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Abstract We are concerned with the formalization of measure theory in the Coq
proof assistant. Concretely, we extend MathComp-Analysis, a library for functional
analysis built on top of the Mathematical Components library, with standard construc-
tions such as charges and the Lebesgue-Stieltjes measure, and with standard theorems
such as the Hahn decomposition theorem and the Radon-Nikodým theorem. These are
prerequisites for the formalization of probabilistic programs, of probability theory, and
also for other applications such as the formalization of connections between derivatives
and integrals.

1 Introduction

In this paper, we are concerned with the formalization of measure theory in the Coq proof
assistant. Our goal is to extend MathComp-Analysis [2], an on-going effort to formalize func-
tional analysis in Coq, with theorems useful to deal with probabilistic programs and to formalize
mathematics in general, as illustrated by the following two motivating examples.

Formal Verification of Probabilistic Programs Probabilistic programs provide a way to
deal with uncertainty in a rigorous way. They have applications in artificial intelligence, infor-
mation security, etc. Their semantics relies on probability theory and more generally on measure
theory [13].

The Coq proof assistant has arguably been an important tool for the formal verification of
programs1. Unfortunately, it has been lacking libraries for measure theory and this has been
detrimental to the development of formal semantics for probabilistic programs. For example, in
the formalization of [25], most of measure and integration theory is added in the form of unproved
axioms.

Using MathComp-Analysis (in particular [3]), it has however been possible to formalize
without axioms the semantics of a first-order probabilistic programming language proposed by
Staton [23]. This formalization [6] highlights, among others, the importance of density functions
or Radon-Nikodým derivatives. See also [8, Sect. 2.3] that also stresses the importance of Radon-
Nikodým derivatives.

*This is a (slightly edited) version of a paper presented at the 25th Workshop on Programming and Programming
Languages (PPL2023).

1Coq has been awarded the ACM SIGPLAN Programming Languages Sofware Award and the ACM Software
System Award in 2013. The ACM Software System Award of 2021 has also been awarded to a C compiler developed
in Coq.
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Formalization of Connections between Derivatives and Integrals Derivatives and inte-
grals are the main topic of analysis. The connections between them take the form of fundamental
theorems whose formalization relies on measure theory.

This is for example the case of the Fundamental Theorem of Calculus for the Lebesgue inte-
gral [22, Thm 7.18]. It says that for any function f that is absolutely continuous 2 on [a, b], there
exists almost-everywhere a function f ′ integrable on [a, b] such that

∀x ∈ [a, b], f(x)− f(a) =

∫ x

t=a
f ′(t)(dΛ)

where Λ is the Lebesgue measure. Conversely, for any function f that is integrable on [a, b],
there exists an absolutely continuous function F such that the derivative of F at x is equal
almost-everywhere to f(x) for x in [a, b].

In a nutshell, the proof for a non-decreasing function f goes as follows. Let Λf be the
Lebesgue-Stieltjes measure associated with f ; f is absolutely continuous on [a, b] if and only if
Λf is dominated by the Lebesgue measure. By applying the Radon-Nikodým theorem to Λf , we
obtain the Radon-Nikodým derivative fRN of the Lebesgue-Stieltjes measure associated with f
which satisfies

Λf (E) =

∫
t∈E

fRN(t)(dΛ)

for all measurable sets E. If E is an interval [a, x] for any x in [a, b], then Λf [a, x] evaluates to
f(x)− f(a) by definition. It remains to show that the Radon-Nikodým derivative is the standard
derivative, which is the matter of another theorem by Lebesgue. See Sect. 7 for more details.

