
Verification of Security Protocols with a
Bounded Number of Sessions based on

Resolution for Rigid Variables

Reynald Affeldt and Hubert Comon-Lundh

Research Center for Information Security (RCIS),
National Institute of Advanced Industrial Science and Technology (AIST)

{reynald.affeldt,h.comon-lundh}@aist.go.jp
http://www.rcis.aist.go.jp

Abstract. First-order logic resolution is a standard way to automate
the verification of security protocols. However, it sometimes fails to pro-
duce security proofs for secure protocols because of the detection of false
attacks. For the verification of a bounded number of sessions, false at-
tacks can be avoided by introducing rigid variables. Unfortunately, this
yields complicated resolution procedures. We show here that there is a
simple translation of the security problem for a bounded number of ses-
sions into first-order logic, that does not introduce false attacks. This
is shown by translating clauses involving rigid variables into classical
first-order clauses, while preserving satisfiability. We illustrate this ap-
proach by giving a complete and terminating strategy for a first-order
logic fragment resulting from the above translation, that yields a decision
procedure for a bounded number of sessions.

1 Introduction

It is convenient and simple to model the security of cryptographic protocols
within first-order logic. It is indeed possible then to use general purpose theorem
provers such as SPASS (see first experiments for security protocols in [16]). There
are also successful verification tools such as ProVerif [4], which are based on first-
order logic. However, such a formalization requires some approximations. First,
global properties such as freshness require a heavy encoding to be faithfully
represented in first-order logic (see e.g., [9]), which is not amenable to further
automation.

Second, pieces of messages that can be replaced with any message (since they
cannot be analyzed by the recipient) are abstracted by variables. Such variables
are naturally universally quantified in first-order logic. However, if an attacker
can indeed replace these messages with an arbitrary forged message (hence a
universal quantification), he should be allowed to do it only once for every vari-
able: the attacker can choose the substitution, but has to commit on this value.
On the other hand, in a first-order logic formulation, since ∀x.φ(x) is equivalent
to (∀x.φ(x))∧ (∀y.φ(y)), the attacker may use two distinct substitutions for the

2 Reynald Affeldt, Hubert Comon-Lundh

same variable. Hence, in general, the attacker model in first-order logic corre-
sponds to a stronger attacker than the real one. We will give concrete examples
in Sect. 3.

It follows that a first-order logic formulation may yield false attacks. This has
been well-known for a long time and it is the reason why several more accurate
formalisms have been designed, for instance using MSR or linear logic [6].

Instead of proving security for an arbitrary number of sessions, much work
focuses on finding an attack for a bounded number of sessions (e.g., [14]). In
this setting, there is no need for approximation: the insecurity problem can be
translated into deducibility constraints, after guessing an interleaving of actions.
Translating this approach in first-order logic is not straightforward, for the same
reason as above: we must express that a variable, though universally quantified,
can be instantiated only once.

A simple way to fix the problems and remove the false attacks due to universal
quantification is to use rigid variables: while universally quantified variables can
be instantiated as many times as we wish, rigid variables get only one instance [2].
This is exactly what we need. We need however one set of rigid variables for each
session. Hence this is only relevant to bounded number of sessions. This is exactly
what is done in [12]: the authors introduce rigid clauses to model the protocol
rules when the number of sessions is fixed. Then they design a proof calculus for
such clauses and show a termination result.

To the best of our knowledge, there is no formulation of the security prob-
lem for a bounded number of sessions within first-order logic, that avoids false
attacks. This is what we do in the present paper. Actually, we show that there
is a simple translation of rigid variables into first-order logic that preserves the
satisfiability of formulas. It follows that we can capture rigid-validity, hence se-
curity for a bounded number of sessions, within first-order logic. This result has
many interesting applications. First, on the practical side, it makes it possible
to use first-order theorem provers for finding attacks in a bounded number of
sessions, without generating false attacks. This can be useful, when trying to
reconstruct attacks from candidate attacks found by a theorem prover: this is
an alternative to [1]. It makes it also possible to search, with the same tool, for
attacks and proofs. This approach is also appealing when compared with the
alternative constraint solving techniques, because we do not need to guess an
interleaving of actions.

Using this simple translation of rigid variables in first-order logic, we may
considerably simplify the proof rules for rigid clauses of [12]. We can also extend
the calculus, allowing for clauses mixing rigid and non-rigid variables as well as
equalities (however only flexible variables are allowed in equalities).

Finally, we can translate back and forth results from first-order logic to first-
order logic with rigid variables. For instance, from the decision results on security
protocols for a bounded number of sessions, we can derive decision results (in
co-NP) for fragments of first-order logic. We illustrate this by giving a resolution
strategy, which we prove to be complete and terminating for a certain class of
clauses; as a corollary, we derive the decidability of the probem of security for

Verification of Security Protocols with a Bounded Number of Sessions 3

a bounded number of sessions in the classical Dolev-Yao model. As we antic-
ipated, the simplicity of the corresponding decision procedure makes software
implementation an easier task: it took us only little time to implement it to
confirm our results by experiments.

We recall the basics about models of security protocols in first-order logic in
Sect. 3, using examples. In Sect. 4, we show the simple translation from rigid
clauses to first-order clauses. In Sect. 5, we sketch some possible applications,
including a new class of clauses for which resolution is a decision procedure.

2 Notations

We use the notations of [5], some of which are recalled below. X = {x, y, z, v, . . .}
is a set of variables symbols. F is a set of function symbols, each with a given
arity. T (F ,X) = {s, t, u, . . .} is the set of terms built on F and X . Var (t) is the
set of variables occurring in t. t is ground when Var (t) = ∅. t|p is the subterm of t
at position p. t denotes the vector t1, t2, . . . Set-theoretic notations (∩,∪,],⊆)
are also used for vectors.

A substitution σ is a mapping from variables to terms, which is the identity,
except on a finite set called its domain, noted Dom (σ). A substitution map-
ping x1, x2, . . . to t1, t2, . . . is written {x1 7→ t1;x2 7→ t2; · · · }. Substitutions are
homomorphically extended to T (F ,X) and used in postfix notation. The vari-
able range of the substitution σ is defined as VRange (σ) =

⋃
x∈Dom(σ) Var (xσ)

and its set of variables as Var (σ) = Dom (σ) ∪ VRange (σ). Mgu(t =? u) is
a most general unifier of terms t, u (or most general solution of the equation
t =? u). We assume w.l.o.g. that Var

(
Mgu(t =? u)

)
⊆ Var (t) ∪ Var (u) and

that VRange
(
Mgu(t =? u)

)
∩ Dom

(
Mgu(t =? u)

)
= ∅, i.e., we deal with idem-

potent unifiers.
P = {P,Q, I, . . .} is a set of predicate symbols, each with a given arity.

A predicate P of arity n applied to terms t1, . . . , tn is an atom; atoms are written
A,B, . . . A literal L is an atom A or its negation ¬A. Clauses (ranged over
by C, . . .) are finite sets of literals and are noted

∨
i Li. All variables in a clause

are implicitly universally quantified (sometimes we make the quantifiers explicit).
A Horn clause is a clause that contains at most one positive literal; it is noted
A1, . . . , An → A, or A1, . . . , An→ when there is no positive literal.

A F-algebra A is a set DA with for each f ∈ F of arity n, a function
fA : Dn

A → DA. [[t]]σ,A is the interpretation of a term t w.r.t. an assignment
σ : Dom (Var (t)) → DA. An F ,P-structure S is a F-algebra A together with
an interpretation [[P]]S ⊆ Dn

A of each n-ary predicate symbol. Given an F ,P-
structure S and an assignment σ of the free variables of φ into the interpretation
domain of S, S, σ |= φ is the usual first-order satisfaction relation.

