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Abstract The most fundamental results of information theory are Shannon’s the-
orems. These theorems express the bounds for (1) reliable data compression and
(2) data transmission over a noisy channel. Their proofs are non-trivial but are
rarely detailed, even in the introductory literature. This lack of formal foundations
is all the more unfortunate that crucial results in computer security rely solely on
information theory: this is the so-called “unconditional security”. In this article, we
report on the formalization of a library for information theory in the SSReflect

extension of the Coq proof-assistant. In particular, we produce the first formal
proofs of the source coding theorem, that introduces the entropy as the bound
for lossless compression, and of the channel coding theorem, that introduces the
capacity as the bound for reliable communication over a noisy channel.

1 Introduction

“Information theory answers two fundamental questions in communication theory:
What is the ultimate data compression (answer: the entropy H), and what is the
ultimate transmission rate of communication (answer: the channel capacity C).”
This is the very first sentence of the reference book on information theory by Cover
and Thomas [8]. This article is precisely about the formalization of Shannon’s
theorems that answer these two fundamental questions.

This article is a revised and extended version of a conference paper [1].
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The proofs of Shannon’s theorems are non-trivial but are rarely detailed, let
alone formalized, even in the introductory literature. Shannon’s original proofs [19]
in 1948 are well-known to be informal and incomplete: the proof of the channel
coding theorem was not made rigorous until much later [8, Sect. 7.7], Shannon does
not prove, even informally, the converse part of the channel coding theorem [22,
Sect. III.A]. Though rigorous proofs are now available, the bounds that appear in
Shannon’s theorems (these theorems are asymptotic) are never made explicit and
their existence is seldom proved carefully.

This lack of formal foundations is all the more unfortunate that several results
in computer security rely crucially on information theory: this is the so-called
field of “unconditional security” (one-time pad protocol, evaluation of information
leakage, key distribution protocol over a noisy channel, etc.). A formalization of
information theory would be a first step towards the verification of cryptographic
systems based on unconditional security, and, more generally, towards the rigorous
design of critical communication devices.

In this article, our first contribution is to provide a library of formal definitions
and lemmas for information theory. First, we formalize finite probability, up to the
weak law of large numbers, and apply this formalization to the formalization of
basic information-theoretic concepts such as the entropy and typical sequences.
This line of work has already been investigated by Hasan et al. [13, 16, 17] and
by Coble [6], with the HOL proof-assistant. The originality of our library (besides
the fact that we are working with the Coq proof-assistant [7]) lies in the formal-
ization of advanced concepts such as jointly typical sequences, channels, codes,
the so-called “method of types”, etc., that are used to state and prove Shannon’s
theorems.

Our second and main contribution is to provide the first formal proofs of Shan-
non’s theorems. The first Shannon’s theorem is also known as the source coding
theorem. This theorem introduces the entropy as the bound for lossless compres-
sion. Precisely, the direct part of this theorem shows that, given a source of in-
formation, there exist codes that compress information with negligible error rate
if the rate “compressed bitstring length / original message length” is bigger than
the entropy of the source of information. Conversely, any code with a rate smaller
than the entropy has non-negligible error rate.

The second Shannon’s theorem is also known as the channel coding theorem. It
is the most famous but also the most difficult of Shannon’s theorems. This theorem
introduces the channel capacity as the bound for reliable communication over a
noisy channel. Like the source coding theorem, the channel coding theorem comes
as a direct part and a converse part. Let us consider the following explanatory
scenario. Alice sends a long message to Bob over a noisy channel. Without any
error-correcting code, Bob receives a message that is different from Alice’s original
message with probability almost 1, while its transmission rate “original message
length / encoded message length” is equal to 1. On the other hand, with sufficiently
repeated codes, i.e., 0 is encoded as 00 · · · 0, Bob may correctly guess the original
message from the received one with failure probability almost 0, while its trans-
mission rate is about 0. One may expect that there is a trade-off relation between
the failure rate and the transmission rate. The channel coding theorem and its
converse clarify this relation: (channel coding theorem) there exists a threshold C

(the “capacity”) such that it is possible to achieve failure rate almost 0 with an
error-correcting code of any transmission rate less than C, but (converse theorem)
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it is always the case that the failure rate is almost 1 with any error-correcting
code of any transmission rate greater than C. Note that we are here talking about
the strong converse of the channel coding theorem, which is the theorem that we
formalized in this article. The weak converse of the channel coding theorem shows
that failure rate cannot be 0 but does not go as far as establishing that it is al-
most 1. This is the simpler weak converse that one usually finds in a standard
textbook such as the one by Cover and Thomas [8].

The formalization of Shannon’s theorems is not a trivial matter because, in
addition to the complexity of a theorem such as the channel coding theorem, the
literature does not provide proofs that are organized in a way that facilitates for-
malization. Most importantly, it is necessary to rework the proofs so that the
(asymptotic) bounds can be formalized. Indeed, information theorists often resort
to claims such as “this holds for n sufficiently large”, but there are in general sev-
eral parameters that are working together so that one cannot choose one without
checking the others. This aspect of the proofs is often ignored in the literature so
that the precise formal definition of such bounds in this article can be regarded as
one of our technical contributions (see Sect. 4.2, Sect. 4.3, Sect. 6.3, or Sect. 11.2
for examples). Another kind of approximation that matters when formalizing is
the type of arguments. For example, in the proof of the source coding theorem, it is
mathematically important to treat the source rate as a rational and not as a real.
Similarly, the use of extended reals (±∞) in the proof of the strong converse of the
channel coding theorem calls for special care. Indeed, extended reals provide an
intuitive way to shorten pencil-and-paper proofs but, and this is easily overlooked
in an informal setting, divergence conditions need to be spelled out precisely when
it comes to formalization. As a matter of fact, extended reals alone are already
notoriously difficult to formalize [14,17].

In order to ease formalization, we make several design decisions to reduce the
number of concepts involved. For example, we avoid explicit use of conditional
probabilities, except for the definition of discrete channels. In the proof of the
strong converse of the channel coding theorem, we avoid extended reals by sorting
out the situations in which divergence occurs (see Sect. 9). These design decisions
do not impair readability because there are less definitions and, since proofs are
more “to the point”, this even contributes to a better informal understanding.

We carried out our formalization in the SSReflect extension [11] of the Coq
proof-assistant [7]. Information theory involves many calculations with “big op-
erator” notations (

∏
i,

∑
i,

⋃
i, etc. notations) indexed over various kinds of sets

(tuples, functions, etc.). SSReflect’s library happens to provide a generic library
of canonical big operators [5] together with libraries for finite sets, functions over a
finite domain, etc. that can be used as index structures. The availability of these li-
braries will turn out to be instrumental in order to achieve reasonably-sized formal
proofs for Shannon’s theorems.

All the formal definitions and lemmas that appear in this article are copied
verbatim from the Coq scripts (available at [2]) but are processed using the listings

package of LATEX to enhance the presentation and improve reading with colors and
standard non-ASCII characters.

Outline In Sect. 2, we formalize definitions and properties about finite probability
to be used in the rest of the article. In Sect. 3, we introduce the concepts of entropy
and typical sequence. In Sect. 4, we state the source coding theorem and detail
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in particular the proof of its direct part. In Sect. 5, we formalize the concept of
noisy channel and illustrate related information-theoretic definitions thoroughly
using the example of the binary symmetric channel. In Sect. 6, we state and prove
the direct part of the channel coding theorem. Sect. 7 explains the proof approach
for the (strong) converse of the channel coding theorem. In Sect. 8, we introduce
the basic definitions of the method of types. We start proving basic results about
types in Sect. 9 where we define in particular the concept of information divergence.
Sect. 10 is a concrete application of the method of types, that we use to upper-
bound the success rate of decoding. The converse of the channel coding theorem
is proved in Sect. 11. Sect. 12 provides a last result that is crucial to complete the
proof of the converse of the channel coding theorem. It is isolated because it is
technical and its proof is of broader interest than the sole channel coding theorem.
Sect. 13 provides a quantitative overview of the formalization. Sect. 14 is dedicated
to related work.

2 The Basics: Finite Probability

We introduce basic definitions about probability (to explain the notations to be
used in this article) and formalize the weak law of large numbers. We do not
claim that this formalization is a major contribution in itself because there exist
more general formalizations of probability theory (in particular in the HOL proof-
assistant [13,16,17]) but providing a new formalization using SSReflect will allow
us to take advantage of its library to prove Shannon’s theorems.

2.1 Probability Distributions

A distribution over a finite set A (in practice, a type of type finType in SSReflect)
will be formalized as a real-valued probability mass function pmf with positive
outputs that sum to 1. In this setting, the probability space is the powerset of A.
An event is a subset of the probability space (it can therefore be encoded as a
set of type {set A} in SSReflect). Let us first define real-valued functions with
positive outputs:

0 Record pos_fun (T : Type) := mkPosFun {
1 pos_f :> T → R ;
2 Rle0f : ∀ a, 0 ≤ pos_f a }.

R is the type of reals in the Coq standard library. pos_f (line 1) is a function from
some type T to R. Rle0f (line 2) is the proof that all the outputs are positive. An
object f of type pos_fun T is a Record but, thanks to the coercion :> at line 1, we
can write “f a” as a standard function application. Below, we denote the type
of positive functions over T by T → R+. A distribution can now be formalized as a
positive function whose outputs sum to 1:

0 Record dist := mkDist {
1 pmf :> A → R+ ;
2 pmf1 : Σ_(a in A) pmf a = 1 }.

At line 1, pmf (for “probability mass function”) is a positive function. At line 2, pmf1
is the proof that all the outputs sum to 1 (the big sum operator is an instance of the
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canonical big operators of SSReflect [5]). We use again the coercion mechanism
(:> at line 1) so that we can write “P a” as a function application to represent the
probability associated with a despite the fact that the object P of type dist A is
actually a Record.

We will be led to define several kinds of distributions in the course of this
article. Here is the first example. Given distributions P1 over A and P2 over B,
the product distribution P1× P2 over A * B is defined as d below (inside a module
ProdDist):

Definition f (ab : A * B) := P1 ab.1 * P2 ab.2. (∗ prob. mass fun. ∗)
Lemma f0 (ab : A * B) : 0 ≤ f ab.
Lemma f1 : Σ_(ab | ab ∈ {: A * B}) f ab = 1.
Definition d : dist [finType of A * B] := makeDist f0 f1.

The .1 (resp. .2) notation is for the first (resp. second) pair projection. The notation
[finType of ...] is just a type cast so that [finType of A * B] can simply by thought
as the cartesian product A * B.

Given a distribution P over A, the probability of an event E (encoded as a set of
elements of type A) is defined as follows:

Definition Pr P (E : {set A}) := Σ_(a in E) P a.

2.2 Random Variables

We formalize a random variable as a Record containing a distribution (rv_dist below)
coupled with a real-valued function (rv_fun below):

Record rvar A := mkRvar {
rv_dist : dist A ;
rv_fun :> A → R }.

This definition is sufficient for our purpose because A will always by finite in this
article. Again, thanks to the coercion, given a random variable X and a in A, one can
write “X a” as in standard mathematical writing despite the fact that X is actually
a Record. Hereafter, we denote the distribution underlying the random variable X

by p_X.
We formalize the probability that a random variable X evaluates to some real r

as follows:

Definition pr (X : rvar A) r := Pr p_X [set x | X x = r].

[set x | P x] is an SSReflect notation for the set of elements that satisfy the
boolean predicate P. Hereafter, we will use the traditional notation Pr[X = r] for
pr X r.

Given a random variable X over A, and writing img X for its image, we define the
expected value as follows:

Definition Ex X := Σ_(r ← img X) r * Pr[X = r].

