
seplog/ Formalization of pseudo-code�

bipl.v, seplog.v,. . . Operational semantics and separation logic�

? syntax.v Lemmas about the operational semantics
cryptoasm/ Formalization of assembly�

mips_bipl.v Expressions and formulas�

mips_cmd.v,. . . Operational semantics�

mips_seplog.v, mips_frame.v,. . . Separation logic�

? mips_syntax.v Lemmas about the operational semantics�

? multi_div2_{prg,triple}.v Multi-precision division by 2�

? multi_mul2_{prg,triple}.v Multi-precision multiplication by 2�

? multi_is_even_{prg,triple}.v Parity check
. . . Other arithmetic functions

begcd/ Formal verification of the binary extended GCD algorithm�

? simu.v Formalization of simulations�

? multi_div2_simu.v Simulation for division by 2 and termination proof�

? multi_mul2_simu.v Simulation for multiplication by 2 and termination proof�

? begcd.v Simulation for the binary extended GCD algorithm (in progress)

Figure 1: Overview of the Formalization

The formalization relies on several contributed libraries including in particular a library for
finite maps (finmap.v, originating from [7], newly extended to deal with projections and transfor-
mations from/to lists, as seen in Sect. 5.1) and for finite-size integers (machine_int.v, originating
from [8], newly extended with lemmas to formally verify multi-precision division and multiplication
by 2).

The formalization of pseudo-code comes from [7] and the formalization of assembly comes
from [8, 14]. For the purpose of this paper, we actually spent much time to clean up both for-
malizations using for example Coq modules and notations (while preserving our previous results).
As explained in Appendix A, formal proofs of simulation require new lemmas to reason about the
operational semantics; these lemmas appear in files syntax, mips_syntax.v. This is on top of
these two formalizations of pseudo-code and assembly that we define our notions of simulation as
well as their properties (the basic properties from Sect. 4, composition Lemmas 4.1 and 4.4, the
Lemma 5.1), see file simu.v.

From previous work [8, 14], we inherit several arithmetic functions in assembly with their
formal proofs of functional correctness. For the purpose of this paper, we additionally for-
mally verified assembly implementation of multi-precision division and multiplication by 2 (files
multi_{div2,mul2}_{prg,triple}.v). The formal proofs of simulation for division by 2 ex-
plained in Sect. 6.1 can be found in file multi_div2_simu.v (resp. in file multi_mul2_simu.v

for multiplication by 2). We regard these formalizations of arithmetic functions in assembly as
the starting point of a basic library out of which larger arithmetic functions and cryptographic
schemes can be formally verified.

The formal proof (in progress) of simulation for the binary extended GCD algorithm explained
in Sect. 6.2 can be found in file begcd.v and relies on the library of basic arithmetic functions (see
the previous paragraph), the composition lemmas about simulation (see file simu.v), and various
lemmas about the operational semantics of pseudo-code and assembly.

7 Related Work

Simulation proofs are at the heart of the formal verification of the compiler in [13]. Given the
scale of the latter experiment, it would not be surprising that many issues on reasoning about
operational semantics that we are currently facing have been addressed to some extent in [13].
This being said, we can nevertheless point out that there are differences between establishing a
relation for a compiler-pass whose end-programs are closely related and establishing a relation
between pseudo-code and assembly that are more apart. Moreover, our goal departs from the
one of certifying a set of program transformations (streamlined as a compiler) in that we aim at
providing a library to ease proof of correctness properties about a family of hand-written programs.

All things being relative, our approach shares similarities with the one used to formally verify
the seL4 micro-kernel [10, 12]; there, the notions of forward simulation and Hoare logic also
play a central role. Yet, there is an important difference in terms of approach: we aim at a
library of arithmetic functions equipped with formal proofs in order to formally verify larger
arithmetic functions by composition; in contrast, in [10, 12], the proof effort targets only one
software application whose large scale induces biases such as an intermediate simulation language
or the extensive use of a VCG. In addition to our library-centric approach, we also think that our
focus on assembly (instead of C in [10, 12]) can also bring new technical insights.