This paper We use the two motivating examples above to set our objectives for the extension
of the formalization of measure theory of MathComp-Analysis. Concretely, we provide for-
malizations of the Radon-Nikodým theorem and of the Lebesgue-Stieltjes measure in the Coq
proof assistant (the first ones for this proof assistant to the best of our knowledge). The Radon-
Nikodým theorem establishes the existence of Radon-Nikodým derivatives or density functions.
The Lebesgue-Stieltjes measure is a generalization of the Lebesgue measure used in particular in
probability theory. Besides these contributions to Coq, this paper also has another objective.
We would like to document the process of formalization of measure theory with MathComp-
Analysis. Indeed, measure theory is vast (it includes integration and probability theory), its
formalization is therefore not an easy task and ought better be a collaborative effort, which
requires documentation. We therefore explain in particular what are the reusable parts of our
formalization. For example, the Radon-Nikodým uses charges that can be advantageously formal-
ized using Hierarchy-Builder [10], a tool to formalize hierarchies of mathematical structures
in Coq.

Outline This paper is organized as follows. Section 2 summarizes mathematical preliminaries
and provide background information about the formalization of measure theory in MathComp-
Analysis. Section 3 explains the formalization of charges and of the Hahn decomposition the-
orem, an intermediate step to prove the Radon-Nikodým theorem, which is the topic of Sect. 4.
Section 5 uses previous work to build the Lebesgue-Stieltjes measure. We review related work in
Sect. 6 and conclude in Sect. 7 with more insights about the formalization of the Fundamental
Theorem of Calculus.

2A function f : R → R is absolutely continuous on interval [a, b] when f satisfies the following condition. For all
ϵ > 0, there exists δ > 0 such that for all n ∈ N and for every collection of pairwise disjoint intervals ]ak, bk[⊂ [a, b]
with

∑n
k=1 |bk − ak| < δ, we have

∑n
k=1 |f(bk)− f(ak)| < ϵ.
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2 Background about the Formalization of Measure Theory

We recall the basics of measure and integration theory in Sect. 2.1 and we provide an overview
of how it is formalized in MathComp-Analysis in Sect. 2.2. More details about MathComp-
Analysis can be found in the following papers [3–5] or in teaching material [1].

2.1 Mathematical Preliminaries

A σ-algebra on a set T is a collection of subsets of T that contains ∅ and that is closed under
complement and countable union. We note ΣT for such a σ-algebra and call measurable sets the
sets in ΣT . The standard σ-algebra on R (the Borel sets) is the smallest σ-algebra containing
the intervals. A semiring of sets on a set T is a collection of subsets of T that contains ∅, that is
closed under finite intersection, and that is “closed under finite difference”, i.e., such that for all
sets A and B in the semiring, there exists a set D of pairwise-disjoint sets in the semiring such
that A \B =

⋃
x∈D x. A σ-algebra is a semiring of sets.

A measure is a non-negative function µ : ΣX → [0,∞] such that µ(∅) = 0 and µ(
⋃

iAi) =∑
i µ(Ai) for pairwise-disjoint measurable sets An where the sum is countable. The latter property

is called σ-additivity. When the sum is finite, this property is called additivity and the measure
is said to be a content. A function µ is σ-subadditive when for any measurable set A and any
countable family of measurable sets F , A ⊆

⋃
k Fk implies µ(A) ≤

∑
k µ(Fk). A non-negative,

monotone, σ-subadditive function µ such that µ(∅) = 0 is called an outer measure. The standard
measure on R is the Lebesgue measure, which is such that the length of an interval ]a, b] is b− a.
A measure µ is finite when the measure of the full set is not +∞. A measure µ is σ-finite over
A when there is countable family of measurable sets F such that A =

⋃
i Fi and µ(Fi) < ∞ for

all i. A measure µ over A is a finite measure when µ(A) < +∞.

A function f : ΣX → ΣY is measurable when for all measurable sets B, f−1(B) is also
measurable. We can integrate a measurable function f w.r.t. a measure µ over D to get an
extended real number denoted by

∫
x∈D f(x)(dµ). When D is the full set, we write

∫
x f(x)(dµ).

When a function f is measurable and
∫
x∈D |f(x)|(dµ) < +∞, we say that f is integrable over D.