In the following, E X denotes the expected value of the random variable X.
Let us now define the sum of random variables. Below, n.-tuple A is the SSRe-

flect type for n-tuples over A, written An using standard mathematical notations.
Let us assume the distribution P1 over A, the distribution P2 over n.-tuple A, and

the distribution P over n+1.-tuple A. P is a joint distribution for P1 and P2 when its
marginal distributions satisfy the following predicate:
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Definition joint P1 P2 P :=
(∀ x, P1 x = Σ_(t in {:n+1.-tuple A} | thead t = x) P t) ∧
(∀ x, P2 x = Σ_(t in {:n+1.-tuple A} | tbehead t = x) P t).

In other words, joint P1 P2 P is a relation that defines the distribution P1 (resp. P2)
from the distribution P by taking into account only the first element (resp. all the
elements but the first) of the tuples from the sample space (thead returns the first
element of a tuple; tbehead returns all the elements but the first).

The random variable X is the sum of X1 and X2 when the distribution of X is the
joint distribution of the distributions of X1 and X2 and the output of X is the sum
of the outputs of X1 and X2:

Definition sum := joint p_X1 p_X2 p_X ∧
X =1 fun x ⇒ X1 (thead x) + X2 (tbehead x).

= 1 is the extensional equality for functions.
The random variables X over A and Y over n.-tuple A are independent for a

distribution P (over n+1.-tuple A) when the following predicate holds:

Definition inde_rv := ∀ x y,
Pr P [set xy | (X (thead xy) = x) ∧ (Y (tbehead xy) = y)] =
Pr[X = x] * Pr[Y = y].

Similarly to [13], we define the sum of several random variables by generalizing
the definition sum to an inductive predicate, namely sum_n. More precisely, let Xs be
a tuple of n random variables over A and X be a random variable over n.-tuple A:
sum_n Xs X holds when the random variable X is the sum of the random variables
in Xs. We also specialize this definition to the sum of independent random vari-
ables by using the predicate inde_rv above. Equipped with above definitions, we
derive the standard properties of the expected value, such as its linearity, but also
properties of the variance. See [2] for details.

2.3 The Weak Law of Large Numbers

The weak law of large numbers is the first fundamental theorem of probability.
Intuitively, it says that the average of the results obtained by repeating an exper-
iment a large number of times is close to the expected value. Formally, let Xs be a
tuple of n+1 identically distributed random variables, i.e., random variables with the
same distribution P. Let us assume that these random variables are independent
and let us write X for their sum, µ for their common expected value, and σ2 for
their common variance. The weak law of large numbers says that the outcome of
the average random variable X / (n+1) gets closer to µ:

Lemma wlln ε : 0 < ε →
Pr p_X [set t | Rabs ((X / (n+1)) t - µ) ≥ ε] ≤ σ2 / ((n+1) * ε ˆ 2).

Rabs is the absolute value in the Coq standard library. See [2] for the proof of this
lemma using the Chebyshev inequality.

3 Entropy and Typical Sequences

We formalize the central concept of a typical sequence. Intuitively, a typical se-
quence is a tuple of n symbols that is expected to be observed when n is large. For
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example, a tuple produced by a binary source that emits 0’s with probability 2/3 is
typical when it contains approximately two thirds of 0’s. The precise definition of
typical sequences requires the definition of the entropy and their properties rely on
a technical result known as the Asymptotic Equipartition Property. (Mhamdi et
al. [17] provide an alternative HOL version of most of the definitions and properties
in this section.)

3.1 Entropy and Asymptotic Equipartition Property

We define the entropy of a random variable with distribution P over A as follows
(where log is the binary logarithm, derived from the Coq standard library):

Definition entropy P := - Σ_(a in A) P a * log (P a).

In the following, HP denotes the entropy of P. Let − log P be the random variable
defined as follows:

Definition mlog_rv P := mkRvar P (fun x ⇒ - log (P x)).

We observe that HP is actually equal to the expected value of the random vari-
able − log P:

Lemma entropy_Ex P : H P = E ( − log P).

The Asymptotic Equipartition Property (AEP) is a property about the out-
comes of n random variables − log P that are independent and identically dis-
tributed (with distribution P). The probability in the AEP is taken over a tuple

distribution. Given a distribution P over A, the tuple distribution P^n over n.-tuple A

is defined as d below (inside a module TupleDist):

Definition f (t : n.-tuple A) := Π_(i < n) P t_i. (∗ prob. mass fun. ∗)
Lemma f0 (t : n.-tuple A) : 0 ≤ f t.
Lemma f1 : Σ_(t | t ∈ {:n.-tuple A}) f t = 1.
Definition d : dist [finType of n.-tuple A] := makeDist f0 f1.

The big product operator is another instance of SSReflect’s canonical big oper-
ators. t_i is the ith element of the tuple t.

Informally, the AEP states that, in terms of probability, the outcome of the
random variable − log (P^(n+1)) /(n+1) is “close to” the entropy HP. Here, “close
to” means that, given an ε >0 and a tuple t of length n, the probability that the
outcome (− log (P^(n+1)) /(n+1)) t and HP differ by more than ε is less than ε, when
n+1 is greater than the bound aep_bound P ε defines as follows:

Definition aep_σ2 P := Σ_(a in A) P a * (log (P a))ˆ2 - (H P)ˆ2.

Definition aep_bound P ε := aep_σ2 P / εˆ3.

Using above definitions, the AEP can now be stated formally. Its proof is an
application of the weak law of large numbers (Sect. 2.3):

Lemma aep : aep_bound P ε ≤ n+1 →
Pr (P^(n+1)) [set t | (0 < P^(n+1) t) ∧

(Rabs (( − log (P^(n+1)) / (n+1)) t - H P) ≥ ε) ] ≤ ε.
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3.2 Typical Sequences: Definition and Properties

Given a distribution P over A and some ε, a typical sequence is an n-tuple t with
probability “close to” 2−nHP , as captured by the following predicate:

Definition typ_seq (t : n.-tuple A) :=
exp (- n * (H P + ε)) ≤ P^n t ≤ exp (- n * (H P - ε)).

We denote the set of typical sequences by T S. Using the AEP, we prove that the
probability of the event T S for large n is close to 1, corresponding to the intuition
that a typical sequence is expected to be observed in the long run:

Lemma Pr_TS_1 : aep_bound P ε ≤ n+1 → Pr (P^(n+1)) (T S P n+1 ε) ≥ 1 - ε.

Recall that aep_bound has been defined in the previous section (Sect. 3.1).
The cardinal of T S is nearly 2nHP . Precisely, it is upper-bounded by 2n(HP+ε),

and lower-bounded by (1− ε)2n(HP−ε) for n big enough:

Lemma TS_sup : | T S P n ε | ≤ exp (n * (H P + ε)).
Lemma TS_inf : aep_bound P ε ≤ n+1 →

(1 - ε) * exp ((n+1) * (H P - ε)) ≤ | T S P n+1 ε |.

4 The Source Coding Theorem

The source coding theorem (a.k.a. the noiseless coding theorem) is a theorem
for data compression. The basic idea is to replace frequent words with alphabet
sequences and other words with a special symbol. Let us illustrate this with an
example. The combination of two Roman alphabet letters consists of 676 (= 262)
words. Since 29 < 676 < 210, 10 bits are required to represent all the words.
However, by focusing on often-used English words (“as”, “in”, “of”, etc.), we can
encode them with less than 9 bits. Since this method does not encode rarely-used
words (such as “pz”), decoding errors can happen. Given an information source
known as a discrete memoryless source (DMS) that emits all symbols with the
same distribution P, the source coding theorem gives a theoretical lower-bound
(namely, the entropy HP) for compression rates with negligible error rate.

4.1 Definition of a Source Code

Given a set A of symbols, a k,n-source code is a pair of an encoder and a decoder.
The encoder maps a k-tuple of symbols to an n-tuple of bits and the decoder
performs the corresponding decoding operation:

Definition encT := k.-tuple A → n.-tuple bool.
Definition decT := n.-tuple bool → k.-tuple A.
Record scode := mkScode { enc : encT ; dec : decT }.

The rate of a k,n-source code sc is defined as the ratio of bits per symbol:

Definition SrcRate (sc : scode) := n / k.

Given a DMS with distribution P over A, the error rate of a source code sc (notation:
ēsrc(P, sc)) is defined as the probability of failure for the decoding of encoded
sequences:

Definition SrcErrRate P sc := Pr (P^k) [set t | dec sc (enc sc t) 6= t].
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4.2 Source Coding Theorem—Direct Part

Given a source of symbols from the alphabet A with distribution P, there exist
source codes of rate r ∈ Q+ (the positive rationals) larger than the entropy HP

such that the error rate can be made arbitrarily small:

Theorem source_coding_direct : ∀ ε, 0 < ε < 1 →
∀ r : Q+, H P < r →
∃ k n (sc : scode A k n), SrcRate sc = r ∧ ēsrc(P , sc) ≤ ε.

Source Coding using the Typical Set The crux of the proof is to instantiate with an
adequate source code. For this purpose, we first define a generic encoder and a
generic decoder, both parameterized by a set S of k+1-tuples. In the proof of the
source coding theorem, we will actually take the set S to be the set T S of “long
enough” typical sequences, but we need to explain the encoding and decoding
strategy before giving a precise meaning to “long enough”.

The encoder function f encodes the ith element of S as the binary encoding of
i + 1, and elements not in S as a string of 0’s:

Definition f : encT A k+1 n := fun x ⇒
if x ∈ S then

let i := index x (enum S) in Tuple (size_nat2bin i+1 n)
else

[tuple of nseq n false].

enum S is the list of all the elements of S. index returns the index of an element in a
list. Tuple (size_nat2bin i n) is a tuple of size n that contains the binary encoding
of i < 2n. Last, nseq n false is a list of n false booleans, where false represents the
bit 0. [tuple of ...] is just a type cast and can be ignored.

The definition of the decoder function requires a default element def ∈ S. Given
a bitstring x, the decoder function φ interprets x as a natural number i and returns
the (i− 1)th element of S if i is smaller than the cardinal of S, or the default value
def otherwise:

Definition φ : decT A k+1 n := fun x ⇒
let i := tuple2N x in
if i is 0 then def else

if i-1 < |S| then nth def (enum S) i-1 else def.

tuple2N interprets bitstrings as natural integers and nth picks up the nth element
of a list.

By construction, when | S | < 2 ˆ n, f and φ perform lossless coding only for
elements in S:

Lemma φ_f i : φ (f i) = i ↔ i ∈ S.

As we have already said above, in the proof of the source coding theorem, we
actually take S to be the set T S of “long enough” typical sequences. Here, “long
enough” means long enough to guarantee the existence of a default element def.
This is achieved by taking k bigger than some bound that we now make precise.
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Formalization of the Bound Above, we explained how to construct the required
source code. Technically, in the formal proof, it is also important to correctly
instantiate n and k (given the source rate r, the real ε and the distribution P), such
that k is “big enough” for the lemma φ_f to hold.

Let us define the following quantities:

Definition λ := min(r - H P, ε).
Definition δ := max(aep_bound P (λ / 2), 2 / λ).

k must satisfy δ ≤ k and k * r must be a natural. Such a k can be constructed using
the following lemma:

Lemma SrcDirectBound d D : {k | D ≤ (k+1) * (d+1)}.

{k | P k} is a standard Coq notation for existential quantification and can be read
as ∃k.P k as far as we are concerned.

Let us assume that the rate is r = num / (den+1). We denote by k’ the nat-
ural constructed via the above lemma by taking d to be the denominator den

and D to be δ. Then it is sufficient to take n equal to (k’+1) * num and k equal to
(k’+1) * (den+1).

Finally, we can instantiate the generic encoder and decoder functions by taking
the set S to be the set T S P k (λ / 2).