Binary resolution is an inference rule on clauses: C ∨A C′ ∨ ¬A′

Cσ ∨ C′σ
, where

σ = Mgu(A =? A′). We succinctly note · a ·, · for resolution steps. For any set
of clauses S, we write C a∗ S when C is derivable from clauses in S and we let
S∗ be {C | C a∗ S}.

4 Reynald Affeldt, Hubert Comon-Lundh

3 Models of Security Protocols in First-order Logic

We give the main ideas about models of security protocols in first-order logic
(see e.g., [4] for further details) and examples to illustrate false attacks.

3.1 A Standard Attacker Model

Typically, the set of function symbols contain {·}· and [·]·, for respectively public-
key and symmetric key encryption, the pairing function 〈·, ·〉 and the function
symbol pk, that builds a public key out of a private one. We will sometimes omit
the pairing symbol or consider it as variadic to ease reading.

I is a predicate symbol that captures the intruder’s knowledge. The attacker
capabilities are typically described by the following set of Horn clauses:

(I0) I (x) , I (y) → I (〈x, y〉) (I1) I (〈x, y〉) → I (x)
(I2) I (x) , I (y) → I ([x]y) (I3) I ([x]y) , I (y) → I (x)
(I4) → I (pk(x)) (I5) I (x) , I (pk(y)) → I

(
{x}pk(y)

)
(I6) I

(
{x}pk(y)

)
, I (y) → I (x)

3.2 An Example of False Attack

Let us consider a protocol from [8]. We first write it using the (sometimes am-
biguous) Alice-and-Bob notation:

A→ B : {pkA, N}pkB

B → A : {N,K}pkA

A→ B : [S]K
B → A : N

In the first phase, two agents A and B use their public keys pkA and pkB to
exchange a new, symmetric key K (together with a nonce N). Later, A uses the
key K to send a secret S to B. Eventually (and this is the peculiarity of this
protocol), B reveals the nonce N . The security property states that any secret S
generated by an honest agent A for an honest agent B is never disclosed.

Using first-order logic (as in ProVerif), the protocol is modeled as an oracle,
that can be used by the intruder to get more information: for each rule, if the
intruder can construct a message matching the expected pattern, then it gets
the corresponding reply message:

(∆1) I (pk(x)) , I (pk(y)) → I
(
{pk(x), N(x, y)}pk(y)

)
(∆2) I

(
{x, y}pk(z)

)
→ I ({y,K(x, y, z)}x)

(∆3) I
(
{N(x, y), z}pk(x)

)
→ I ([S(x, y, z)]z)

(∆4) I
(
[v]K(x,y,z)

)
→ I (y)

For instance, the clause (∆2) represents the first action of agent B: upon recep-
tion from A of {x, y}pk(z) (expected to be {pk(skA), N(skA, skB)}pk(skB)) the
reply of B is the message {y,K(x, y, z)}x.

Verification of Security Protocols with a Bounded Number of Sessions 5

The initial intruder knowledge is modeled by (positive) atoms. For instance,
if C is a corrupted agent, then there is a clause I (skC). The security property
can be modeled as ¬I (S(skA, skB , z)). If the protocol is insecure, then the set
of clauses is unsatisfiable: there is a derivation of I (S(skA, skB , t)) for some t.

In the above clauses, the freshness of N , K, and S is approximated using a
function symbol, which depends on the terms seen at this stage. This may be a
cause of false attacks as, for instance, every session between A and B will use
the same representation of N . For a bounded number of sessions, this problem
does not occur as different symbols can be used for nonces occurring in different
sessions.

There are however other sources of false attacks. In the above example,
the protocol is (supposedly) secure, while there is a simple derivation of the
empty clause: from a honest session of the protocol (i.e., using clauses (∆1)
to (∆4) once), we derive I (N(x, y)). Now, for any z such that I (z) we derive
I

(
{N(x, y), z}pk(x)

)
using the intruder capabilities. Next, using clause (∆3) we

get I([S(x, y, z)]z) and, from this clause and I (z), we derive I (S(x, y, z)).
The problem here is that the nonce is first kept secret but eventually revealed.

A first-order model leads to a false attack by wrongly inferring that the intruder
could have the nonce at an early stage: when the nonce N is revealed, the
rule (∆3) is replayed and the intruder gets back [S]K′ for a key K ′ of his choice,
which he can decrypt. This would not occur in a more accurate model, where
the agents would have moved forward their internal state, preventing the replay
of rule (∆3). This kind of problem occurs even for a single session, as shown by
our example.

3.3 Trying to Refine the Model: there are still False Attacks

The false attack above comes from the ability (in the model) to play again a
rule of the protocol after completing it. One may think that this can be fixed
by adding some state information at each step of the protocol. While this is
quite difficult for an unbounded number of sessions, there is an easy (though
expensive) encoding for a bounded number of sessions.

First, we get rid of the freshness encoding by modeling nonces with distinct
constants. Then, we guess an interleaving of actions (this is expensive and this
is something that we can avoid) and use a different predicate symbol at each
step: instead of a single I, we use I0, . . . , In to represent the intruder knowledge
after n steps. The protocol clauses increase the index of this predicate:

Ik (t) → Ik+1 (u) for k = 0, . . . , n− 1

We also add clauses Ik(x) → Ik+1(x) for k = 0, . . . , n − 1, that express the
increasingness of the intruder knowledge. Finally, clauses reflecting intruder ca-
pabilities are replicated n times with the indices 0, . . . , n. As for the security
property, it is stated as ¬In (S) where S is the supposed secret.

With such an encoding, the above false attack can be prevented. However,
this is not sufficient in general. Here is an (cook-up) example showing again a
false attack in this new setting.

6 Reynald Affeldt, Hubert Comon-Lundh

Example 1. Relying on the long-term shared secret KAB , A wants to establish
a short-term secret with B. B generates two nonces N1, N2 and sends them
separately. A acknowledges both nonces by sending back one of them. The short-
term secret is N1 ⊕N2.

A→ B : [A,N0]KAB

B → A : [B,N0, N1]KAB
, [B,N0, N2]KAB

A→ B : N1

In a single-session model, there is no attack: the intruder can get either N1 or N2,
but not both. However, in a clausal formulation we get the two clauses:

I1 ([A, x]KAB
) → I2 ([B, x,N1]KAB

, [B, x,N2]KAB
)

I2 ([B,N0, x]KAB
, [B,N0, y]KAB

) → I3 (x)

From I2 ([B, x,N1]KAB
, [B, x,N2]KAB

), by swapping pair projections, we infer
I2 ([B, x,N2]KAB

, [B, x,N1]KAB
). Then using two instances of the second clause,

we get immediately I3 (N1) and I3 (N2), hence the secret. This is a false attack:
the last rule should not be played twice.

4 Rigid Clauses vs. Classical Clauses

The best way to prevent the last false attack is to use rigid variables and rigid
clauses. We introduce these notions first, before showing how to get rid of them.

4.1 Rigid Clauses

Variables are either rigid (written in upper-case) or flexible (written in lower-
case). Both types of variables are universally quantified, but rigid variables can
only yet one instance. Before a formal definition, let us give some examples.