Integration satisfies the monotone convergence theorem, i.e.,
∫
x∈D f x(dµ) = limn

∫
x∈D fn x(dµ)

where fn is an increasing sequence of non-negative measurable functions converging towards f , a
non-negative measurable function.

2.2 Measure and Integration Theory in MathComp-Analysis

Basic Notations from MathComp We make use of standard MathComp [20] notations.
The notation f ^~ y is for the function λx.f x y. The notation \o is for function composition.
The projections of a pair are denoted by .1 and .2. The notation [/\ P0, P1, ... & Pn] is for
the iterated conjunction P0 /\ P1 /\ ... /\ Pn. This notation comes with constructors when
there is a small number of conjuncts, for example And3 is used to build a conjunction of three
propositions. The notation n%:R is for injecting the natural number n into a ring type; %R is the
scope of rings. Iterated operations are noted \big[op/idx]_(k < n | P k) f k where f is for the
terms, P an optional filtering boolean predicate, op a binary operation, and idx its neutral. In
the case of additions, there is a specialized notation \sum_(k < n | P k) f k.

Basic Notations from MathComp-Analysis The type set T is for sets of objects of type T;
we therefore write S : set T when S is a subset of T seen as a full set. The full set of objects of
type T is denoted by [set: T]; it is a notation for setT, which can be used when the inference
of the type is automatic. Set inclusion is denoted by `<=`, set union by `|` (identifier setU), set
intersection by `&` (identifier setI), set difference by `\` (identifier setD), the preimage of the
set A by f is denoted by f @^-1` A, the identifier corresponding to the empty set is set0. Sets can
be defined by comprehension using the notation [set x | P], for the set of objects x such that P
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holds. When the sets of a family F indexed by D are pairwise-disjoint, we write trivIset D F. We
can write A a (in Prop) or a \in A (in bool) to state that a belongs to the set A.

The convergence of a sequence u towards l is denoted by u --> l, we can also write lim u = l,
as explained in [5, Sect. 2.3]. The type of a sequence of objects of type A is denoted by A^nat. The
type {posnum R} is for positive numeric types, where R is a numeric type among numDomainType

for integral domains with an order, numFieldType for numeric fields, or realType for real numbers.
Given e : {posnum R}, e%:num is the projection of type R. The type \bar R is for extended real
numbers. In particular, when R is realType, \bar R corresponds to R = R ∪ {+∞,−∞}. Infinite
values are denoted by the notations -oo and +oo and r%:E represents the injection of r : R into
\bar R; the notations about extended real numbers lie in the scope %E. An extended real number
x which is not +∞ or −∞ satisfies the predicate x \is a fin_num. The supremum of a set E of
extended real numbers is ereal_sup E. The maximum of two real numbers x and y is maxe x y.

The type of intervals over a numeric type R is interval R. Closed intervals are denoted by the
notation `[a, b], open intervals by `]a, b[, etc. When an interval i is an interval of extended
real numbers, we can write i.1 and i.2 for its endpoints.

Measure Theory in MathComp-Analysis The type of σ-algebra is measurableType d. Given
T of type measurableType d and U of type set T, measurable U asserts that U belongs to the σ-
algebra corresponding to T. In other words, we write T : measurableType d for a measurable
space (T,A), and measurable S when S belongs to A. The parameter d controls the display of
the measurable predicate, so that measurable U is printed as d.-measurable U. This is useful to
disambiguate the local context of a proof in the presence of several σ-algebras but this parameter
can be ignored on a first reading; see [3, Sect. 3.4] for more details about this “display” mecha-
nism. The predicate semi_setD_closed is the formalization of the property of being “closed under
finite difference” (Sect. 2.1). Semiring of sets are available as the type semiRingOfSetsType d.