At this point, we have thoroughly explained how to instantiate the source code
required by the source coding theorem. The proof is completed by appealing to
the properties of typical sequences, in particular, lemmas Pr_TS_1 and TS_sup from
Sect. 3.2. The successive steps of the proof can be found in [2].

4.3 Source Coding Theorem—Converse Part

The converse of the Shannon’s source coding theorem shows that any source code
whose rate is smaller than the entropy of a source with distribution P over A has
non-negligible error rate:

Theorem source_coding_converse : ∀ ε, 0 < ε < 1 →
∀ r : Q+, 0 < r < H P →
∀ n k (sc : scode A k+1 n),

SrcRate sc = r →
SrcConverseBound P (num r) (den r) n ε ≤ k+1 →
ēsrc(P , sc) ≥ ε.

num r (resp. den r) is the numerator (resp. denominator) of r. The bound given
by SrcConverseBound gives a precise meaning to the claim that would otherwise be
informally summarized as “for k big enough”:

Definition λ := min((1 - ε) / 2, (H P - r) / 2).
Definition δ := min((H P - r) / 2, λ / 2).
Definition SrcConverseBound := max(max(

aep_bound P δ , - ((log δ) / (H P - r - δ ))), n / r).

The proof of the converse part of the source coding theorem is a bit simpler than
the direct part because no source code needs to be constructed. See [2] for the
detail of the proof steps.
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5 Formalization of Channels

As a first step towards the formalization of the channel coding theorem, the goal
of this section is to introduce the formalization of channels (Sect. 5.1), the formal-
ization of the channel capacity (Sect. 5.2), and the formalization of jointly typical
sequences (Sect. 5.4).

5.1 Discrete Memoryless Channel

A discrete channel with input alphabet A and output alphabet B is a (probability
transition) matrix that expresses the probability of observing an output symbol
given some input symbol:

W (b1|a1) W (b2|a1) · · · W (b|B||a1)

W (b1|a2) W (b2|a2) · · · W (b|B||a2)
...

...
. . .

...
W (b1|a|A|) W (b2|a|A|) · · · W (b|B||a|A|)


One way to view such a matrix is as a function that associates to each input
ai ∈ A a distribution of the corresponding outputs as the matrix row W (b1|ai),
W (b2|ai), . . . , W (b|B||ai). Therefore, we formalize channels as functions returning
distributions and denote the type A → dist B by CH1 (A, B).

In the second part of this article (starting at Sect. 8), it will sometimes be con-
venient to simplify the presentation by considering channels whose input alphabet
is not empty (other channels are not interesting anyway):

Record chan_star := mkChan {
c :> CH1 (A, B) ;
input_not_0 : 0 < |A| }.

We will denote chan_star A B by CH1
∗ (A, B).

The nth extension of a discrete channel is the generalization of a discrete channel
to the communication of n symbols:

Definition channel_ext n := n.-tuple A → dist [finType of n.-tuple B].

Hereafter, we denote channel_ext n by CHn.
A discrete memoryless channel (DMC) models channels whose inputs do not

depend on past outputs. It is the special case of the nth extension of a discrete
channel. Using a channel W, we define a DMC as c below (in a module DMC):

Definition f (ta : n.-tuple A) (tb : n.-tuple B) := Π_(i < n) W ta_i tb_i.
Lemma f0 (ta : n.-tuple A) (tb : n.-tuple B) : 0 ≤ f ta tb.
Lemma f1 (ta : n.-tuple A) : Σ_( tb | tb ∈ {: n.-tuple B}) f ta tb = 1.
Definition c : CHn := fun ta ⇒ makeDist (f0 ta) (f1 ta).

Hereafter, we denote DMC.c W n by W^n.

5.2 Mutual Information and Channel Capacity

Given a discrete channel W with input alphabet A and output alphabet B, and an
input distribution P, there are two important distributions: the output distribu-
tion and the joint distribution. The output distribution (notation: O(P , W)) is the
distribution of the outputs defined as d below (in a module OutDist):
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Definition f (b : B) := Σ_(a in A) W a b * P a. (∗ prob. mass fun. ∗)
Lemma f0 (b : B) : 0 ≤ f b.
Lemma f1 : Σ_(b in B) f b = 1.
Definition d : dist B := makeDist f0 f1.

The joint distribution (notation: J (P , w)) is the joint distribution of the inputs
and the outputs defined as d below (in a module JointDist):

Definition f (ab : A * B) := W ab.1 ab.2 * P ab.1. (∗ prob. mass fun. ∗)
Lemma f0 (ab : A * B) : 0 ≤ f ab.
Lemma f1 : Σ_(ab | ab ∈ {: A * B}) (W ab.1) ab.2 * P ab.1 = 1.
Definition d : dist [finType of A * B] := makeDist f0 f1.

The output entropy (resp. joint entropy) is the entropy of the output distri-
bution (resp. joint distribution), hereafter denoted by H(P ◦ W) (resp. H(P , W)).
The conditional entropy H(W | P) (the entropy of the output knowing the input) is
defined using the joint entropy:

Definition cond_entropy P (W : CH1 (A, B)) := H(P , W) - H P.

The mutual information (notation: I(P ; W)) is a measure of the amount of
information that the output distribution contains about the input distribution:

Definition mut_info P (W : CH1 (A, B)) := H P + H(P ◦ W) - H(P , W).

Finally, the information channel capacity is defined as the least upper bound of
the mutual information taken over all possible input distributions:

Definition ubound {S : Type} (f : S → R) (ub : R) := ∀ a, f a ≤ ub.
Definition lubound {S : Type} (f : S → R) (lub : R) :=

ubound f lub ∧ ∀ ub, ubound f ub → lub ≤ ub.
Definition capacity (W : CH1 (A, B)) cap := lubound (fun P ⇒ I(P ; W)) cap.

It may not be immediate why the maximum mutual information is called ca-
pacity. The goal of the channel coding theorem is to ensure that we can distinguish
between two outputs (actually sets of outputs because of potential noise), so as to
be able to deduce the corresponding inputs without ambiguity. For each input (of
n symbols), there are approximately 2nH(W |P ) typical outputs because H(W |P ) is
the entropy of the output knowing the input. On the other hand, the total number
of typical outputs is approximately 2nH(P◦W ). Since this set has to be divided
into sets of size 2nH(W |P ), the total number of disjoint sets is less than or equal
to 2n(H(P◦W )−H(W |P )) = 2nI(P ;W ).

5.3 Example: The Binary Symmetric Channel

We illustrate above definitions with a simple model of channel with errors: the
p-binary symmetric channel. In such a channel, the input and output symbols are
taken from the same alphabet A with only two symbols (hypothesis card_A below).
Upon transmission, the input is flipped with probability p (we assume that we are
working under the hypothesis p_01 : 0 ≤ p ≤ 1). We define a binary symmetric
channel as c below (in a module BSC):

Hypothesis card_A : |A| = 2.
Hypothesis p_01 : 0 ≤ p ≤ 1.
Definition f (a : A) := fun a’ ⇒ if a = a’ then 1 - p else p.
Lemma f0 (a a’ : A) : 0 ≤ f a a’.
Lemma f1 (a : A) : Σ_(a’ | a’ ∈ A) f a a’ = 1.
Definition c : CH1 (A, A) := fun a ⇒ makeDist (f0 a) (f1 a).



Formalization of Shannon’s Theorems 13

For convenience, we introduce the binary entropy function:

Definition H2 p := - p * log p - (1 - p) * log (1 - p).

For any input distribution P, we prove that the mutual information can actually
be expressed by only the entropy of the output distribution and the binary entropy
function:

Lemma IPW : I(P ; BSC.c card_A p_01) = H(P ◦ BSC.c card_A p_01) - H2 p.

The maximum of the binary entropy function on the interval ]0, 1[ is 1, fact
that we proved formally in Coq by appealing to the standard library for reals1:

Lemma H2_max : ∀ p, 0 < p < 1 → H2 p ≤ 1.

This fact gives an upper-bound for the entropy of the output distribution:

Lemma H_out_max : H(P ◦ BSC.c card_A p_01) ≤ 1.

The latter bound is actually reached for the uniform input distribution. Let us
first define uniform distributions for any non-empty fintype B as d below (in a
module Uniform):

Variable B : finType.
Variable n : nat.
Hypothesis Bnot0 : |B| = n+1.
Definition f (b : B) := 1 / |B|. (∗ prob. mass fun. ∗)
Lemma f0 b : 0 ≤ f b.
Lemma f1 : Σ_(b | b ∈ B) f b = 1.
Definition d : dist B := makeDist f0 f1.

The fact the upper-bound 1 is reached for the uniform input distribution is cap-
tured by the following lemma:

Lemma H_out_binary_uniform :
H(Uniform.d card_A ◦ BSC.c card_A p_01) = 1.

Above facts imply that the capacity of the p-binary symmetric channel can be
expressed by a simple closed formula:

Theorem BSC_capacity : capacity (BSC.c card_A p_01) (1 - H2 p).

5.4 Jointly Typical Sequences

Let us consider a channel W with input alphabet A, output alphabet B, and input
distribution P, and some ε. A jointly typical sequence is a pair of two sequences
such that: (1) the first sequence is typical for P, (2) the second sequence is typi-
cal for the output distribution O(P , W), and (3) the pair is typical for the joint
distribution J (P , W):

Definition jtyp_seq (t : n.-tuple (A * B)) :=
typ_seq P ε [tuple of unzip1 t] ∧
typ_seq (O(P , W)) ε [tuple of unzip2 t] ∧
typ_seq (J(P , W)) ε t.

We denote the set of jointly typical sequences by JT S. The number of jointly
typical sequences is upper-bounded by 2n(H(P,W )+ε):

Lemma JTS_sup : | JT S P W n ε| ≤ exp (n * (H(P , W) + ε)).

1 Modulo a slight extension of the corollary of the mean value theorem to handle derivability
of partial functions.
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T S J (P, W)n n ε

J T S P W n ε

Fig. 1 Lemma JTS_1

Now follow two lemmas that will be key to prove
the channel coding theorem.

With high probability (probability taken over the
tuple distribution of the joint distribution), the sent
input and the received output are jointly typical. In
other words, when they are very long, the jointly typ-
ical sequences coincide with the typical sequences of
the joint distribution (Fig. 1):

Lemma JTS_1 : JTS_1_bound P W ε ≤ n →
Pr (J(P , W)^n) (JT S P W n ε) ≥ 1 - ε.

The bound JTS_1_bound is defined as follows:

Definition JTS_1_bound P W ε :=
maxn (up (aep_bound P (ε / 3)))

(maxn (up (aep_bound (O(P , W)) (ε / 3)))
(up (aep_bound (J(P , W)) (ε / 3)))).

(up r is a function from the Coq standard library that returns the ceiling of r.)
This bound will later appear again in the proof of the channel coding theorem
(Sect. 6.3).

J T S P W n ε T S (Pn ×O(P, W)n) n ε

Fig. 2 Lemma non_typical_sequences

In contrast, the probability of the same
event (joint typicality) taken over the prod-
uct distribution of the inputs and the out-
puts considered independently tends to 0 as
n gets large (see also Fig. 2):

Lemma non_typical_sequences :
Pr ((P^n) × ((O(P , W))^n))

[set x | x ∈ JT S P W n ε] ≤
exp (- n * (I( P ; W) - 3 * ε)).

6 The Channel Coding Theorem

6.1 Formalization of a Channel Code

The purpose of a code is to transform the input of a channel (for practical use,
by adding some form of redundancy) so that the transmitted information can be
recovered correctly from the output despite of potential noise. Concretely, given
input alphabet A and output alphabet B, a (channel) code is (1) a set M of messages,
(2) an encoding function that turns a message into a codeword of n input symbols,
and (3) a decoding function that turns n output symbols back into a message (or
possibly fails):

Definition encT := {ffun M → n.-tuple A}.
Definition decT := {ffun n.-tuple B → option M}.
Record code := mkCode { enc : encT ; dec : decT }.