Example 2. Consider the following set of clauses (taken from [12]):

{I (a) , I (b) , ¬I (X) ∨ I (f(X)) , ¬I (f(a)) ∨ ¬I (f(b))}

If X was an ordinary first-order variable, this set of clauses would be unsatisfi-
able: from the three first clauses we can infer both I (f(a)) and I (f(b)). We need
however two instances of the third clause, which is forbidden for rigid variables.
We can choose the instance X = a or the instance X = b, but not both.

The above set of clauses is satisfiable in our intended interpretation of rigid
variables since the two following sets of ground clauses are satisfiable:

{I (a) , I (b) ,¬I (a) ∨ I (f(a)) ,¬I (f(a)) ∨ ¬I (f(b))} and

{I (a) , I (b) ,¬I (b) ∨ I (f(b)) ,¬I (f(a)) ∨ ¬I (f(b))}

The next example shows that resolution procedures cannot be easily extended
to clauses containing rigid variables.

Verification of Security Protocols with a Bounded Number of Sessions 7

Example 3. Consider the following set of clauses:

{I (X) , ¬I (f(x)) ∨ I0, ¬I (g(x))}
It is unsatisfiable: the first and the third clauses resolve to the empty clause.

However, assume that we start by resolving the two first clauses. This yields
the new set of clauses {I (f(Y)) , I0, ¬I (f(x))∨I0, ¬I (g(x))} where Y is a new
rigid variable resulting from the unification X =? f(x). We can still choose Y,
but we committed to an assignment of X to a term headed with f . Now the set
of clauses is satisfiable. For a complete resolution procedure, we would have to
restart from the beginning, with another choice of clauses to resolve.

This example shows that, unlike classical first-order clauses, resolution does
not yield a logically equivalent set of clauses. Therefore, resolution theorem prov-
ing has to be reconsidered; this is the reason for complications in [12].

Let us now formalize the model theory of clauses with rigid variables.
Definition 1. Let C be a set of clauses whose variables are split into X (rigid
variables) and y (flexible variables).

C is satisfiable if there is an F-algebra A such that, for any A-assignment σ
of X, there is a structure S whose underlying algebra is A such that S, σ |= ∀y.C.

In other words, models of formulas with rigid variables are collections of
structures, one for each assignment of the rigid variables.

Example 4. In Example 2, for any of the two assignments of X, there is a model:
for the assignment {X 7→ a}, {I (a) , I (b) , I (f(a)) ,¬I (f(b))}, and for the as-
signment {X 7→ b}, {I (a) , I (b) , I (f(b)) ,¬I (f(a))}.
Example 5. The one session case of Example 1 can be translated into the fol-
lowing rigid clauses (keeping the intruder rules with flexible variables)

→ I ([A,N0]KAB
)

I ([A,X]KAB
) → I (〈[B,X,N1]KAB

, [B,X,N2]KAB
〉)

I (〈[B,N0, Y]KAB
, [B,N0, Z]KAB

〉) → I (Y)

which, together with ¬I(〈N1, N2〉) is satisfiable. In contrast, if the above vari-
ables are considered as flexible, it is unsatisfiable (yielding a false attack).

Example 6. There are also some traps. For instance, ∀x.φ(x)∧ψ(x) |=| ∀x, y.φ(x)∧
ψ(y) while ∀X.φ(X) ∧ ψ(X) 6|= ∀X,Y.φ(X) ∧ ψ(Y). Indeed, consider φ(X) =
ψ(X) = P (X)∧ (¬P (a)∨¬P (b)). ∀X.φ(X)∧ψ(X) is satisfiable: consider the al-
gebra with two constants a and b. For the assignment {X 7→ a} (resp. {X 7→ b}),
the structure S such that P (a) holds (resp. P (b) holds) satisfies φ(a)∧ψ(a) (resp.
φ(b)∧ψ(b)). On the other hand, ∀X,Y.φ(X)∧ψ(Y) is not satisfiable, since, for
the assignment {X 7→ a;Y 7→ b}, there is no structure that satisfies φ(a)∧ψ(b).

So, as we illustrated, rigid variables model exactly the intruder ability to use a
protocol rule: (s)he may replace the variables by any value of his (her) choice, but
(s)he has to commit to this value.This is the reason for studying rigid clauses
and their satisfiability in [12]. However, as shown in the above examples, the
resolution procedure involves a lot of complications and cannot be implemented
easily. We now show how to circumvent these problems.

8 Reynald Affeldt, Hubert Comon-Lundh

4.2 Translation of Rigid Clauses into First-order Clauses

As can be seen from the definition of satisfiability, the interpretation of predi-
cates depends on the assignment of rigid variables. Then, a simple Skolemiza-
tion argument suffices to eliminate this dependence and brings back first-order
clauses:

Theorem 1. There is an algorithm that, given a finite set of clauses C computes
a finite set of clauses C′, which does not contain any rigid variable, and such that
C is satisfiable iff C′ is satisfiable.

Proof. C′ is constructed from C as follows. Let X1, . . . , Xn be the rigid variables
of C. For each P ∈ P of arity m, let P ′ be a predicate symbol of arity n+m. If
¬P1(s1) ∨ · · · ∨ ¬Pn1(sn1) ∨Q1(t1) ∨ · · · ∨Qn2(tn2) is a clause C ∈ C, let

¬P ′1(x1, . . . , xn, s′1) ∨ · · · ∨ ¬P ′n1
(x1, . . . , xn, s′n1

)∨
Q′1(x1, . . . , xn, t′1) ∨ · · · ∨Q′n2

(x1, . . . , xn, t′n2
)

be a clause C ′ ∈ C′ where x1, . . . , xn are distinct variables, which do not occur
free in the clause C and s′1, . . . , s

′
n1
, t′1, . . . , t

′
n2

are the terms obtained from their
unprimed version by replacing each Xi with the corresponding xi.

If the set of clauses C is satisfiable, then there is an F-algebra A such that, for
any A-assignment σ of X1, . . . , Xn there is a structure Sσ such that, for every
clause C ∈ C, we have Sσ, σ |= ∀y.C. Consider then the structure S ′ (whose
underlying algebra is A) such that

(a1, . . . , an, b1, . . . , bm) ∈ [[P ′]]S
′

iff (b1, . . . , bm) ∈ [[P]]S{X1 7→a1;...;Xn 7→an} .

For any clause C ∈ C, we claim that S ′ |= ∀x, y.C ′. For any assignment σ′ of
the variables x1, . . . , xn and for any assignment θ of the other variables y of the
clause, we let σ be the assignment of the rigid variables defined by σ(Xi) = σ′(xi)
for every i. By hypothesis, Sσ, σ, θ |= C. It follows that, for some literal L ∈ C,
Sσ, σ, θ |= L. Assume for instance that L is a positive literal (the other case
is similar): L = P (u1, . . . , um) and ([[u1]]

σ,θ,A
, . . . , [[um]]σ,θ,A) ∈ [[P]]Sσ . This is

equivalent, by definition, to

(a1, . . . , an, [[u1]]
σ,θ,A

, . . . , [[um]]σ,θ,A) ∈ [[P ′]]S
′

which, again by construction, yields S ′, σ′, θ |= C ′.
Conversely, if C′ is satisfiable, then let S ′ be a structure which satisfies all

clauses of C′. Consider an arbitrary assignment σ of rigid variables occurring
in C. Let Sσ be the structure defined by

[[P]]Sσ =
{

(b1, . . . , bm) | (X1σ, . . . ,Xnσ, b1, . . . , bm) ∈ [[P ′]]S
′}
.