Given T of type measurableType d, a measure on T is denoted by {measure set T -> \bar R}

where R has type realType [3, Sect. 3.5.2]w. Similarly, {content set T -> \bar R} is for con-
tents [3, Sect. 3.5.2] and {sigma_finite_measure set T -> \bar R} is for σ-finite measures [3, Sect.
4.3].

We write measurable_fun D f for a measurable function f with domain D. When a func-
tion f is integrable over D w.r.t. mu, we write mu.-integrable D f. The notation for the integral∫
x∈D f(x)(dµ) is \int[mu]_(x in D) f x.

3 The Hahn Decomposition Theorem in Coq

The Hahn decomposition theorem is a standard result of measure theory. It is used for example
to prove the Radon-Nikodým theorem and can be found in many lecture notes (we used the
following online resource [14] but the same proof can be found elsewhere). Before explaining the
Hahn decomposition theorem in Sect. 3.2, we need to define charges in Sect. 3.1. We take this
occasion to introduce the Hierarchy-Builder tool [10] to build hierarchies of mathematical
structures.

3.1 Formalization of Charges and Introduction to Hierarchy-Builder

Let A be a σ-algebra of subsets of T . A charge (a.k.a. signed measure) is a σ-additive function ν
that maps measurable sets to real numbers. MathComp-Analysis already provides measures
and therefore also provides formal definitions for additivity and σ-additivity. Since a measure
is potentially infinite, these formal definitions are for extended real numbers. In order to reuse
these definitions to define charges, we define an interface for extended real-valued functions whose
outputs are finite numbers (definition fin_num_fun):

Definition fin_num_fun d (T : semiRingOfSetsType d) (R : numDomainType)

(mu : set T -> \bar R) := forall U, measurable U -> mu U \is a fin_num.
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FinNumFun

AdditiveCharge FiniteMeasure

Charge SubProbability

SFiniteMeasure

SigmaFiniteMeasure

Probability

Content

Measure

SigmaFiniteContent

Figure 1. Hierarchy of structures for measures (Round boxes represent structures that predate this

paper [3]. Square boxes represent structures introduced for the purpose of this paper. Among

them, filled boxes represent structures that are strictly needed to define charges and finite

measures. Dashed boxes represent structures needed to accommodate a hierarchy of measure-

theoretical kernels from previous work [6]; this paper does not deal directly with s-finite

measures and probability measures, they are displayed for the sake of completeness.)

HB.mixin Record SigmaFinite_isFinite d (T : semiRingOfSetsType d) (R : numDomainType)

(mu : set T -> \bar R) := { fin_num_measure : fin_num_fun mu }.

The interface is defined by the command HB.mixin which is provided by Hierarchy-Builder.
An interface takes the form of a Coq record; interfaces are used to define structures. For example,
the interface above is used to define the structure FinNumFun of functions that respect this interface:

HB.structure Definition FinNumFun d (T : semiRingOfSetsType d) (R : numFieldType) :=

{ mu of SigmaFinite_isFinite _ T R mu }.

The command HB.structure defines structures using a Coq sigma-type composed of a carrier and
of the interface(s) it supports.

We also use the interface SigmaFinite_isFinite to define the structures of charges and, inci-
dentally, of finite measures, as can be seen in Fig. 1. This figure also explains the naming of this
interface: this is the interface used to define the structure of finite measures from the structure
of σ-finite measures.

For the definition of charges in itself, we follow MathComp-Analysis where measures are de-
fined as the structure of σ-additive functions that extends the structure of contents. We therefore
introduce an interface for additive charges:

HB.mixin Record isAdditiveCharge d (T : semiRingOfSetsType d) (R : numFieldType)

(mu : set T -> \bar R) := { charge_semi_additive : semi_additive mu }.

The predicate semi_additive comes from MathComp-Analysis and is a formal paraphrase of
the pencil and paper definition we saw in Sect. 2.1:

1 Definition semi_additive := forall F n,

2 (forall k, measurable (F k)) -> trivIset setT F ->

3 measurable (\big[setU/set0]_(k < n) F k) ->

4 mu (\big[setU/set0]_(i < n) F i) = \sum_(i < n) mu (F i).