{ffun T →...} is the type of functions over a finite domain T.

The rate of a code is defined as follows:

Definition CodeRate (c : code) := log |M| / n.
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For convenience, we introduce the following type to characterize (channel) code
rates:

Record CodeRateType := mkCodeRateType {
rate :> R ;
_ : ∃ n d, 0 < n ∧ 0 < d ∧ rate = log (n) / d }.

So, a code rate is a pair of a real rate and a proof that rate has a specific form.
We now define the error rate. Given a channel W and a tuple of inputs ta, we

denote the distribution of outputs knowing that ta was sent by W^n (| ta). Using
this distribution, we first define the probability of decoding error for the code c

knowing that the message m was sent (notation: e(W, c) m):

Definition ErrRateCond (W : CH1 (A, B)) c m :=
Pr (W^n (| enc c m)) [set tb | dec c tb 6= Some m].

Finally, we define the error rate as the average probability of error for a code c

over channel W (notation: ēcha(W, c)):

Definition CodeErrRate (W : CH1 (A, B)) c :=
1 / |M| * Σ_(m in M) e(W, c) m.

6.2 Channel Coding Theorem—Statement of the Direct Part

The (noisy-)channel coding theorem is a theorem for reliable information trans-
mission over a noisy channel. The basic idea is to represent the original message by
a longer message. Let us illustrate this with an example. Assume the original mes-
sage is either 0 or 1 and is sent over a p-binary symmetric channel (see Sect. 5.3).
The receiver obtains the wrong message with probability p. Let us now consider
that the original message is 0 and encode 0 into 000 before transmission (in other
words, we use a repetition encoding with code rate 1/3). The receiver obtains a
message from the set {000, 001, 010, 100} with probability (1 − p)3 + 3p(1 − p)2

and it guesses the original message 0 by majority vote. The error probability
1− ((1− p)3 + 3p(1− p)2) is smaller than p.

One may guess that the smaller the code rate is, the smaller the error probabil-
ity becomes. Given a discrete channel W (with input alphabet A, output alphabet B,
and capacity cap—hypothesis capacity W cap), the channel coding theorem guaran-
tees the existence of an encoding function and a decoding function such that the
code rate is not small (yet smaller than the capacity cap) but is with negligible
error rate:

Theorem channel_coding (r : CodeRateType) : r < cap →
∀ ε, 0 < ε →
∃ n M (c : code A B M n), CodeRate c = r ∧ ēcha(W, c) < ε.

6.3 Channel Coding Theorem—Proof of the Direct Part

We formalize the classic proof by “random coding”. Before delving into the de-
tails, let us give an overview of the proof. To prove the existence of a code suit-
able for the channel coding theorem, we first fix the decoding function (function
jtdec below). We use jointly typical sequences to define this function. Then, we
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select a corresponding encoding function by checking all the possible ones. Se-
lection operates using a criterion about the average error rate of all the possi-
ble encoding functions, weighted according to a well-chosen distribution (lemma
good_code_sufficient_condition below). Last, we show that this average error rate
can be bounded using the properties of jointly typical sequences (lemmas JTS_1

and non_typical_sequences from Sect. 5.4).

Decoding by Joint Typicality We first fix the decoding function jtdec. Given the
channel output tb, jtdec looks for a codeword m such that the channel input f m is
jointly typical with tb. If a unique such codeword is found, it is declared to be the
sent codeword:

Definition jtdec P W ε (f : encT A M n) : decT B M n :=
[ffun tb ⇒ [pick m |

((f m, tb) ∈ JT S P W n ε) ∧
[∀ m’, (m’ 6= m) ⇒ ((f m’, tb) 6∈ J T S P W n ε)]]].

[ffun x ⇒...] is a SSReflect notation to define functions over finite domains.
[pick m | P m] is a SSReflect construct that picks up an element m satisfying the
predicate P.

Criterion for Encoder Selection We are looking for a channel code such that the
error rate can be made arbitrarily small. The following lemma provides a sufficient
condition for the existence of such a code:

Lemma good_code_sufficient_condition P W ε
(φ : encT A M n → decT B M n) :
Σ_(f : encT A M n) (Wght.d P f * ēcha(W , mkCode f (φ f))) < ε →
∃ f, ēcha(W , mkCode f (φ f)) < ε.

In this lemma, Wght.d P is the distribution of encoding functions defined as follows
(in a module Wght):

Definition pmf := fun f : encT A M n ⇒Π_(m in M) P^n (f m).
Lemma pmf0 (f : {ffun M → n.-tuple A}) : 0 ≤ pmf f.
Lemma pmf1 : Σ_(f | f ∈ {ffun M → n.-tuple A}) pmf f = 1.
Definition d : dist [finType of encT A M n] := makeDist pmf0 pmf1.

The Main Lemma Our theorem can be derived from the following technical lemma
by just proving the existence of appropriate ε0 and n. This lemma establishes that
there exists a set of messages M such that decoding by joint typicality meets the
above criterion for encoder selection:

0 Lemma random_coding_good_code ε : 0 ≤ ε →
1 ∀ (r : CodeRateType),
2 ∀ ε0, ε0_condition r ε ε0→
3 ∀ n, n_condition r ε0 n →
4 ∃ M : finType , 0 < |M| ∧ |M| = Int_part (exp (n * r)) ∧
5 let Jtdec := jtdec P W ε0 in
6 Σ_(f : encT A M n) (Wght.d P f * ēcha(W , mkCode f (Jtdec f))) < ε.

(Int_part x is a function from the Coq standard library that returns the integer part
of x.) In this lemma, the fact that the rate r is bounded by the mutual information
appears in the condition ε0_condition:

Definition ε0_condition r ε ε0 :=
0 < ε0 ∧ ε0 < ε / 2 ∧ ε0 < (I(P ; W) - r) / 4.
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The condition n_condition corresponds to the formalization of the restriction “for
n big enough” (we saw the bound JTS_1_bound in Sect. 5.4):

Definition n_condition r ε0 n :=
O < n ∧ - log ε0 / ε0 < n ∧
frac_part (exp (n * r)) = 0 ∧ JTS_1_bound P W ε0 ≤ n.

(frac_part x is a function from the Coq standard library that returns the fractional
part of x.)

Proof of the Main Lemma The first thing to observe is that by construction the
error rate averaged over all possible encoders does not depend on which message m

was sent:

Lemma error_rate_symmetry (P : dist A) (W : CH1 (A, B)) ε :
0 ≤ ε → let Jtdec := jtdec P W ε in
∀ m m’,
Σ_(f : encT A M n) (Wght.d P f * e(W, mkCode f (Jtdec f)) m) =
Σ_(f : encT A M n) (Wght.d P f * e(W, mkCode f (Jtdec f)) m’).

Therefore, the left-handside of the conclusion of the main lemma (line 6 of the
statement of the lemma random_coding_good_code above) can be rewritten by assuming
that the message 0 was sent:

Σ_(f : encT A M n) Wght.d P f * Pr (W^n (| f 0)) (not_preimg (Jtdec f) 0)

where not_preimg (Jtdec f) 0 is the set of outputs that do not decode to 0.

Let us write B f m for the set of outputs tb such that (f m, tb) ∈ JT S P W n ε.
Assuming that 0 was sent, a decoding error occurs when (1) the input and the
output are not jointly typical, or (2) when a wrong input is jointly typical with
the output. This can be expressed formally by the following set equality:

not_preimg (JTdec f) 0 =i (˜: B f 0) ∪
⋃
_(m : M | m 6= 0) B f m.

(= i is the SSReflect definition of set equality; ˜: is a SSReflect notation for
set complementation.)

Using the fact that the probability of a union is smaller that the sum of
the probabilities, the left-handside of the conclusion of the main lemma can be
bounded by the following expression:

Σ_(f : encT A M n)
Wght.d P f * Pr (W^n (| f 0)) (˜: B f 0) + (∗ (1) ∗)

Σ_(i | i 6= 0) Σ_(f : encT A M n)
Wght.d P f * Pr (W^n (| f 0)) (B f i) (∗ (2) ∗)

The first summand (1) can be rewritten into

Pr (J(P , W)^n) (˜: JT S P W n ε0).

which can be bounded using the lemma JTS_1 (Sect. 5.4). The second summand (2)
can be rewritten into

k * Pr ((P^n) × ((O( P , W ))^n)) [set x | x ∈ JT S P W n ε0].

which can be bounded using the lemma non_typical_sequences (Sect. 5.4). The
bounds ε0 and n have been carefully chosen so that the proof can be concluded
with symbolic manipulations. See [2] for details.
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7 The Converse of the Channel Coding Theorem: Proof Approach

The rest of this article is dedicated to the proof of the strong converse of the
channel coding theorem (the difference with the weak version was explained in the
introduction—Sect. 1). The proof we formalize is based on the so-called method

of types [9,10]. The method of types is an important technical tool in information
theory. It is a refinement of the approach of typical sequences (that we saw in
Sect. 3 and Sect. 5.4).

Here is the plan for the rest of the article:

1. In Sect. 8, we introduce the basic definitions of the method of types.
2. In Sect. 9, we introduce the notion of information divergence that is used

to quantify of how much two distributions differ from each other. This is a
preparatory step before applying the method of types.

3. In Sect. 10, we exploit the method of types to find an upper-bound for the
success rate of decoding.

4. In Sect. 11, we use the above upper-bound for the success rate of decoding to
prove the converse of the channel coding theorem.

5. The proof of the converse of the channel coding theorem actually makes use
of a technical lemma whose proof is the goal of Sect. 12. We have isolated this
lemma because its proof appeals to several results that are of broader interest
for the working information theorist.

8 The Method of Types: Basic Definitions

In this section, we introduce the basic definitions of the method of types (types,
joint types, conditional types, and typed codes) and prove their basic properties
(mostly cardinality properties). Of course, there is more to the method of types
than a set of definitions; we will see for example in Sect. 10.1 that conditional
types are used to partition the set of n.-tuple’s.

8.1 Types and Typed Tuples

8.1.1 The Set of Types: Definition and Cardinality Properties

Given a n.-tuple t over A and an element a ∈ A, N(a | t) denotes the number of
occurrences of a in t. Formally, we define it as follows:

Definition num_occ a t := count (pred1 a) t.

(pred1 a is a boolean function that returns true for input a and false otherwise.)

The type (or the empirical distribution) of a n.-tuple t over A is the distribu-
tion P such that P a is the relative frequency of a ∈ A in t, i.e., P a = N(a | t) / n.
Types are therefore the special case of distributions where all the probabilities
are rational numbers with the common denominator n. We take advantage of this
fact by defining types as the (finite) subtype of distributions with a natural-valued
function (with output bounded by n) that gives the numerators of the probabilities:
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Record type : predArgType := mkType {
d :> dist A ;
f : {ffun A → ’I_n+1} ;
d_f : ∀ a, d a = (f a) / n }.

(’I_(n+1) is the set of naturals {0, 1, . . . , n}.) Pn(A) denotes the (finite) type of types
corresponding to n.-tuples over A. We introduce a coercion so that a type is silently
treated as its underlying distribution (denoted by d in the definition above) when
this is required by the context. For example, we can write HP for the entropy of a
type P.

Note that Pn(A) is empty when A is empty or when n is 0. Otherwise, the set
of types is not empty and its cardinal is upper-bounded as follows:

Lemma type_not_empty n : 0 < |A| → 0 < |Pn+1(A)|.
Lemma type_counting : |Pn(A)| ≤ (n+1)ˆ|A|.