8 Conclusion and Future Work

In this paper, we aimed at setting up an experimental framework in the Coq proof-assistant
to formally verify hand-written arithmetic functions in assembly by reusing proofs for programs
written in pseudo-code. For this purpose, we explained how we instrument a notion of simulation
between pseudo-code and assembly: thanks to composition lemmas, simulations can be proved
incrementally and systematically. We showed how we instantiate this notion of simulation with
a concrete relation for arithmetic functions and applied it to a small-scale but concrete example:
the prelude of an assembly program that implements the binary extended GCD algorithm. Given
a formal proof of simulation, correctness proofs about the pseudo-code can be transported at the
level of assembly by generic lemmas. We think that this approach, if supported by an existing
library of certified basic arithmetic functions as the one we built in our previous work, improves
the scalability of formal verification of hand-written, large arithmetic functions.

We are now pursuing the experiment started in Sect. 6.2 (formal construction of an assembly
implementation of the binary extended GCD algorithm): our goal is to get of formal proof of
functional correctness for assembly from a proof of functional correctness of the pseudo-code. The
formal verification is slowed down by many low-level details on reasoning about the semantics
of pseudo-code and assembly that we find difficult to automate satisfactorily. In order to con-
sider more elaborate arithmetic functions, it will become important to improve the generality of
our results, in particular the relation for simulation of arithmetic functions of Sect. 5 and the
Lemma 5.1. This issue is raised by the introduction of signed multi-precision integers (necessary
for the binary extended GCD algorithm) and also multi-precision integers with various lengths (as
used in the BBS pseudo-random bit generator). Equipped with the framework introduced in this
paper, we also plan to rework the result of [14] to enable more generic encode/decode functions;
indeed, the encode/decode functions in [14] have the defect of imposing a fixed memory layout.

Acknowledgments The author thanks the reviewers of the 12th JSSST Workshop on Program-
ming and Programming Languages. This work is partially supported by KAKENHI 21700048.

References

[1] Nancy A. Lynch and Frits W. Vaandrager. Forward and Backward Simulations: I. Untimed
Systems. Information and Computation 121(2): 214–233. 1995.

[2] The Coq Development Team. Reference Manual. Version 8.2. http://coq.inria.fr. 2009.

[3] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. Chapter 14. CRC Press, 2001.

[4] MIPS Technologies, Inc. MIPS32 4KS Processor Core Family Software User’s Manual. Revi-
sion 01.03. June 12, 2001.

[5] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th
IEEE Symp. on Logic in Computer Science (LICS 2002), p. 55–74.

[6] Nick Benton. Simple Relational Correctness Proofs for Static Analyses and Program Trans-
formations. In 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2004), p. 14–25.

[7] Nicolas Marti, Reynald Affeldt and Akinori Yonezawa. Formal Verification of the Heap Man-
ager of an Operating System using Separation Logic. In 8th Int. Conf. on Formal Engineering
Methods (ICFEM 2006), vol. 4260 of LNCS, p. 400–419. Springer, Oct. 2006.

[8] Reynald Affeldt and Nicolas Marti. An Approach to Formal Verification of Arithmetic Func-
tions in Assembly. In 11th Annual Asian Computing Science Conf. (ASIAN 2006), Focusing
on Secure Software and Related Issues, vol. 4435 of LNCS, p. 346–360. Springer, Jan. 2008.

[9] Ando Saabas and Tarmo Uustalu. A compositional natural semantics and Hoare logic for
low-level languages. Theoretical Computer Science 373(3), 273–302. Elsevier, 2007.

[10] David Cock, Gerwin Klein, and Thomas Sewell. Secure Microkernels, State Monads and
Scalable Refinement. In 21st Int. Conf. on Theorem Proving in Higher Order Logics (TPHOLs
2008), vol. 5170 of LNCS, p. 167–182 . Springer, Aug. 2008.