Note that the hypothesis that the iterated union is measurable at line 3 is always true over
measurable types.

We use the latter interface to define the structure of additive charges:
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HB.structure Definition AdditiveCharge d (T : semiRingOfSetsType d) (R : numFieldType) :=

{ mu of isAdditiveCharge d T R mu & FinNumFun d mu }.

The definition indicates clearly that this structure inherits from the interface isAdditiveCharge

and the structure FinNumFun.
Finally, we define the structure of charges as additive charges that are moreover σ-additive:

HB.mixin Record isCharge d (T : semiRingOfSetsType d) (R : numFieldType)

(mu : set T -> \bar R) := { charge_semi_sigma_additive : semi_sigma_additive mu }.

HB.structure Definition Charge d (T : semiRingOfSetsType d) (R : numFieldType) :=

{ mu of isCharge d T R mu & AdditiveCharge d mu }.

Thanks toHierarchy-Builder, Coq now considers additive charges as a subtype of (σ-additive)
charges. We finally define a notation {charge set T -> \bar R} for the type of charges over the
measurable type T.

The mathematical structure of finite measures is defined similarly, by combining the inter-
face SigmaFinite_isFinite and the structure of σ-finite measures [3, Sect. 4.3]. Compared with
charges, the formalization of finite measures requires additional care because of its use in the
definition of s-finite measures. How to deal with this apparent circularity is explained in [6] in
the more general case of measure-theoretical kernels.

Eventually, the definitions of charges and of finite measures fit in the hierarchy of mathematical
structures for measures of MathComp-Analysis seen in Fig. 1.

From Charges to Measures There is a bit of theory to develop about charges. For illustration,
we can mention the construction of a measure (which is non-negative by definition) using a charge
that happens to be non-negative. First, we provide a definition:

Definition measure_of_charge d (T : measurableType d) (R : realType)

(nu : set T -> \bar R) (_ : forall E, 0 <= nu E) := nu.

In this definition, nu is expected to be a charge. The last parameter is an anonymous hypothesis
(a.k.a. a phantom type [15]). Given such an hypothesis (say, nupos), a charge is obviously a
measure, i.e., we can prove that the measure of the empty set is 0 (proof mu0 below), that it is σ-
additive (proof mu_sigma_additive) (these facts are directly derived from the definition of charge),
and that it is non-negative (proof mu_ge0 below, established thanks to the nupos hypothesis). Using
these proofs, we can declare an instance of measure using the isMeasure.Build constructor from
MathComp-Analysis and the command HB.instance from Hierarchy-Builder:

HB.instance Definition _ := isMeasure.Build d R T

(measure_of_charge nupos) mu0 mu_ge0 mu_sigma_additive.

Thanks to this definition, Coq correctly infers the type of {measure set T -> \bar R} when given
a non-negative charge.

This section has introduced the three main commands of Hierarchy-Builder to create
hierarchies of mathematical structures (namely, HB.mixin, HB.structure, and HB.instance). See [3,
Sect. 3.1] for another overview of Hierarchy-Builder.

3.2 The Hahn Decomposition Theorem

The Hahn decomposition theorem says that given a charge, a measurable type can be partitioned
into a positive set and a negative set. We first define positive and negative sets in Sect. 3.2.1.
We then give an overview of a standard proof of the Hahn decomposition theorem in Sect. 3.2.2
to give an idea of the elements that come into play. In Sect. 3.2.3, we explain the formalization
of the Hahn decomposition theorem by focusing in particular on the inductive construction of a
particular sequence of sets.
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3.2.1 Formal Definition of Negative and Positive Sets

Negative and positive sets are defined using charges (Sect. 3.1). Given a charge ν, a set N is a
negative set when it is measurable and when for all measurable sets E ⊆ N , ν(E) ≤ 0:

Definition negative_set (nu : {charge set T -> \bar R}) (N : set X) :=

measurable N /\ forall E, measurable E -> E `<=` N -> nu E <= 0.