8.1.2 The Set of Typed Tuples: Definition and Basic Properties

Given a type P : Pn(A), we are also interested in the set of all the tuples that have
type P. Let us denote this set by T_{P}, defined formally as follows:

Definition typed_tuples :=
[set t : n.-tuple A | [∀ a, P a = N(a | t) / n] ].

For a type P : Pn(A), T_{P} is never empty:

Lemma typed_tuples_not_empty P : {t | t ∈ T_{P}}.

Drawing n times independently with distribution P from a finite set A, the
probability of obtaining the tuple t depends only on how often the various elements
of A occur in t. In particular with P : Pn(A), we have:

Lemma tuple_dist_type t : t ∈ T_{P} →
P^n t = Π_(a : A) P a ˆ (type.f P a).

(type.f is the field f of the Record type defined in Sect. 8.1.1.) As a direct conse-
quence, the probability of obtaining a typed tuple is constant and can be expressed
succinctly using the entropy of the type (seen as a distribution):

Lemma tuple_dist_type_entropy t : t ∈ T_{P} →
P^n t = exp (- n * H P).

From this, we can derive an upper-bound for the cardinal of typed tuples with
type P : Pn(A):

Lemma card_typed_tuples : | T_{ P } | ≤ exp (n * H P).

Observe that the set of typed tuples T_{P} is a subset of the set of perfect typical
sequences (we saw typical sequences in Sect. 3):

Lemma typed_tuples_are_typ_seq : T_{ P } ⊆ T S P n 0.

This fact coupled with the lemma TS_sup from Sect. 3.2 provides an alternative way
to prove card_typed_tuples.
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8.2 Joint Types and Conditional Types

8.2.1 Joint Types: Definition and Cardinality Properties

Given two finite sets A and B, the joint type of a pair of n.-tuples ta over A and tb

over B is the type of the sequence zip ta tb over (A×B)n, i.e., the channel W such that
for all a ∈ A and b ∈ B, W a b = N( (a, b) | zip_tuple ta tb ) / n (where zip_tuple is
the standard zip function of functional programming adapted to tuples). Hereafter,
we denote N( (a, b) | zip_tuple ta tb ) by N(a, b | ta, tb).

Similarly to types that specify the relative frequency of elements in a tuple,
joint types specify the relative frequency of pairs in a tuple of pairs. Also, similarly
to types that are a special case of distributions, joint types can be seen as a special
case of channels. In fact, joint types will be used as a way to approximate channels
in the proof of the converse of the channel coding theorem. We therefore define
joint types as a (finite) subtype of channels with a natural-valued function that
gives the relative frequency of pairs of elements:

Record jtype : predArgType := mkJtype {
c :> CH1

∗ (A, B) ;
f : {ffun A → {ffun B → ’I_n+1}} ;
sum_f : Σ_(a in A) Σ_(b in B) f a b = n ;
c_f : ∀ a b, c a b = let row := Σ_(b in B) f a b in

if row = O
then 1 / |B|
else (f a b) / row }.

The channel c is defined from the function f in such a way that each row of the
stochastic matrix is indeed a distribution (and so that the channel is well-defined).
We introduce a coercion so that a joint type is silently treated as its underlying
channel when this is required by the context. Let Pn(A , B) denote the type of
joint types.

The cardinal of the set of joint types Pn(A , B) is bounded as follows:

Lemma jtype_not_empty : 0 < |A| → 0 < |B| → 0 < |Pn (A , B)|.
Lemma bound_card_jtype : |Pn(A , B)| ≤ (n+1)ˆ(|A| * |B|).

8.2.2 Shells and Conditional Types: Definition and Cardinality Properties

Let us assume the joint type V : Pn(A , B). We say that the n-tuple tb has type V

given the n-tuple ta when for all a, b, we have (jtype.f V) a b = N(a, b | ta, tb) (re-
call that jtype.f is the natural-valued function from the definition of joint types—
Sect. 8.2.1). V.-shell ta denotes the set of tuples that have type V given ta. It is
called the V-shell of ta and is defined formally as follows:

Definition shell :=
[set tb : n.-tuple B | [∀ a, [∀ b, N(a, b |ta, tb) = (jtype.f V) a b]]].

We are given a type P : Pn(A) and a finite type B. The conditional types νˆ{B}(P)

are the joint types V of type Pn(A , B) such that for all the typed tuples ta ∈ T_{P},
the shell V.-shell ta is not empty:

Definition cond_type :=
[set V : Pn ( A , B ) | [∀ ta, (ta ∈ T_{P}) ⇒ (V.-shell ta 6= ∅ )]].
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So, by definition, the shells of typed tuples are never empty for conditional types.
This condition is actually equivalent to the following one:

Definition row_num_occ (V : Pn (A , B)) := ∀ ta, ta ∈ T_{P} →
∀ a, Σ_(b in B) (jtype.f V) a b = N(a | ta).

We often resort to this equivalent condition in our technical developments.
For a conditional type V ∈ νˆ{B}(P), the size of the shells of typed tuples

ta ∈ T_{P} is upper-bounded as follows:

Lemma card_shelled_tuples : | V.-shell ta | ≤ exp (n * H(V | P )).

8.3 Typed Codes: Definitions

A typed code is a code whose codewords are tuples typed w.r.t. some type P : Pn(A),
i.e., they all belong to T_{P}:

Record typed_code := mkTypedCode {
untyped_code :> code A B M n ;
typed_prop : ∀ m, enc untyped_code m ∈ T_{P} }.

Given a type P and a code c, there is a canonical way to construct a typed code.
We denote by P.-typed_code of c the typed code of c defined as follows. First, we
pick up a typed tuple def ∈ T_{P}. This is always possible because we have proved
that T_{P} is never empty (Sect. 8.1.2):

Definition def := sval (typed_tuples_not_empty P).

(sval retrieves the witness from a constructive proof of existence.) The P.-typed_code

of c is the same code as c except that the encoding function returns def when enc c m

is not typed by P:

Definition tcode_untyped_code := mkCode
[ffun m ⇒ if enc c m ∈ T_{P} then enc c m else def] (dec c).

Lemma tcode_typed_prop : ∀ m : M, (enc tcode_untyped_code) m ∈ T_{P}.
Definition tcode : typed_code B M P := mkTypedCode tcode_typed_prop.

Typed codes will be used in Sect. 10.1.

9 Information Divergence

The information divergence (or relative entropy) is a measure of the difference be-
tween two distributions. Let D(P || Q) denote the information divergence between
two distributions P and Q. It is defined as follows:

Definition div P Q := Σ_(a in A) P a * (log (P a) - log (Q a)).

In information theory, the information divergence can be infinite. This does not
happen as long as P is dominated by Q, i.e., when, for any a ∈ A, Q a = 0 implies
P a = 0. Hereafter, P � Q denotes the fact that P is dominated by Q, which is for-
mally defined as follows:

Definition dom_by (P Q : A → R) := ∀ a, Q a = 0 → P a = 0.

Under the hypothesis P � Q, we can prove for example that the divergence D(P || Q)

is positive:
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Lemma leq0div : 0 ≤ D(P || Q).

Given a distribution P and two channels V and W of type CH1 (A, B), D(V || W | P)

denotes the conditional divergence defined as follows:

Definition cdiv V W P := Σ_(a : A) P a * D(V a || W a).

Like the information divergence, the conditional divergence can be infinite. This
does not happen as long as, for any a ∈ A such that P a 6= 0, V a is dominated by
W a. We denote this property by V � W | P, which is formally defined as follows:

Definition cdom_by V W P := ∀ a, P a 6= 0 → (V a) � (W a).

Under the hypothesis V � W | P, we can for example prove that the conditional
divergence D(V || W | P) is positive:

Lemma leq0cdiv : 0 ≤ D(V || W | P).

Our formal definition of the conditional divergence D(V || W | P) does not agree
with the standard mathematical definition when V � W | P does not hold: we do
not model the fact that it should be infinite. However, it will turn out in the
following that the conditional divergence is always wrapped into an exponential.
Therefore, instead of resorting to extended reals, we introduce the following defi-
nition:

Definition exp_cdiv P V W := if V � W | P
then exp (- n * D(V || W | P))
else 0.

Here, P is a type, V is a conditional type, and W is a channel.
We now prove two technical results about the conditional divergence. Let us

consider two channels V and W of type CH1 (A, B) and a distribution P such that
V � W | P. It happens that the conditional divergence can also be expressed as the
information divergence of the joint distributions:

Lemma cdiv_is_div_joint_dist : D(V || W | P) = D(J(P , V) || J(P , W)).

Let us consider a channel W of type CH1 (A, B), a type P : Pn(A), and a condi-
tional type V ∈ νˆ{B}(P). Assume that V � W | P. Then, the probability of receiving
tb when ta is sent over a DMC with the probability transition matrix W is:

Lemma dmc_cdiv_cond_entropy :
W^n (tb | ta) = exp (- n * (D(V || W | P) + H(V | P))).

The conditional divergence is here wrapped into an exponential, so that this lemma
can be rephrased equivalently using the definition exp_cdiv introduced above:

Lemma dmc_exp_cdiv_cond_entropy :
W^n (tb | ta) = exp_cdiv P V W * exp (- n * H(V | P)).

10 The Method of Types: Upper-bound for the Success Rate of Decoding

In Sect. 6.1, we defined the error rate ēcha(W, c) of a code c over a channel W. The
success rate is defined similarly:

Definition s̄cha (W : CH1 (A, B)) (c : code A B M n) := 1 - ēcha(W , c).
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The goal of this section is to establish a suitable upper-bound of the success
rate s̄cha(W, c) for any code c. This is where the method of types is put at work.
Let us provide some intuition about the organization of this section. We will first
go through the intermediate step of finding an upper-bound of s̄cha(W, tc) in the
special case where tc is a typed code (typed codes have been defined in Sect. 8.3).
In the case of a typed code tc, we will see that s̄cha(W, tc) can be bounded by
an expression of the form (n + 1)|A||B| exp(−nL) where L is some positive value
(Sect. 10.1). Furthermore, we will see that, for any code c, there is a relation
between the success rate for c and the success rate for a typed version of c such that
s̄cha(W, c) can be bounded by an expression of the form (n+ 1)|A|+|A||B| exp(−nL)
(Sect. 10.2). Then it will become possible to show why the success rate of decoding
can be made arbitrarily small so as to prove the converse of the channel coding
theorem (Sect. 11).

10.1 Success Rate for Typed Codes

In order to upper-bound the success rate for typed codes, we express it as a sum
over conditional types. This partitioning is actually typical of the method of types;
we will therefore take some time to detail formal proofs in this section.

10.1.1 Partitioning using Types

We consider a code tc with the set of messages M such that tc is typed w.r.t. P of
type Pn(A). We will express the success rate of tc as a sum over conditional types,
more precisely, using traditional mathematical notations, as follows:

s̄cha(W, tc) =
∑

V ∈νB(P )

exp(−nD(V ||W |P ))

exp(−nH(V |P ))

|M |
∑
m∈M

|TV ((enc tc)(m)) ∩ (dec tc)−1(m)|

︸ ︷︷ ︸
success factor tc V

Each term of this sum is expressed using an expression that we abbreviate as
success_factor tc V (where V is a conditional type):

Definition success_factor tc V :=
exp (- n * H(V | P)) / |M| *
Σ_ (m : M) | (V.-shell ((enc tc) m )) ∩ ((dec tc) @ˆ-1: [set Some m]) |.

(f @ˆ-1: A is the preimage of A under f.) Using this definition and expressing the
exponential of the conditional divergence using exp_cdiv from the previous section
(Sect. 9), we prove that the success rate of a typed code tc typed w.r.t. P can be
written as follows:

Lemma typed_success tc : s̄cha(W, tc) =
Σ_ (V | V ∈ νˆ{B}(P)) exp_cdiv P V W * success_factor tc V.