As before, Sσ, σ |= ∀y.C iff S ′ |= ∀x, y.C ′. ut

This extends to clauses with equality, provided that every equality clause does
not contain any rigid variable.

Verification of Security Protocols with a Bounded Number of Sessions 9

5 Examples of Possible Applications

5.1 Automatic Proofs for a Bounded Number of Sessions

Thanks to the effective procedure given in the proof of Theorem 1, we can use
resolution for mechanizing proofs in a bounded number of sessions. It works as
well for clauses mixing rigid and flexible variables and also if we have (flexible)
equations (though, in the latter case, there is no guarantee for termination).

Example 7. Let us come back to Example 5. We translate now the rigid clauses
into first-order clauses:

→ I (x, y, z, [A, N0]KAB)
I (x, y, z, [A, x]KAB) → I (x, y, z, 〈[B, x, N1]KAB , [B, x, N2]KAB 〉)

I (x, y, z, 〈[B, N0, y]KAB , [B, N0, z]KAB 〉) → I (x, y, z, y)
I (x, y, z, 〈N1, N2〉) →

Using an appropriate strategy (see next section), resolution terminates in a few
steps, yielding in particular the literals I (N0, N1, N2, N1) and I (N0, N2, N1, N2)
(which, without the three first components, were used to mount a false attack).
On the other side, the goal is decomposed into ¬I (x, y, z,N1) ∨ ¬I (x, y, z,N2)
and leads, using the two inferred literals, to clauses ¬I (N0, N2, N1, N1) and
¬I (N0, N1, N2, N2). But the empty clause cannot be derived: there is no one-
session attack.

5.2 Decidable Fragments of First-order Logic

If we translate back in terms of strategies the constraint solving techniques used
for the decidability and complexity proofs for a bounded number of sessions [10],
we get a decision result for formulas in the following clausal form. In this theorem,
the part of I’s arguments that model ordering of protocol rules is put in subscript
position to ease reading.

Theorem 2. Assume that all clauses are of one of the following forms:

1. I z (x, y1) , . . . , I z (x, yn) → I z (x, f(y1, . . . , yn)) with x, y, z pairwise dis-
joint and distinct, and f ∈ F

2. I z[i←k] (x, y) → I z[i←k+1] (x, y) with {y}, x, z pairwize disjoint
3. I z[i←k] (x, s) → I z[i←k+1] (x, t) with Var (t) ⊆ Var (s) ⊆ x and x ∩ z = ∅
4. I z (x, t) with Var (t) = ∅ and x ∩ z = ∅
5. ¬ I z (x, s) with Var (s) ⊆ x and x ∩ z = ∅

where z[i←k] represents the variable-vector z whose ith element is replaced by k.
Then the satisfiability modulo the axioms of encryption/decryption (resp. satisfi-
ability modulo exclusive-or [7, 11], resp. satisfiability modulo Abelian groups [15])
is co-NP-complete.

This shows a new decidable fragment of first-order logic. It is related to both
the extended Skolem class and the E+ class [13], but it is not subsumed by any
of the two classes. This shows that it should be possible to design strategies in
such a way that resolution becomes a decision procedure for the above class.
This is exactly what we do in the next section for the Dolev-Yao intruder.

10 Reynald Affeldt, Hubert Comon-Lundh

5.3 A Decision Procedure For the Security Problem

We provide a decision procedure for a class of clauses, which model security
protocols with a Dolev-Yao intruder. It consists of a resolution strategy that we
prove complete and terminating.

For the sake of simplicity, we explain our decision procedure without tak-
ing ordering of protocol rules into account. The latter can be added without
compromising decidability as explained at the end of this section.

Here is the class in question. Note that clauses (I0)–(I6) of Sect. 3.1 are
intruder clauses.

Definition 2 (Cm). For any m ∈ N, let Cm be the set of clauses C such that,
for some vector of variables x of length m, C has one of the following forms:

1. I(x, y1), . . . , I(x, yn) → I(x, f(y1, . . . , yn)) with x ∩ {y1, . . . , yn} = ∅
(the set Cm

C of composition clauses)
2. I(x, f(u1, . . . , un)), I(x, y1), . . . , I(x, yk) → I(x, y) with

{y, y1, . . . , yk} ⊆ Var (u1, . . . , un) ⊆ {u1, . . . , un} and x ∩ {u1, . . . , un} = ∅
(the set Cm

D of decomposition clauses)
3. I(x, s) → I(x, t) with Var (t)∪Var (s) ⊆ x (the set Cm

P of protocol clauses)
4. → I(x, t) with t ground (the set Cm

O of initialization clauses)
5. I(x, t) → with t ground (the set Cm

G of goal clauses)

The set of intruder clauses is Cm
I = Cm

C ∪ Cm
D .

Remarks:

– We assume in the following that our set of clauses always contains at least
one element of Cm

O and at least one element of Cm
G . Otherwise the set of

clauses is trivially satisfiable.
– The condition that t is ground in 4 and 5 can be weaken to Var (t) ⊆ x.

Indeed, if t is not ground in some clause →I(x, t), we can meet condition 4
by replacing it with the clauses →I(x, a) and I(x, a)→I(x, t), where a is a
fresh constant, provided Var (t) ⊆ x. Similarly, clauses I(x, t)→ such that
Var (t) ⊆ x can be replaced with the clauses I(x, b)→ and I(x, t)→I(x, b).

– Note that the protocol clauses do not require that Var (t) ⊆ Var (s). Nei-
ther do we assume that variables or the terms ui are distinct in the above
definition. In these respects, the conditions are more general than those of
Theorem 2: we may cover some cases that do not correspond to protocols.

Our strategy is based on binary resolution with free selection. To define this
selection function, we consider a well-founded ordering 4, compatible with sub-
stitution, containing the subterm ordering and such that there are only finitely
many terms smaller than a given term. An example of such an ordering is
the subterm ordering itself. 4 is extended to atoms as follows: A(t1, . . . , tn) 4
A′(t′1, . . . , t

′
m) when A = A′, m = n and t1 4 t′1, . . . , tn 4 t′n.

Definition 3. Let Sel be the selection function such that for any Horn clause
C = A1, . . . , An → B whose set of maximal atoms is MAX, then

Verification of Security Protocols with a Bounded Number of Sessions 11

1. if MAX is a singleton then Sel(C) is the only literal in MAX,
2. otherwise, if there is a maximal atom Ai = I(s, t) where t is not a variable,

then return such an Ai,
3. otherwise, if B = I(s, t) is maximal and t is not a variable, then return B,
4. otherwise, return any literal.

Definition 4. We consider the following rule of binary resolution with free se-
lection for Horn clauses:

C ∨A C ′ ∨ ¬A′
Cσ ∨ C ′σ

where σ = Mgu(A =? A′), Sel(C ∨A) = A, and Sel(C ′ ∨ ¬A′) = ¬A′.

Remark 1. Let C be any clause derivable from Cm using the resolution rule of
Definition 4. Then for any two atoms A,A′ ∈ C, there exist s, t, t′ such that
A = I (s, t) and A′ = I (s, t′).

Definition 5. A clause I(s, x1), . . . , I(s, xn) → I(s, x) where x1, . . . , xn, x are
distinct variables is contradictory.

Contradictory clauses yield unsatisfiability as soon as the sets of clauses in Cm
O

and Cm
G are both non empty, which we assumed.

Definition 6. A clause A1, . . . , An → B is redundant if Ai = B for some i.