The definition of positive sets is similar:

Definition positive_set (nu : {charge set T -> \bar R}) (P : set X) :=

measurable P /\ forall E, measurable E -> E `<=` P -> nu E >= 0.

3.2.2 Proof of the Hahn Decomposition Theorem

We consider a measurable space T and a charge ν. Given a set D and a set A, we define the

following extended real number d(A)
def
= sup{ν(E) | measurable(E), E ⊆ D \A}.

Lemma 3.1. Given a set D and a set A such that 0 ≤ d(A), there exists a measurable set B

such that 0 ≤ ν(B), B ⊆ D \A, and min
(
d(A)
2 , 1

)
≤ ν(B).

Proof. This lemma can be proved by using a property of the supremum.

Lemma 3.2. Given a measurable set D such that ν(D) ≤ 0, there exists a measurable negative
set A such that A ⊆ D and ν(A) ≤ ν(D).

Proof. When 0 ≤ d(A), there exists a measurable A0 such that 0 ≤ ν(A0) and min(d(A)
2 , 1) ≤

ν(A0) (Lemma 3.1). Since 0 ≤ d(∅), we can build such a A0, and then, by induction, we can build
three sequences A, d, U such that U0 = ∅, dn+1 = d(Un), An+1 ⊆ D \ Un, Un+1 = Un

⋃
An+1

(again using Lemma 3.1). The desired set A is D \
⋃

nAn.

Given a set A, we consider the extended real number s(A)
def
= inf{ν(x) | measurable(E), E ⊆

A∁}.

Lemma 3.3. Given A such that s(A) ≤ 0, there exists a measurable negative set B such that

ν(B) ≤ 0, B ⊆ A∁, and ν(B) ≤ max
(
s(A)
2 ,−1

)
.

Proof. This lemma can be proved by using Lemma 3.2 and a property of the infimum.

Theorem 3.1 (Hahn decomposition). There exist a negative set N and a positive set P such
that T = P ⊎N .

Proof. The proof consists in an explicit construction of the set N . The set N is built as
⋃

nAn

where An is a sequence of sets built as follows. When s(A) ≤ 0, there exists a measurable negative

set A0 such that ν(A0) ≤ 0 and ν(A0) ≤ max
(
s(A)
2 ,−1

)
w (using Lemma 3.3). Since s(∅) ≤ 0,

we can build such a A0, and then, by induction, we can build three sequences A, s, U such that
U0 = ∅, sn+1 = s(Un), An+1 ⊆ Un

∁, Un+1 = Un ∪ An+1 (again using Lemma 3.3). The set P is
taken to be N∁. We omit details about the non-trivial proof that P is indeed a positive set.

3.2.3 Formalization of the Hahn Decomposition Theorem

We define the partition of the Hahn decomposition theorem by the following predicate:

Definition hahn_decomp d (T : measurableType d) (R : realType)

(nu : {charge set T -> \bar R}) P N :=

[/\ positive_set nu P, negative_set nu N, P `|` N = setT & P `&` N = set0].

This makes for a short formal statement of the Hahn decomposition theorem:
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Context d (T : measurableType d) (R : realType).

Variable nu : {charge set T -> \bar R}.

Theorem Hahn_decomposition : exists P N, hahn_decomp nu P N.

(The d, T, and R parameters do not appear in the expression hahn_decomp nu P N because Coq
can infer them from the type of nu: they are implicit parameters.)

We explain how we build the sequences Ai, si, Ui of the proof of Theorem 3.1. For this
purpose, we use the following lemma3 that produces a sequence f obeying a relation R given an
initial element x0 and a proof that an element x always has a “successor” y:

Context X (R : X -> X -> Prop).

Lemma dependent_choice_Type : (forall x, {y | R x y}) ->

forall x0, {f | f 0 = x0 /\ forall n, R (f n) (f n.+1)}.