Proof First, we express s̄cha(W, tc) in terms of the arithmetic average of the prob-
ability of decoding success knowing that a particular message m was sent. This is
made possible by the following lemma, that follows directly from the definition
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of the error rate (Sect. 6.1), and that holds independently of whether the code is
typed or not:

Lemma success_decode (W : CH1 (A, B)) (c : code A B M n) :
s̄cha(W, c) = 1 / |M| *
Σ_(m : M) Σ_(tb | dec c tb = Some m) (W^n (| enc c m)) tb.

Our goal can therefore be expressed as an equality between two sums over mes-
sages M. We rearrange our goal on both sides of the equality so as to put Σ_(m : M)

the most outwards, and then look at the summands below Σ_(m : M). Our goal now
boils down to check whether the following holds for any m:

Σ_(tb | (dec tc) tb = Some m) W^n (tb | ((enc tc) m)) =
Σ_(V | V ∈ νˆ{B}(P))

exp_cdiv P V W *
| V .-shell ((enc tc) m) ∩ dec tc @ˆ-1: [set Some m] | *
exp (- n * H(V | P))

The left-handside is a sum over the tuples tb of type n.-tuple B. It happens that the
latter set can be partitioned according to conditional types. More precisely, given
a tuple ta of type P : Pn(A) and a finite set B, the set of shells V.-shell ta where V is
a conditional type νˆ{B}(P) partitions the set n.-tuple B. The partition in question
is the set of sets formally written (fun V ⇒ V.-shell ta) @: νˆ{B}(P) (f @: A is the
image of A by f). Using the fact that the latter set of sets is indeed a partition, we
prove the following lemma:

Lemma sum_tuples_ctypes f F :
Σ_(tb | F tb) f tb =
Σ_(V | V ∈ νˆ{B}(P)) Σ_ (tb in V.-shell ta | F tb) f tb.

We use this lemma to change the summation Σ_(tb | ...) on the left-handside of
our goal to a summation Σ_(V | V ∈ νˆ{B}(P)) and simplify our goal by looking at
the summands on both sides. For any message m and conditional type V, we now
want to prove that:

exp (- n * H(V | P)) * exp_cdiv P V W = W^n (tb | ((enc tc) m))

This actually corresponds to lemma dmc_exp_cdiv_cond_entropy that we saw at the
end of Sect. 9.

10.1.2 Bounding Using Types

In the previous section, we rewrote the success rate of decoding for a typed code
as a sum over conditional types. Each summand was expressed using success_factor

and what we prove now is that the latter can actually by upper-bounded as follows:

Definition success_factor_bound M V P :=

exp(- n * |+ log (|M|) / n - I(P ; V) |).
Lemma success_factor_ub M V P tc :

success_factor tc V ≤ success_factor_bound M V P.

|+r | is r if r is positive and 0 otherwise. The joint type V is actually a conditional
type (i.e., V ∈ νˆ{B}(P)).

Proof When log |M| / n < I(P ; V), it is sufficient to prove:

Lemma success_factor_bound_part1 : success_factor tc V ≤ 1.
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This is a consequence of the lemma card_shelled_tuples (Sect. 8.2.2).

In the case where log |M| / n ≥ I(P ; V), we rewrite the goal as follows:

success_factor tc V ≤ exp (n * I(P ; V)) / |M|

which simplifies to:

Σ_(m : M) |(V .-shell ((enc tc) m)) ∩ dec tc @ˆ-1: [set Some m]| ≤
exp (n * H(P ◦ V))

Under the hypothesis V ∈ νˆ{B}(P), it happens that H(P ◦ V) = H(O(V)) where O(V)
is the type of type Pn(B) corresponding to the following distribution (defined in a
module OutType):

Definition f := fun b ⇒ (Σ_(a in A) (jtype.f V) a b) / n.
Lemma f0 (b : B) : 0 ≤ f b.
Lemma f1 : Σ_(b in B) f b = 1.
Definition d : dist B := makeDist f0 f1.

Using the lemma card_typed_tuples (Sect. 8.1.2), we can therefore change the goal
to:

Σ_(m : M) |(V .-shell ((enc tc) m)) ∩ dec tc @ˆ-1: [set Some m]| ≤
|T_{O(V)}|

We observe that V-shells are subsets of the tuples typed by the output type,
i.e., for any tuple ta, we have:

V.-shell ta ⊆ T_{ O(V) }.

The goal can therefore be changed as follows:

Σ_(m : M) |T_{O(V)} ∩ dec tc @ˆ-1: [set Some m]| ≤ |T_{O(V)}|

Since the sets T_{O(V)}∩(dec tc @ˆ-1: [set Some m]) are pairwise disjoint, the sum of
cardinals can be changed to the cardinal of the union:

|
⋃
_(m : M) T_{O(V)} ∩ (dec tc @ˆ-1: [set Some m])| ≤ |T_{O(V)}|

This concludes the proof because we are comparing the cardinal of a set with the
cardinal of a union of its subsets.

The lemma above gives an upper-bound for success_factor tc V. From this lemma,
we can derive an upper-bound for the success rate s̄cha(W, tc), because the latter
can be expressed using success_factor tc V (previous section, Sect. 10.1.1).

Let V0 be some joint type Pn(A , B). Such a joint type always exists since the
set of joint types is never empty (Sect. 8.2.1). Let Vmax be the argument of the
maximum of the function exp_cdiv_bound defined as follows:

fun V ⇒ exp_cdiv P V W * success_factor_bound M V P

Then the success rate for a typed code tc typed w.r.t. P can be upper-bounded as
follows:

Lemma typed_success_bound :
let Vmax := arg_rmax V0 [pred V | V ∈ νˆ{B}(P)] exp_cdiv_bound in
s̄cha(W, tc) ≤ (n+1)ˆ(|A| * |B|) * exp_cdiv_bound Vmax.
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10.2 Upper-bound of the Success Rate for any Code

We can use the upper-bound of the success rate for typed codes to upper-bound
the success rate for any code.

Let c be some code. Let Pmax by the type that maximizes the success rate of
the typed codes of c (the typed codes of a code were defined in Sect. 8.3). Let
P0 be some default type that we know always exists because the set of types is
never empty (Sect. 8.1.1). The success rate of the code c can be upper-bounded
as follows:

Lemma success_bound :
let Pmax := arg_rmax P0 predT (fun P ⇒ s̄cha(W, P.-typed_code c)) in
s̄cha(W, c) ≤ (n+1)ˆ|A| * s̄cha(W, Pmax.-typed_code c).

Proof Using the lemma type_counting (Sect. 8.1.1), we rewrite our goal as follows:

s̄cha(W, c) ≤ |Pn(A)| * s̄cha(W, Pmax.-typed_code c)

or, equivalently, if we express the cardinal as a sum:

s̄cha(W, c) ≤ Σ_(P : Pn(A)) s̄cha(W, P.-typed_code c)

We change the expression of the success rate on the left-handside of our goal by
using the lemma success_decode from the previous section (Sect. 10.1.1):

1 / |M| * (Σ_(m : M) Σ_(tb | dec c tb = Some m) W^n (tb | enc c m)) ≤
Σ_(P : Pn(A)) s̄cha(W, P.-typed_code c)

The left-handside is a sum over the messages m of type M. It happens that the latter
set can be partitioned according to types. More precisely, given a code c, the set
of non-empty sets of messages [set m | enc c m ∈ T_{P}], with P ranging over types,
partitions the set of messages M. We define the sets of messages above as follows:

Definition enc_pre_img c (P : Pn(A)) := [set m | enc c m ∈ T_{P}].

The partition in question is the set of sets formally written as follows:

Definition enc_pre_img_partition :=
enc_pre_img @: [set P in Pn(A) | enc_pre_img P 6= ∅ ].

(Recall that f @: A is the image of A by f.) Using the fact that the latter is indeed
a partition, we prove the following lemma:

Lemma sum_messages_types f : Σ_(m : M) (f m) =
Σ_(P : Pn(A)) Σ_(m | m ∈ enc_pre_img c P) f m.

We use this last lemma to rewrite the left-handside of our goal so that it reduces
to check that we have, for any P : Pn(A):

1 / |M| * (Σ_(m | m ∈ enc_pre_img c P)
Σ_(tb | dec c tb = Some m) W^n (tb | enc c m)) ≤

s̄cha(W, P.-typed_code c)

We again use the lemma success_decode from the previous section (Sect. 10.1.1) but
this time to change the expression of the success rate on the right-handside:

Σ_(m | m ∈ enc_pre_img c P) Σ_(tb | dec c tb = Some m)
W^n (tb | enc c m) ≤

Σ_(m : M) Σ_(tb | dec (P.-typed_code c) tb = Some m)
W^n (tb | enc (P.-typed_code c) m)
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We observe that, when m ∈ enc_pre_img c P, we have the following equality:

W^n (tb | enc c m) = W^n (tb | enc (P.-typed_code c) m)

This observation coupled with the fact that dec c is identical to dec (P.-typed_code c)

means that the left-handside can be equivalently expressed using dec (P.-typed_code c).
This concludes the proof because the left-handside is a sum over a subset of the
right-handside.

11 The Channel Coding Theorem—Converse Part

11.1 Channel Coding Theorem—Statement of the Converse Part

Given a discrete channel W of type CH1
∗ (A, B) with capacity cap, the converse of

the channel coding theorem says that any code whose code rate is greater than
the capacity cap has negligible success rate. Formally, let minRate be a rate greater
than the capacity (minRate > cap). Then, for any ε such that 0 < ε, there is a block
length n0 above which the success rate of any code with rate greater than minRate

is smaller than ε:

Theorem channel_coding_converse : ∃ n0 ,
∀ n M (c : code A B M n),

0 < |M| → n0 < n → minRate ≤ CodeRate c → s̄cha(W, c) < ε.

11.2 Channel Coding Theorem—Proof of the Converse Part

We prove the converse of the channel coding theorem using an intermediate, more
general lemma. We are given a channel W of type CH1

∗ (A, B) with capacity cap. We
show that, for any minRate > cap, there is a strictly positive ∆ such that the success
rate can be upper-bounded as follows:

Lemma channel_coding_converse_gen : ∃ ∆, 0 < ∆ ∧ ∀ n’,
let n := n’+1 in ∀ M (c : code A B M n), 0 < |M| →

minRate ≤ CodeRate c →
s̄cha(W, c) ≤ (n+1)ˆ(|A| + |A| * |B|) * exp (- n * ∆).

Proof First, we instantiate the existential variable with a strictly positive ∆ that
is “small enough”, i.e., such that, for any distribution P and channel V satisfying
V � W | P, we have:

∆ ≤ D(V || W | P) + |+ minRate - I(P ; V) | (∗ (3) ∗)

The existence of such a strictly positive real ∆ is established by an intermedi-
ate lemma (namely, error_exponent_bound) whose proof is deferred to Sect. 12.4 be-
cause it requires new concepts and technical lemmas. Indeed, to make sure that
such a strictly positive ∆ exists, we investigate in particular the situation where
D(V || W | P) is 0. For this purpose, it is better to be able to evaluate numerically
the resemblance between V and W. Unfortunately, the value of the information di-
vergence is not a good indication because it is not a distance. This is why we will
introduce the variation distance and Pinsker’s inequality in Sect. 12.2.

We use the lemma success_bound from the previous section (Sect. 10.2) to upper-
bound s̄cha(W, c) to transform our goal to:
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s̄cha(W, tc) ≤ (n+1)ˆ(|A| * |B|) * exp (- n * ∆)

where tc is the Pmax.-typed_code of c with Pmax the argument of the maximum as
defined in Sect. 10.2.