Our strategy consists in applying the rule of Definition 4 to clauses that are
not contradictory and deleting redundant clauses. Completeness is a consequence
of known results (see e.g., Sect. 7.2 of [3]):

Theorem 3. Our resolution strategy is refutationally complete for Cm.

The delicate problem is termination. One can easily see that an inappropriate
strategy could cause non-termination. For example, standard binary resolution
for the following two clauses of Cm

I (x, y1) , I (x, y2) → I (x, 〈y1, y2〉) and I (x, x) → I (x, a)

yields the infinite set of clauses:

I (〈y1, y2〉, y1) , I (〈y1, y2〉, y2) → I (〈y1, y2〉, a) ,
I (〈〈y1, y3〉, y2〉, y1),I (〈〈y1, y3〉, y2〉, y3),I (〈〈y1, y3〉, y2〉, y2)→I (〈〈y1, y3〉, y2〉, a) ,
· · ·

This example explains why our selection function avoids resolution when the last
argument of I is a variable (cases 2 and 3 of Definition 3).

Proving termination amounts to find some measure, for which resolvent
clauses are smaller than their premises. We define such an ordering on clauses,
comparing first the number N of variables occurring in the first arguments of I
(corresponding to rigid variables) and next the size of their atoms with respect
to the ordering 4.

12 Reynald Affeldt, Hubert Comon-Lundh

As a first step, we prove an invariant showing, in particular, that N does not
increase by resolution. More formally, any atom in any clause derivable from any
subset of Cm is of the form I(s, t) with Var (s) ⊆ s. This is the invariant 2 in
the following lemma:

Lemma 1. Let C ⊆ Cm. For any clause C derivable from C by our resolution
strategy, the following invariant holds:

1. (a) There is a vector of terms s such that every atom of C is of the form
I(s, t) with Var (t) ⊆ Var (s), or

(b) C is an intruder clause (and in particular every atom of C is of the form
I(x, t) with Var (t) ∩Var (x) = ∅).

2. Every atom of C is of the form I(s, t) with Var (s) ⊆ s.

Proof. (Sketch) The proof goes by induction on the length of the derivation
of C, and by case analysis on the possible premises of the resolution rule. In
most cases, invariants are easily shown to be preserved, except in a few cases
where the proof of invariant 2 requires the following lemma:

Lemma 2. Let s, s′ such that |s| = |s′|, Var (s) ⊆ s, and Var
(
s′

)
⊆ s′. If

σ = Mgu(s =? s′), then Var (sσ) ⊆ sσ and Var
(
s′σ

)
⊆ s′σ.

The detailed proofs of these lemmas are given in Appendix A.

We are half-way of proving termination. Using Lemma 1, we show roughly
that, for any resolution step C a C1, C2, either (1) the number of variables that
encode rigid variables in C is stricly smaller than the number of such variables
in C1 or C2, or (2) the number of such variables is unchanged and the atoms
of the resolvent are smaller (w.r.t. 4) than those of the premises (Lemma 6 of
Appendix B). Then we can show:

Lemma 3. Any derivation sequence using our resolution strategy and starting
with a finite subset of Cm is finite.

Proof. (Sketch) Let C be a finite subset of Cm, and let R(C) be the vector s, as
defined in Lemma 1 (by Remark 1, this vector is independent of the chosen atom
in C). We show by induction that, for any n ≤ m, there are only finitely many
clauses C derivable from the clauses in C such that φ(C) = |Var (R(C)) | = m−n.

If C a C1, C2 and φ(C) = m−n, then either φ(C1), φ(C2) > m−n, which can
only occur finitely many times by induction hypothesis. Or else φ(C1) = φ(C)
and φ(C2) ≥ φ(C1), in which case R(C) = R(C1) (up to renaming). Hence the
set of vectors R(C1) such that φ(C1) = m − n is finite, up to renaming. Next,
once R(C1) is fixed, there are only finitely many possible atoms in C1, since new
clauses C ′ such that R(C1) = R(C ′) can only be obtained when unification is a
renaming. The detailed proof is given in Appendix B.

Corollary 1. Our resolution strategy is a decision procedure for the class Cm.

Verification of Security Protocols with a Bounded Number of Sessions 13

Including an Ordering on Stages. Faithfully representing the protocol instances
requires to record state information, as explained in Sect. 3.2. For this purpose,
we add another component to the predicate I, to record at which stage of each
session messages are known.

If there are n sessions, we represent the stages by a vector of n local states.
Several data structures can be used for this; we do not commit to any of them and
simply write f(q1, . . . , qn) when each session i has reached the stage qi. To restrict
protocol clauses to the appropriate stages, instead of a clause I(x, s) → I(x, t),
we consider a clause

I(f(z1, . . . , zi−1, qj , zi+1, . . . , zn), x, s)→I(f(z1, . . . , zi−1, qj+1, zi+1, . . . , zn), x, t)

for the jth rule of session i. We also need clauses I(z, x, y), z′>z → I(z′, x, y) to
express the increasingness of the intruder knowledge; how “>” is implemented
is not relevant here.

Our resolution procedure can be extended to such clauses: we simply ignore
the first component of I in the resolution strategy. Since there are only finitely
many possible instances of the first component of I, our termination result can
be applied and we get a complete and terminating procedure.

5.4 Enhancing First-order Provers for Security Protocols

Another possible use of Theorem 1 is to combine in a single first-order theorem
prover the advantages of the approximations and of the bounded number of
sessions: using the same engine and specification it is possible to look first for
attacks/security in an exact way for a given number of sessions and then use
an approximation for more sessions. Alternatively, in case a candidate attack is
found, we can check the falsity of the attack using additional clauses.

6 Conclusion

We showed a simple encoding of rigid variables by translation to first-order
logic. This encoding can be applied to the verification of security protocols for
a bounded number of sessions, without introducing false attacks.

It opens some perspectives in automated deduction: decidability results in the
verification of security protocols correspond to non-trivial decidable fragments
of first-order logic. We illustrated this, showing a resolution-based decision pro-
cedure for the verification of security protocols in a standard Dolev-Yao model.

Our first-order formalisation and the decision procedure thereof are easy to
implement (we have a prototype implementation, but we could also rely on any
first-order theorem prover). It is also flexible, compared to other techniques such
as constraint solving: we can easily change the intruder theory, consider other
security properties, etc. the procedure would still work, without generating false
attacks. Of course, there will be no guarantee of termination until the selection
strategy is tuned according to the new theory. In this respect, it remains to
design more selection strategies, for other intruder theories, including for instance
algebraic properties of security primitives.

14 Reynald Affeldt, Hubert Comon-Lundh

Acknowledgment. We are grateful to the anonymous reviewers for their very
helpful remarks.

References

1. Allamigeon, X., Blanchet, B.: Reconstruction of Attacks against Cryptographic
Protocols. In 18th IEEE Work. on Computer Security Foundations, pages 140–154,
2005.

2. Andrews, P. B.: Theorem proving via general matings. Journal of the ACM,
28(2):193–214, 1981.

3. Bachmair, L., Ganzinger, H.: Resolution Theorem Proving. In Handbook of Auto-
mated Reasoning,, chapter 2, pages 19–99. Elsevier and MIT Press, 2001.

4. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In 14th IEEE Work. on Computer Security Foundations, pages 82–96, 2001.

5. Dershowitz, N., Jouannaud, J.-P.: Rewrite Systems. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics (B), pages 243–320.
Elsevier and MIT Press, 1990.

6. Cervesato, I., Durgin, N. A., Lincoln, P. D., Mitchell, J. C., Scedrov, A.: A meta-
notation for protocol analysis. In 12th IEEE Work. on Computer Security Founda-
tions, pages 55–69, 1999.

7. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision procedure
for protocol insecurity with XOR. In 18th IEEE Symp. on Logic in Computer
Science (LICS 2003), pages 261–270.

8. Cohen, A.: Combined CPV-TLV Security Protocol Verifier. Master’s thesis, New
York University, 2004.

9. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. Science
of Computer Programming, 50(1–3):51–71, 2004.

10. Comon-Lundh, H., Cortier, V., Zalinescu, E.: Deciding security properties for
cryptographic protocols. Application to key cycles. To appear in ACM Transactions
on Computational Logic.

11. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and
insecurity decision in presence of exclusive or. In 18th IEEE Symp. on Logic in
Computer Science (LICS 2003), pages 271–280.

12. Delaune, S., Lin, H., Lynch, C.: Protocol verification via rigid/flexible resolution.
In 14th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR 2007), volume 4790 of Lecture Notes in Artificial Intelligence, pages 242–256.
Springer.

13. Fermüller, C. G., Leitsch, A., Hustadt, U., Tamet, T.: Resolution decision proce-
dure. In Handbook of Automated Reasoning, chapter 25. Elsevier and MIT Press,
2001.

14. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions,
composed keys is NP-complete. Theoretical Computer Science, 1-3(299):451–475,
2003.

15. Shmatikov, V.: Decidable analysis of cryptographic protocols with products and
modular exponentiation. In 13th European Symp. on Programming (ESOP 2004),
volume 2986 of Lecture Notes in Computer Science, pages 355–369. Springer.

16. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. In 16th Int. Conf. on Automated Deduction (CADE 1999), volume 1632 of
Lecture Notes in Computer Science, pages 314–328. Springer.

Verification of Security Protocols with a Bounded Number of Sessions 15

A Proof of Lemma 1

By induction on the length of the derivation.
Base case. The intruder clauses verify invariant 1b by definition and invari-

ant 2 because Var (x) = x ⊆ x. The protocol clauses verify invariant 1a because
Var (t) ⊆ Var (x) by definition. They verify invariant 2 because Var (x) = x ⊆ x.
The initialization clauses trivially verify invariant 1a, because Var (t) = ∅, and
invariant 2 because Var (x) = x ⊆ x. The goal clauses trivially verify invariant
1a, because Var (t) = ∅, and invariant 2, because Var (x) = x ⊆ x.

Inductive case. There are several cases.

1. Resolution between two clauses I(s, t1), . . . , I(s, tn) → I(s, t) (n ≥ 1) and
I(s′, t′1), . . . , I(s′, t

′
k) → I(s′, t′) (k ≥ 1), verifying invariants 1a and 2, with

σ = Mgu(I(s, t) =? I(s′, t′j)).
The resolvent verifies invariant 1a, i.e.,

Var (tiσ) ⊆ Var (sσ) , Var (t′iσ) ⊆ Var
(
s′σ

)
(i 6= j), and

Var (t′σ) ⊆ Var
(
s′σ

)
.

Let us prove the inclusion Var (tiσ) ⊆ Var (sσ) (other inclusions are
similar). Consider some x ∈ Var (tiσ). If x /∈ Var (σ), then x ∈ Var (ti).
By the induction hypothesis, x ∈ Var (s). Thus x ∈ Var (sσ). If x ∈
VRange (σ), then there is some x′ ∈ Dom (σ) ∩ Var (ti) such that x ∈
Var (x′σ). By the induction hypothesis, x′ ∈ Var (s). Thus x ∈ Var (sσ).
(Since we assume that mgus are idempotent, we do not need to check
the case where x ∈ Dom (σ).)

The resolvent verifies invariant 2, i.e., Var (sσ) ⊆ sσ.
We apply Lemma 2 to s] t, s′] t′j , and σ. This leads to Var ((s] t)σ) ⊆
(s] t)σ, i.e., Var (sσ ∪ tσ) ⊆ sσ] tσ. We can show that Var (tσ) ⊆
Var (sσ) (proof similar to the one for preservation of invariant 1a just
above).
If tσ is a variable, then t is a variable and, by invariant 2, t ∈ s. Then
tσ ∈ sσ. Therefore Var (sσ) ⊆ sσ] tσ implies Var (sσ) ⊆ sσ.
If t is a functional term, then Var (sσ) ⊆ sσ] tσ implies Var (sσ) ⊆ sσ.

2. Resolution between a clause I(s, t1), . . . , I(s, tk) → I(s, t) (k ≥ 1) verify-
ing invariants 1a and 2 and a composition clause I(x, y1), . . . , I(x, yn) →
I(x, f(y1, . . . , yn)) (n ≥ 1), with σ = Mgu(I(x, f(y1, . . . , yn)) =? I(s, tj)).
The resolvent verifies invariant 1a, i.e.,

Var (yiσ) ⊆ Var (xσ) , Var (tiσ) ⊆ Var (sσ) (i 6= j), and
Var (tσ) ⊆ Var (sσ) .

Let us prove Var (yiσ) ⊆ Var (xσ) (the proofs of other inclusions are sim-
ilar to the corresponding proof in case 1). Consider some x ∈ Var (yiσ).
tj is a functional term. Indeed, if tj were a variable, then by definition of
our selection function, all ti’s and t would be variables. Then the clause
would be either redundant or contradictory, two cases that are discarded.

16 Reynald Affeldt, Hubert Comon-Lundh

By hypothesis, yiσ = tj |iσ. Since Var (tj) ⊆ Var (s), then Var (tj |i) ⊆
Var (s), and Var (tj |iσ) ⊆ Var (sσ). Thus, x ∈ Var (sσ). We can con-
clude because xσ = sσ.

The resolvent verifies invariant 2, i.e., Var (xσ) ⊆ xσ.
t′j is not a variable (this has already been shown in the preservation of
invariant 1a just above). It is therefore a functional term of the form
t′j = f(t′j |1, . . . , t′j |n) such that Var

(
t′j |i

)
⊆ Var (s) for all i. We apply

Lemma 2 to x] y1] · · ·] yn, s] t′j |1] · · ·] t′j |n, and σ. This shows that
Var

(
(s] t′j |1] · · ·] t′j |n)σ

)
⊆ (s] t′j |1] · · ·] t′j |n)σ.

We can show that Var
(
t′j |iσ

)
⊆ Var (sσ) for all i (proof similar to the

proofs of preservation of invariant 1a in case 1). We also know that no
t′j |i is a variable that does not appear in s. Thus, Var (sσ) ⊆ sσ, which
implies Var (xσ) ⊆ xσ since xσ = sσ.

3. Resolution between a clause I(s, t1), . . . , I(s, tl) → I(s, t) (l ≥ 1) verifying
invariants 1a and 2, and a decomposition clause I(x, f(u1, . . . , un)), I(x, y1),
. . . , I(x, yk) → I(x, y) (n, k ≥ 1) with σ = Mgu(I(s, t) =? I(x, f(u1, . . . , un))).
Let us note u = f(u1, . . . , un).
The resolvent verifies invariant 1a, i.e.,

Var (tpσ) ⊆ Var (sσ) for all p, Var (yjσ) ⊆ Var (xσ) for all j,
Var (y) ⊆ Var (xσ) .