[11] David Nowak. On formal verification of arithmetic-based cryptographic primitives. In Int.
Conf. on Information Security and Cryptology, volume 5461 of LNCS, p. 368–382. Springer,
2009.

[12] Simon Wood, Gerwin Klein, Thomas Sewell, June Andronick, David Cock, and Michael
Norrish. Mind the Gap—A Verification Framework for Low-Level C. In 22nd Int. Conf. on
Theorem Proving in Higher Order Logics (TPHOLs 2009), vol. 5674 of LNCS, p. 500–515.
Springer, Aug. 2009.

[13] Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning
43(4):363–446. Dec. 2009.

[14] Reynald Affeldt, David Nowak, and Kiyoshi Yamada. Certifying Assembly with Formal
Cryptographic Proofs: the Case of BBS. Electronic Communications of the EASST 23.
Proceeding of the 9th Int. Workshop on Automated Verification of Critical Systems (AVoCS
2009). Jan. 2010.

[15] Holger Gast and Julia Trieflinger. High-level proofs about low-level programs. Electronic
Communications of the EASST 23. Proceeding of the 9th Int. Workshop on Automated Ver-
ification of Critical Systems (AVoCS 2009). Jan. 2010.

[16] Reynald Affeldt. A Library for Formal Verification of Low-level Programs. http://staff.

aist.go.jp/reynald.affeldt/coqdev.

A Some Lemmas About Operational Semantics

In the course of proving simulation, we need to prove various technical facts about states (stores
of variables for the pseudo-code, register files and heaps for assembly programs). Those technical
facts intervene in establishing preservation of the relation of Definition 5.2. At this stage of our
work we are not close to a satisfactorily complete set of lemmas to prove the technical facts about
states that arise from simulation proofs. For the sake of illustration, let us nevertheless explain
what kind of lemmas turned out to be useful in Sect. 6.

About Stores Among other things, we are led to verify how the execution modifies the contents
of variables. It is often not difficult to establish that a variable is left untouched by the execution
of a program (modified regs(c) is the set of registers potentially modified by execution of c):

Lemma A.1 (Variable Unchanged). For all st, h, c, st′, h′, x such that Some(st, h)�c_ Some(st′, h′)
and that x /∈ modified regs(c), we have JxK

st
= JxK

st′
.

Establishing the value of variables that are modified by execution is a different matter. Since we
aim at formally verifying programs by composition of assembly programs, a systematic and rational
approach from the engineering point of view is to rely on readily available Hoare/Separation-logic
triples. Indeed, such triples are a standard form of specification and from them we can infer by
the soundness of the underlying Hoare/Separation-logic equivalent information about operational
semantics.

About Heaps The situation regarding the heap is slightly more involved than for the stores
because of pointers. The relation of Definition 5.2 is defined out of (“smaller”) relations about
single variables and sub-heaps. The consequence is that verifying that the relation holds breaks
down to verifying properties about sub-heaps. This leaves us with a plethora of verification goals
for which it is difficult to figure out beforehand a generic approach.

For example, the following lemma states that, given an execution in some heap, we can restrict
this execution to only that portion of the heap that is required to guarantee safe execution, as
specified by some Separation-logic triple:

Lemma A.2 (Execution Projection w.r.t. Triple). For all P, c,Q, [P] c [Q], for all d, st, h, st′, h′

such that Some(st, h)�c_ Some(st′, h′) and P st h|d holds, then Some(st, h|d)�c_ Some(st′, h′|d).

As a kind of converse of the previous lemma, given two executions, one against some heap and
another against a sub-heap, we can figure out the result of the latter from the result of the former
(this is little more that determinism since starting states are different):

Lemma A.3 (Projection Determinism). For all st, h, c, st′, h′ such that Some(st, h)�c_ Some(st′, h′),
for all d, st′′, h′′ such that Some(st, h|d) � c _ Some(st′′, h′′), then st′′ = st′, h′′ = h′|d, and
h− d = h′ − d.