Now that we have made appear the success rate of the typed code tc, we can
upper-bound s̄cha(W, tc) using the lemma typed_success_bound (Sect. 10.1.2) and
transform our goal to:

exp_cdiv Pmax Vmax W * success_factor_bound M Vmax Pmax ≤ exp (- n * ∆)

where Vmax is the argument of the maximum as defined in Sect. 10.1.2.
We develop the expressions of exp_cdiv and success_factor_bound to simplify our

goal to:

exp (- n * D(Vmax || W | Pmax)) *

exp (- n * |+ log |M| / n - I(Pmax ; Vmax) |) ≤ exp (- n * ∆)

The conclusion follows from the upper-bound of ∆ given by (3).

Proof (of the converse of the channel coding theorem) We use the intermediate lemma
channel_coding_converse_gen proved just above to obtain ∆ such that, for any code c

of code rate larger than minRate, we have:

s̄cha(W, c) ≤ (n+1)ˆ(|A| + |A| * |B|) * exp (- n * ∆) (∗ (4) ∗)

We instantiate n0 in the statement of the converse of the channel coding theorem
with 2ˆK * (K+1)! / (∆ * ln 2)ˆ(K+1) / ε where K is |A| + |A| * |B|. Using (4), the
goal then boils down to:

(n+1)ˆK * exp (- n * ∆) < ε

for any n such that n0 < n. The conclusion follows from symbolic manipulations
using the following lower-bound of the exponential function:

Lemma exp_lb n x : 0 ≤ x → xˆn / n ! ≤ exp x.

12 Error Exponent Bound for the Channel Coding Theorem

The goal of this section is to prove the lemma error_exponent_bound that we used in
the proof of the converse of the channel coding theorem (Sect. 11.2). We provide
this proof for the sake of completeness and isolate it in this section because it
is technical and requires intermediate lemmas that are of general interest for the
working information theorist. For example, the log-sum inequality (Sect. 12.1) is
used to prove various convexity results [8, Sect. 2.7] and the variation distance
(Sect. 12.2) has further applications in statistics [8, Sect. 11].

12.1 The log-sum Inequality

Let f and g be two positive real-valued functions with domain A such that f is
dominated by g. Let also C be a subset of A. To simplify the presentation in this
section, we denote Σ_(a | a ∈ C) f a by Σ_{C} f (and similarly for other sets and
functions). The log-sum inequality is the following inequality:
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Definition log_sum_stmt A (C : {set A}) (f g : A → R+) :=
f � g →
Σ_{C} f * log (Σ_{C} f / Σ_{C} g) ≤ Σ_(a | a ∈ C) f a * log (f a / g a).

Lemma log_sum A (C : {set A}) (f g : A → R+) : log_sum_stmt C f g.

Proof Let D be the subset of C on which f is strictly positive, i.e., D is defined as
[set a | a ∈ C ∧ f a 6= 0]. We observe on the one hand that:

Σ_{C} f * log (Σ_{C} f / Σ_{C} g) ≤ Σ_{C} f * log (Σ_{C} f / Σ_{D} g)

and on the other hand that:

Σ_(a | a ∈ D) f a * log (f a / g a) ≤ Σ_(a | a ∈ C) f a * log (f a / g a)

To prove the log-sum inequality it is thus sufficient to prove the following inequal-
ity:

Σ_{D} f * log (Σ_{D} f / Σ_{D} g) ≤ Σ_(a | a ∈ D) f a * log (f a / g a).

Since the latter is the log-sum inequality in the special case where f is strictly
positive, the log-sum inequality can therefore be derived from the following lemma:

Lemma log_sum1 {A : finType} (C : {set A}) (f g : A → R+) :
(∀ a, a ∈ C → 0 < f a) → log_sum_stmt C f g.

To prove log_sum1, we can actually make a number of simplifying assumptions. We
can assume that C is not empty, that g is never 0, and that Σ_{C} f and Σ{C} g

are not 0. We can even assume without loss of generality that Σ_{C} f = Σ_{C} g.
Indeed, suppose that log_sum1 holds when Σ_{C} f = Σ_{C} g. Then, for the general
case, we define k as Σ_{C} f / Σ_{C} g, so that the conclusion of log_sum1 amounts
to:

Σ_{C} f * log k ≤ Σ_(a | a ∈ C) f a * log (f a / g a) (∗ (5) ∗)

Since Σ_(a | a ∈ C) k * g a = Σ_{C} f, we can use the without-loss-of-generality hy-
pothesis to derive:

Σ_{C} f * log (Σ_{C} f / Σ_(a | a ∈ C) k * g a) ≤
Σ_(a | a ∈ C) f a * log (f a / (k * g a))

whose left-handside is equal to 0, so that it can be rewritten as:

0 ≤ Σ_(a | a ∈ C) f a * log (f a / g a) - f a * log k

from which the inequality (5) is a consequence.

Let us now prove log_sum1 in the particular case where Σ_{C} f = Σ_{C} g, i.e.:

0 ≤ Σ_(a | a ∈ C) f a * log (f a / g a)

This can be equivalently rewritten as follows, using the natural logarithm ln:

Σ_(a | a ∈ C) f a * (1 - g a / f a) ≤
Σ_(a | a ∈ C) f a * ln (f a / g a)

which is a consequence of the following lemma, whose proof follows by a standard
analytic argument:

Lemma ln_id_cmp : ∀ x, 0 < x → ln x ≤ x - 1.
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12.2 Variation Distance and Pinsker’s Inequality

As we hinted at when proving the converse of the channel coding theorem (see
Sect. 11.2), it is useful to introduce, in addition to the information divergence, a
distance to evaluate numerically the resemblance between two distributions. We
denote the variation distance of two distributions P and Q by d(P, Q), defined formally
as follows:

Definition var_dist (P Q : dist A) := Σ_(a : A) Rabs (P a - Q a).

Pinsker’s inequality establishes a relation between the variation distance and
the information divergence. It shows that when the information divergence is close
to 0, then so is the variation distance, and therefore the two distributions are
similar.

To prove Pinsker’s inequality, we will first prove the special case of distributions
over sets with two elements (Sect. 12.2.2) and then generalize this result to any
distribution (Sect. 12.2.3). This generalization is achieved using an intermediate
lemma called the partition inequality (Sect. 12.2.1).

12.2.1 The Partition Inequality

Before proving Pinsker’s inequality, we prove an intermediate lemma that relates
the information divergence of any two distributions P and Q with distributions over
the set of booleans built after P and Q.

We consider a finite set A and a partition of it into two sets A_0 and A_1. In other
words, we have the following hypotheses: A_0 ∩ A_1 = ∅ and A_0 ∪ A_1 = [set: A]. Let
P and Q be two distributions over A. Using P and A, we construct a distribution P_A

that associates to the boolean false (denoted by 0) the sum Σ_(a in A_0) P a and
to the boolean true (denoted by 1) the sum Σ_(a in A_1) P a. Q_A is constructed
similarly. Then, when P � Q holds, we have:

Lemma partition_inequality : D(P_A || Q_A) ≤ D(P || Q).

Proof We develop the right-handside D(P || Q) to obtain the goal:

D(P_A || Q_A) ≤ Σ_(a | a ∈ A_0) P a * log (P a / Q a) +
Σ_(a | a ∈ A_1) P a * log (P a / Q a)

We use the log-sum inequality (Sect. 12.1) to further low down the right-handside
and obtain, after simplification:

D(P_A || Q_A) ≤ P_A 0 * log (P_A 0 / Q_A 0) + P_A 1 * log (P_A 1 / Q_A 1)

We now develop the left-handside D(P_A || Q_A) to obtain the goal:

P_A 0 * (log (P_A 0) - log (Q_A 0)) + P_A 1 * (log (P_A 1) - log (Q_A 1)) ≤
P_A 0 * log (P_A 0 / Q_A 0) + P_A 1 * log (P_A 1 / Q_A 1)

Finally, we perform a case analysis w.r.t. P_A 0, Q_A 0, P_A 1, and Q_A 1. Suppose
for example that P_A i > 0 and Q_A i > 0 for any i ∈ {0, 1}, then the goal can be
simplified to:

P_A 0 * (log (P_A 0) - log (Q_A 0)) + P_A 1 * (log (P_A 1) - log (Q_A 1)) ≤
P_A 0 * (log (P_A 0) - log (Q_A 0)) + P_A 1 * (log (P_A 1) - log (Q_A 1))

that trivially holds. The other cases where some of the P_A i or Q_A i are 0 are
similar, possibly resorting to the hypothesis P � Q to establish a contradiction.
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12.2.2 Pinsker’s Inequality for Distributions over Sets with Two Elements

Let us first prove Pinsker’s inequality in the special case of distributions over sets
with two elements. We are given a finite type A with only two elements a_0 and a_1.
Let p be a probability and P be the distribution such that P a_0 is 1 - p and P a_1

is p. Using the probability q, we construct the distribution Q similarly to P. If we
assume that P � Q, then we have:

Lemma Pinsker_2_inequality : 1 / (2 * ln 2) * d(P , Q)ˆ2 ≤ D(P || Q).

Proof We consider the following function:

q 7→ p log
p

q
+ (1− p) log

1− p

1− q
− 4c(p− q)2.

Using the standard Coq library for reals, this function can be written as the
following Coq function pinsker_fun with parameters p, c, and q:

Definition pinsker_fun p c := fun q ⇒
p * log (div_fct (fun _ ⇒ p) id q) +
(1 - p) * log (div_fct (fun _ ⇒ 1 - p) (fun q ⇒ 1 - q) q) -
4 * c * comp (fun x ⇒ xˆ2) (fun q ⇒ p - q) q.

It happens that the lemma we are trying to prove is in fact:

0 ≤ pinsker_fun p (1 / (2 * ln 2)) q

The latter inequality derives from the following inequality, proved by analyzing
the function pinsker_fun:

Lemma pinsker_fun_pos c : 0 ≤ c ≤ 1 / (2 * ln 2) → 0 ≤ pinsker_fun p c q.

12.2.3 Pinsker’s Inequality in the General Case

We now generalize Pinsker’s inequality for distributions over sets with two elements
(Sect. 12.2.2) to any distribution using the partition inequality (Sect. 12.2.1).

Pinsker’s inequality in the general case can be stated as follows. For two dis-
tributions P and Q such that P � Q, the following inequality holds:

Lemma Pinsker_inequality : 1 / (2 * ln 2) * d(P , Q)ˆ2 ≤ D(P || Q).

Proof We consider the partition of the set A into the two sets [set a | Q a ≤ P a]

and [set a | P a < Q a]. Based on this partition, we use the partition inequality
(lemma partition_inequality, Sect. 12.2.1) with the distributions P and Q to obtain
the following inequality:

D(P_A || Q_A) ≤ D(P || Q)

Then, Pinsker’s inequality can actually be reformulated as follows:

1 / (2 * ln 2) * d(P , Q)ˆ2 ≤ D(P_A || Q_A)

On another hand, we can establish that d(P , Q) = d(P_A , Q_A). In consequence,
Pinsker’s inequality in the general case derives from the Pinsker’s inequality for
distributions over sets with two elements (lemma Pinsker_2_inequality, Sect. 12.2.2).
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12.3 Distance from the Mutual Information of one Channel to Another

The goal of this section is to find an upper-bound for the distance from the mutual
information of one channel to another.

First, we establish an upper-bound for the distance from the joint entropy of
one channel V to another channel W of type CH1 (A, B). Let us assume an input
distribution P such that V � W | P. Let xlnx be the Coq definition of the function
x 7→ x ln(x) . Then, if we assume D(V || W | P) ≤ (exp (-2))ˆ2 / 2, we have:

Lemma joint_entropy_dist_ub : Rabs (H(P , V) - H(P , W)) ≤
1 / ln 2 * |A| * |B| * (- xlnx (sqrt (2 * D(V || W | P)))).