We have xσ = sσ and uσ = tσ. By induction hypothesis Var (tp) ⊆
Var (s), hence Var (tpσ) ⊆ Var (sσ). By definition of decomposition
clauses Cm

D , Var (yjσ) ⊆ Var (uσ). Using again the induction hypoth-
esis, Var (tσ) ⊆ Var (sσ). Thus, Var (yjσ) ⊆ Var (uσ) = Var (tσ) ⊆
Var (sσ) = Var (xσ).

The resolvent verifies invariant 2, i.e., Var (sσ) ⊆ sσ. As before, since
the premises of a resolution step are neither redundant nor contradictory,
t is a functional term of the form f(t1, . . . , tn). We apply Lemma 2 to
s] t1] · · ·] tn, x] u1] · · ·] un, and σ. (This is possible, thanks to the
hypotheses on the decomposition clauses Cm

D .) This shows that

Var ((s] t1] · · ·] tn)σ) ⊆ (s] t1] · · ·] tn)σ.

We can show that Var (tiσ) ⊆ Var (sσ) for all i. We also know that if ti
is a variable then it appears in s. Thus, Var (sσ) ⊆ sσ.

4. Resolution between two intruder clauses: a composition clause

I(x, y1), . . . , I(x, yn) → I(x, f(y1, . . . , yn))

and a decomposition clause

I(x′, f ′(u1, . . . , un′)), I(x′, y′1), . . . , I(x′, y
′
k) → I(x′, y′)

By definition of our selection function,

σ = Mgu(f(y1, . . . , yn) =? f ′(u1, . . . , un′)).

Verification of Security Protocols with a Bounded Number of Sessions 17

The resolvent is a redundant clause. Indeed, xσ = x′σ (σ is a renaming on
x, x′) and, for every i, yiσ = uiσ. By definition of decomposition clauses Cm

D ,
y′ ∈ {u1, . . . , un}. Thus, y′σ = yiσ for some i.

5. Other cases. Resolution between an initialization clause and a clause verify-
ing invariants 1a and 2 is similar to case 1 (take n = 0). Resolution between
a goal clause and a clause verifying invariants 1a and 2, is covered by case 1
(take k = 1 and no right-hand side for the second clause). Resolution between
an initialization clause and a goal clause is similar to case 1 (take n = 0,
k = 1, and no right-hand side for the second clause). Resolution between a
composition clause and a goal clause is covered by case 2 (take k = 1 and
no right-hand side for the first clause). Resolution between a decomposition
clause and an initialization clause is similar to case 3 (take l = 0).

Lemma 4. Let t, t′ be terms such that σ unifies t and t′. For all x /∈ Var (σ),
x ∈ Var (t) iff x ∈ Var (t′).

Proof. tσ = t′σ. Since x /∈ Var (σ), x ∈ Var (t) iff x ∈ Var (tσ) iff x ∈ Var (t′σ)
iff x ∈ Var (t′).

Lemma 5. Let t, t′ be terms such that σ = Mgu(t =? t′). For all x ∈ Dom (σ),
if x ∈ Var (t) then Var (xσ) ⊆ Var (t′).

Proof. tσ = t′σ. By induction on the structure of t′.
Base case. Suppose that t′ is some variable z′. We do a case analysis on t.

If t is a variable, then it is the variable x, in which case σ = {x 7→ z′} and
we indeed have Var (xσ) = {z′} ⊆ Var (t′) = {z′}. If t = f(t1, . . . , tp), then
x ∈ VRange (σ), which contradicts the hypotheses.

Inductive case. Suppose that t′ = f ′(t′1, . . . , t
′
n). Then we also have t =

f ′(t1, . . . , tn) such that for some i, x ∈ Var (ti). σ|Var(ti)∪Var(t′i) = Mgu(ti =? t′i).

By the inductive hypothesis, Var
(
xσ|Var(ti)∪Var(t′i)

)
⊆ Var (t′i), from which we

derive Var (xσ) ⊆ Var (t′).

A.1 Proof of Lemma 2

By induction on |Var (s) |+ |Var
(
s′

)
|.

Base case. There is no variable. All si’s and s′i’s are ground terms. Thus σ is
empty and the inclusions are trivially verified.

Inductive case. We have |Var (s) |+ |Var
(
s′

)
| > 0. If σ is a renaming, then

the goal is trivially verified. Let us assume that σ is not a renaming; for the
sake of simplicity, we assume that σ is idempotent. Then there is at least one
variable x ∈ Var (s) (or Var

(
s′

)
, but this is symmetric) such that the equation

set contains an equation si =? s′i such that, for some p, si|p = x and s′i|p is
defined and different from x.

Suppose for the sake of simplicity that si = x. (Otherwise, decompose the
equation si =? s′i and transform the equation set so as to obtain such an equa-
tion.)

18 Reynald Affeldt, Hubert Comon-Lundh

We can reorder the equation set as follows:

s =? s′ ⇔

x =? s′0
s1 =? s′1

...
sm =? s′m

We do a case analysis on s′0.
Suppose that s′0 is some variable x′. We replace x with x′ in all si’s and

s′i’s and obtain a new equation set s1 =? s′1. The inclusions Var (s1) ⊆ s1 and
Var

(
s′1

)
⊆ s′1 hold and there is one variable less. By construction, this new

equation set has a mgu σ1 and, by inductive hypothesis, we have Var (s1σ1) ⊆
s1σ1 and Var

(
s′1σ1

)
⊆ s′1σ1. Using σ1, we build the mgu σ for the original

equation set as follows:

– If x′ ∈ Dom (σ1), then σ = σ1] {x 7→ x′σ1}.
– If x′ ∈ VRange (σ1) or x′ /∈ Var (σ1), then σ = σ1] {x 7→ x′}.

In each case, we have Var (sσ) = Var (s1σ1) ⊆ s1σ1 = sσ and similarly for s′.
Suppose that s′0 is a functional term f(t1, . . . , tp). We replace x with s′0 in

all si’s and s′i’s and obtain a new equation set s1 =? s′1. Var (s1) ⊆ s1 does not
necessarily hold because the previous replacement may introduce new variables
x′j ∈ Var (s′0) in s. However, since Var

(
s′

)
⊆ s′, for any such x′j , there is an

equation s′ij
=? x′j . We replace each x′j with s′ij

in s1 and obtain a new equation
set s2 =? s′1. In this new system, the desired inclusions hold and there is one
variable less. By construction, this new equation set has an mgu σ1 and, by
the inductive hypothesis, we have Var (s2σ1) ⊆ s2σ1 and Var

(
s′1σ1

)
⊆ s′1σ1.

Using σ1, we build the mgu σ = σ1] {x 7→ s′0σ1} for the original equation set.

B Proof of Lemma 3

We define two functions R and φ as follows. For any clause C ∈ C∗, any atom
in C can be written I(s, t); then R(I(s, t)) = s and φ(I(s, t)) = |V ar(s)|. By
Remark 1, we can overload the notations and extend R and φ to clauses.

Our goal is to show that C∗ is finite. We will show more generally that for
any n such that 0 ≤ n ≤ m, there are only finitely many clauses C ∈ C∗ such
that φ(C) = m − n, i.e., for all n ≤ m, {C ∈ C∗ | φ(C) = m − n} is finite. The
proof goes by induction on n.

Base case: We prove that there are finitely many clauses C ∈ C∗ such that
φ(C) = m. This follows from Lemma 7 below.

Inductive case: By the inductive hypothesis, S0 = {C ∈ C∗ | φ(C) > m− n}
is finite. Our goal is to show that {C ∈ C∗ | φ(C) = m − n} is finite. We show
that this set is included in another finite set, that we now define.