Proof The entropy can be expressed alternatively by using the function xlnx:

Lemma xlnx_entropy P : H P = 1 / ln 2 * (- Σ_(a : A) xlnx (P a)).

We use this alternative expression of the entropy to transform our goal to:

Rabs (- Σ_(x : [finType of A * B]) xlnx (J(P , V) x)
+ Σ_(x : [finType of A * B]) xlnx (J(P , W) x)) ≤

|A| * |B| * (- xlnx (sqrt (2 * D(V || W | P))))

Then, we use the triangular inequality to move the sums the most outwards on
the left-handside:

Σ_(x : [finType of A * B]) Rabs (- xlnx (V x.1 x.2 * P x.1)
+ xlnx (W x.1 x.2 * P x.1)) ≤

|A| * |B| * (- xlnx (sqrt (2 * D(V || W | P))))

It is now sufficient to prove for any a ∈ A and b ∈ B that:

Rabs (xlnx (W a b * P a) - xlnx (V a b * P a)) ≤
- xlnx (sqrt (2 * D(V || W | P)))

We can simplify the latter goal by getting rid of logarithms:

Rabs (W a b * P a - V a b * P a) ≤ sqrt (2 * D(V || W | P))

thanks to the following property of the xlnx function:

Lemma Rabs_xlnx a x y : 0 ≤ a ≤ exp (-2) →
0 ≤ x ≤ 1 → 0 ≤ y ≤ 1 → Rabs (x - y) ≤ a →
Rabs (xlnx x - xlnx y) ≤ - xlnx a.

(This is why the hypothesis D(V || W | P) ≤ exp (-2) ˆ 2 * / 2 is required.) On an-
other hand, the following relation with the variation distance between the joint
distributions holds trivially:

Rabs (W a b * P a - V a b * P a) ≤ d(J(P , V), J(P , W))

and we also know that the conditional divergence is equal to the information
divergence of the joint distributions (lemma cdiv_is_div_joint_dist, Sect. 9). Our
goal therefore reduces to:

d(J(P , V), J(P , W)) ≤ sqrt (2 * D(J(P , V) || J(P , W)))

The latter is proved using Pinsker’s inequality, which was the topic of the previous
section (Sect. 12.2).
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We just found an upper-bound for the distance Rabs (H(P , V) - H(P , W)) (joint
entropy). By a similar argument, we can find a similar upper-bound for the dis-
tance Rabs (H(P ◦ V) - H(P ◦ W)) (output entropy). Both results can be combined
to obtain an upper-bound for the distance from the mutual information of one
channel to another.

Let us assume two channels V and W of type CH1 (A, B). Let P be an input dis-
tribution such that D(V || W | P) ≤ (exp (-2))ˆ2 / 2 and V � W | P. Then we have:

Lemma mut_info_dist_ub : Rabs (I(P ; V) - I(P ; W)) ≤
1 / ln 2 * (|B| + |A| * |B|) * (- xlnx (sqrt (2 * D(V || W | P)))).

12.4 Error Exponent Bound

We finally prove the existence of a strictly positive lower-bound ∆ for use in the
proof of the converse of the channel coding theorem (Sect. 11.2):

Lemma error_exponent_bound : ∃ ∆, 0 < ∆ ∧
∀ P : dist A, ∀ V : CH1 (A, B),

V � W | P → ∆ ≤ D(V || W | P) + |+ minRate - I(P ; V) |.

Proof The crux of the proof is to carefully instantiate ∆ such that one can exploit
the upper-bound found in the previous section (Sect. 12.3). Concretely, we first
instantiate ∆ with min((minRate - cap) / 2, xˆ2 / 2) where x is a strictly positive
real such that:

- xlnx x < min(exp (-2), gamma) (∗ (6) ∗)

where gamma is defined as:

1 / (|B| + |A| * |B|) * ((ln 2) * (minRate - cap) / 2)

(We use the continuity of xlnx to obtain such an x.)
Then, let us assume (otherwise, the conclusion follows easily) that:

D(V || W | P) < ∆ (∗ (7) ∗)

Under this hypothesis, to prove our goal it is now sufficient to prove:

(minRate - cap) / 2 ≤ minRate - I(P ; V)

Thanks to (7), we can prove D(V || W | P) ≤ (exp (-2))ˆ2 / 2 and therefore use the
lemma mut_info_dist_ub from the previous section (Sect. 12.3) to change I(P ; V) to
an expression using the capacity cap:

(minRate - cap) / 2 ≤ minRate -
(cap + 1 / ln 2 * (|B| + |A| * |B|) * (- xlnx (sqrt (2 * D(V || W | P)))))

Using a few symbolic manipulations, we can show that to prove the latter goal it
is actually sufficient to prove:

- xlnx (sqrt (2 * D(V || W | P))) ≤ gamma

Thanks to (6), to prove the latter goal it is sufficient to prove:

xlnx x ≤ xlnx (sqrt (2 * D(V || W | P)))

By (7), we know that sqrt (2 * D(V || W | P)) < x. The conclusion follows by the
fact that xlnx is decreasing on the interval [0, 1/e].
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13 Formalization Overview

The complete formalization consists of 12, 438 lines of Coq scripts; terseness owes
much to the concise tactic language of SSReflect and its rich library. Table 1
provides a detailed account of the formalization in terms of script files. We have
separated formalization of information theory from more mundane addenda to
the Coq and SSReflect standard libraries. We rely in particular on SSReflect’s
canonical big operators, finite types, finite sets, and functions over finite domains,
and on the standard Coq library for reals. To help navigation through the script
files, we indicate the related sections in the article. The count in terms of lines
of code distinguishes between specifications and proofs, and is provided by the
standard coqwc command.

14 Related Work

The formalization of Shannon’s theorems in this article as well as the formaliza-
tion of advanced information-theoretic concepts (jointly typical sequences, chan-
nels, codes, the method of types, the error exponent bound, etc.) are new. As for
the more basic concepts of information theory, one can find alternative formaliza-
tions in the literature. Based on the seminal work by Hurd [15], Coble formalizes
(conditional) entropy and (conditional) mutual information [6], defines a notion of
information leakage, and applies it to the verification of privacy properties of a pro-
tocol. Mhamdi et al. provides a formalization of the AEP and presents the source
coding theorem as a potential application [17]; in other words, our work can be
seen as the direct continuation of their work, though in a different proof-assistant.

For the purpose of this article, we formalized finite probability using SSRe-

flect. As we have hinted at several times, this formalization was important to
take advantage of SSReflect’s library, and, in particular, of its canonical big op-
erators [5]. For example, the genericity of SSReflect’s canonical big operators was
instrumental in the direct part of the channel coding theorem (Sect. 6.3) where
we need sums over various kinds of objects (tuples, encoding functions, etc.) and
with different operations (numerical addition, set union, etc.). We limit ourselves
to finite probability because it is enough for our purpose (as for the information
theory formalized by Coble [6]). Audebaud and Paulin-Mohring provide an alter-
native formalization of probabilities in Coq but that is biased towards verification
of randomized algorithms [3]. Hasan et al. formalize probability theory on more
general grounds in the HOL proof-assistant: they formalize the expectation prop-
erties [13] (this is also based on the work by Hurd [15]) and provide a formalization
of the Chebyshev inequality and of the weak law of large numbers [16].

Our formalization of the source coding theorem follows Uyematsu [21, Chap-
ter 1] with nevertheless much clarification (in particular, formalization of bounds).
Our formalization of the channel coding theorem follows the detailed proofs of
Hagiwara [12], with the difference that we got rid of extended reals in the formal-
ization of the strong converse of the channel coding theorem. Part of our work
was actually performed before the publishing of Hagiwara’s textbook [12] and it
was useful to unravel imprecisions, spot errors (regarding the usage of extended
reals for example), and also discover a substantial hole: in the first version, the
proof of the converse of the channel coding theorem was concluded by a short but
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File Reference in the article spec proof
Information Theory and Shannon’s Theorems
proba.v Sect. 2 315 629
entropy.v

}
Sect. 3.1

22 47
aep.v 42 103
typ_seq.v Sect. 3.2 50 288
source_code.v Sect. 4.1 24 0
source_coding_direct.v Sect. 4.2 65 150
source_coding_converse.v Sect. 4.3 62 194
channel.v Sect. 5.1–5.2 118 112
binary_entropy_function.v

}
Sect. 5.3

18 110
binary_symmetric_channel.v 46 174
joint_typ_seq.v Sect. 5.4 65 306
channel_code.v Sect. 6.1 30 18
channel_coding_direct.v Sect. 6.2–6.3 107 754
num_occ.v }

Sect. 8
148 429

types.v 157 434
jtypes.v 368 847
divergence.v

}
Sect. 9

27 85
conditional_divergence.v 96 194
success_decode_bound.v Sect. 10.1–10.2 142 189
channel_coding_converse.v Sect. 11 48 113
log_sum.v Sect. 12.1 15 183
variation_dist.v Sect. 12.2 18 20
partition_inequality.v Sect. 12.2.1 33 130
pinsker_function.v

}
Sect. 12.2.2–12.2.3

58 312
pinsker.v 40 202
error_exponent.v Sect. 12.3–12.4 52 189

Total line count 2166 6212
Addenda to Standard Libraries
Reals_ext.v Addendum to the Coq library for reals 146 398
log2.v Logarithm and exponential in base 2 49 169
Ranalysis_ext.v Lemmas about derivability 62 192

ln_facts.v
Properties of functions with logarithm

84 524
(e.g., xlnx used in Sect. 12.3–12.4)

ssr_ext.v Addendum to the SSReflect library 151 530
tuple_prod.v (A×B)n ↔ An ×Bn 45 63
Rssr.v Coq reals with SSReflect-like naming 50 171
Rbigop.v SSReflect bigops for Coq reals 196 677
arg_rmax.v SSReflect argmax for Coq reals 81 85

natbin.v
Binary expressions of naturals

107 280
(e.g., size_nat2bin used in Sect. 4.2)

Total line count 971 3089

Table 1 Overview of the formalization of Shannon’s theorems

spurious argument that we fixed with the lemma error_exponent_bound (Sect. 12.4)
whose proof was known but turned out to be technical.

The perfect secrecy of one-time pad [20] is another famous theorem by Shannon.
Its proof has been mechanized by Barthe et al. using EasyCrypt [4].

15 Conclusion and Future Work

We presented a formalization of the foundations of information theory in the SS-

Reflect extension of the Coq proof-assistant. This formalization includes basic
mathematical material such as finite probability, elementary information-theoretic
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concepts such as typical sequences, but also more advanced notions such as jointly
typical sequences, channels (illustrated with the example of the binary symmet-
ric channel), codes (for source and channel coding), the basics of the method of
types, information divergence and variation distance, all duly equipped with their
standard properties.

We use this formalization to produce the first formal proofs of the two foun-
dational theorems of information theory: the source coding theorem (direct part
and converse part), that establishes the limit to reliable data compression, and
the channel coding theorem (direct part and strong converse part), that estab-
lishes the limit to reliable data transmission over a noisy channel. Compared to
pencil-and-paper proofs, our formalization has in particular the added value to
make precise the construction of asymptotic bounds.

The channel coding theorem proves the existence of codes for reliable data
transmission. Such codes play a critical role in IT products, e.g., LDPC (Low-
Density Parity-Check) codes in storage devices. As a first step towards the ver-
ification of the implementation of error-correcting codes, we have been working
on formalizing their basic properties. At the time of this writing, we have already
extended the work presented in this article with formalizations of basic proper-
ties of linear, cyclic and Hamming codes (see [2]), and we are now tackling the
formalization of LDPC codes.
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