Verification of Security Protocols with a Bounded Number of Sessions 19

Let S1 = {C ∈ C | φ(C) = m−n}∪{C | C a C1, C2 ∈ S0 and φ(C) = m−n}.
By construction, S1 is finite. Let F = {R(C) | C ∈ S1}. Since S1 is finite, F is
also finite. Let S2 = {Cσ | C ∈ S0 and R(Cσ) ∈ F for some substitution σ}.
S2 is also finite because S0 is finite and there is only a finite number of ways to
build the substitutions. We show that {C ∈ C∗ | φ(C) = m− n} is included in

{C | C a∗ S1 ∪ S2 ∪ Cm
I and R(C)ρ ∈ F for some renaming ρ}.

By Lemma 7, this set is indeed finite. The inclusion proof goes by induction on
the length of the derivation of C.

Base case: C ∈ C and φ(C) = m− n, thus C ∈ S1 and R(C) ∈ F .
Inductive case: let C ∈ C∗ be such that the derivation length is strictly

positive and φ(C) = m−n. To fix notation, assume w.l.o.g. that C a C1, C2 and
φ(C1) ≤ φ(C2). According to Lemma 6, there are four cases:

1. φ(C) < φ(C1). Since φ(C) = m−n, then φ(C1) > m−n and φ(C2) > m−n.
Thus C1, C2 ∈ S0, which implies C ∈ S1 and R(C) ∈ F .

2. φ(C) = φ(C1), there is a renaming ρ on Var (C1) such that R(C) = R(C1)ρ
and C2 is an intruder clause. Since φ(C1) = m − n, by the inductive hy-
pothesis, C1 a∗ S1 ∪ S2 ∪ Cm

I and R(C1)ρ′ ∈ F for some renaming ρ′. Thus,
C a∗ S1 ∪ S2 ∪ Cm

I and R(C)θ ∈ F for some renaming θ.
3. φ(C) = φ(C1) < φ(C2), there is a mgu ρ for the resolution step C a C1, C2

that is a renaming on Var (C1) such that R(C) = R(C1)ρ = R(C2)ρ, and C2

is not an intruder clause. By the inductive hypothesis, C1 a∗ S1 ∪ S2 ∪ Cm
I

and there is a renaming ρ′ such that R(C1)ρ′ ∈ F .
φ(C2) > m − n, hence C2 ∈ S0. Moreover, there is a renaming θ such that
R(C2)θ ∈ F , thus C ′2 = C2θ ∈ S2. Then C a C1, C

′
2, because θ is a renaming.

Thus C a∗ S1 ∪ S2 ∪ Cm
I and R(C)θ ∈ F

4. φ(C) = φ(C1) = φ(C2). There are renamings ρ1, ρ2 such that R(C) =
R(C1)ρ1 = R(C2)ρ2. We apply the inductive hypothesis to both C1 and
C2. We deduce that C a∗ S1 ∪ S2 ∪ Cm

I and that there is a renaming ρ′

such that R(C1)ρ′ ∈ F and a renaming ρ′′ such that R(C2)ρ′′ ∈ F . There is
therefore a renaming θ such that R(C)θ ∈ F .

Lemma 6. Consider C1, C2 ∈ C∗ such that φ(C1) ≤ φ(C2). For any C a C1, C2

one of the following holds:

1. φ(C) < φ(C1)
2. φ(C) = φ(C1), there is a renaming ρ on Var (C1) such that R(C) = R(C1)ρ,

C1 is not an intruder clause, C2 is an intruder clause, and for any atom A
occurring in C there is an atom A1 occurring in C1 such that A 4 A1ρ.

3. φ(C) = φ(C1) < φ(C2), there is a mgu ρ for the resolution step that is a
renaming on Var (C1) such that R(C) = R(C1)ρ = R(C2)ρ, and neither C1

nor C2 are intruder clauses.
4. φ(C) = φ(C1) = φ(C2), there is a renaming ρ1 on Var (R(C1)) and a re-

naming ρ2 on Var (C2) such that R(C) = R(C1)ρ1 = R(C2)ρ2, and every
atom occurring in C is a renaming of an atom occurring in C1 or C2.

20 Reynald Affeldt, Hubert Comon-Lundh

Proof. Let σ be a mgu for the resolution step C a C1, C2. We have R(C) =
R(C1)σ = R(C2)σ. By definition of Cm and invariant 2 of Lemma 1, we also
have Var (R(C1)) ⊆ R(C1) and Var (R(C1)σ) ⊆ R(C1)σ. Thus:

φ(C)= |Var (R(C1)σ) |= |R(C1)σ ∩X | and φ(C1)= |Var (R(C1)) |= |R(C1)∩X |

In general |R(C1)σ ∩ X | ≤ |R(C1) ∩ X |, and the equality is achieved iff σ is a
renaming on Var (R(C1)). Suppose that we do not have equality, then we have
φ(C) < φ(C1) and we fall in case 1. Henceforth, suppose that we have the equal-
ity φ(C) = φ(C1). Since φ(C) = φ(C1), then σ is a renaming on Var (R(C1)).
Observe that C1 and C2 cannot be both intruder clauses simultaneously because
of our resolution strategy. We do a case analysis on C1, C2.

Suppose that neither C1 nor C2 are intruder clauses. Then we can show that
σ is not only a renaming on Var (R(C1)) but also a renaming on Var (C1). By
hypothesis, φ(C) ≤ φ(C2). If φ(C) < φ(C2), then we fall in case 3. If φ(C) =
φ(C2), then we can show as above that σ is also a renaming on Var (C2) and we
fall in case 4.

Suppose that C1 is not an intruder clause and that C2 is an intruder clause.
We show that we fall in case 2. First, observe that σ is a renaming on Var (C1).
Assume that the resolution step unifies the atom A2 of C2 and some atom A1

of C1. A2 is the only maximal literal in C2 because it is an intruder clause. Every
atom A of C is either a renaming of an atom of C1 or an atom A′2σ for some
A′2 ≺ A2 in C2; then A′2σ ≺ A2σ = A1σ.

Suppose that C1 is an intruder clause but C2 is not an intruder clause.
Then we have φ(C1) ≥ φ(C2) because φ is maximal for intruder clauses. Thus
φ(C1) = φ(C2) = φ(C). We can show that σ is a renaming on Var (C2). We fall
in case 4.

Suppose that C1 is not an intruder clause and that C2 is an intruder clause.
Then σ is a renaming on Var (C1). By hypothesis, φ(C1) ≤ φ(C2). If φ(C1) <
φ(C2), we fall in case 3. If φ(C1) = φ(C2), then we can show that σ is also a
renaming on Var (C2) and we fall in case 4.

Lemma 7. Let n ∈ N and S ⊆ C∗ be a finite set of clauses such that, for every
C ∈ S, φ(C) = n. Let S∗ be the set of clauses C that are derivable using our
resolution strategy from clauses in S ∪ Cm

I and such that φ(C) = n. Then S∗ is
finite.

Proof. Lemma 6 shows that clauses in S∗ are derivable from S using some reso-
lution strategy which further restricts the resolvent C to be such that φ(C) = n.

Furthermore, again by Lemma 6 and by induction on the derivation length,
any atom A occurring in a clause of S∗ is such that there is some atom A′

occurring in some clause of S and some renaming ρ such that A 4 A′ρ (only
cases 2 and 4 of Lemma 6 can occur).

By hypothesis on our ordering and by finiteness of S, it follows that there
are only finitely many atoms in S∗, and therefore only finitely many clauses, up
to renaming.