First, we define a type for the elements of the sequence (Ai, si, Ui). An object of this type is
such that si ≤ 0 and Ai is a negative set such that ν(Ai) ≤ max

(
si
2 ,−1

)
. These properties are

captured by the predicate elt_prop; the type of an element (Ai, si, Ui) is elt_type:

Let elt_prop (x : set T * \bar R) := [/\ x.2 <= 0,

negative_set nu x.1 &

nu x.1 <= maxe (x.2 * 2^-1%:E) (- 1%E) ].

Let elt_type := {AsU : set T * \bar R * set T | elt_prop AsU.1}.

Second, we define the relation between two successive elements (Ai, si, Ui) and (Aj , sj , Uj) of the
sequence. The definition ss corresponds to the function A 7→ s(A) of Sect. 3.2.2.

Let seq_inf i j := [/\ s_ j = ss (U_ i),

A_ j `<=` setT `\` U_ i &

U_ j = U_ i `|` A_ j].

Last, we provide a lemma that given a Ui computes Ai+1; this is the formalization of Lemma 3.3:

Let next_elt U : ss U <= 0 -> { A | [/\ A `<=` setT `\` U,

negative_set nu A &

nu A <= maxe (ss U * 2^-1%R%:E) (- 1%E)] }.

Using the above elements, we can explain the proof script to construct N . We defined s0
as ss set0 (line 1). From the proof that s0 ≤ 0, we build A0 (line 3). We build the sequence
(Ai, si, Ui) as v at line 6. The inductive construction of the sequence happens between lines 8–12.
The set N is defined at line 13. See [17] for details and for the rest of the proof.

1 have ss0 : ss set0 <= 0. (* build s0 *)

2 by apply: ereal_inf_lb => /=; exists set0; split => //; rewrite charge0.

3 have [A0 [_ negA0 A0s0]] := next_elt ss0. (* build A0 *)

4 have [v [v0 Pv]] : {v |

5 v 0%N = exist _ (A0, ss set0, A0) (And3 ss0 negA0 A0s0) /\

6 forall n, seq_inf (v n) (v n.+1)}. (* build Ai, si, Ui *)

7 apply: dependent_choice_Type => -[[[A d] U] [/= s_le0 negA]].

8 pose s' := ss U. (* build si+1 *)

9 have s'_le0 : s' <= 0.

10 by apply: ereal_inf_lb => /=; exists set0; split => //; rewrite charge0.

11 have [A' [? negA' A's'] ] := next_elt s'_le0. (* build Ai+1 *)

12 by exists (exist _ (A', s', U `|` A') (And3 s'_le0 negA' A's')).

13 set N := \bigcup_k (A_ (v k)). (* build N *)

3This lemma is part of the standard library of Coq except that until recently it was specialized with X of type
Set. See https://github.com/coq/coq/pull/16382.
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4 The Radon-Nikodým Theorem in Coq

Given two measures µ and ν, the Radon-Nikodým theorem establishes the existence of a function f
such that ν(A) =

∫
x∈A f(x)(dµ) for all measurable sets A. Here, µ is a σ-finite measure and ν is

a charge which is dominated by µ. The function f is called the Radon-Nikodým derivative of ν
w.r.t. µ; it is indeed unique up-to almost-everywhere equality.

We explain the formal statement of the Radon-Nikodým theorem in Sect. 4.1. Section 4.2
provides an overview of a standard proof which highlights the main elements whose formalization
is the purpose of Sect. 4.3.

4.1 Statement of the Radon-Nikodým Theorem

Given a measurable space (T,A) and two (signed or unsigned) measures µ1, µ2 over T , µ2 dom-
inates4 µ1 (written µ1 ≪ µ2) when µ2(A) = 0 implies µ1(A) = 0 for all measurable sets A of T .
This definition translates directly in MathComp-Analysis:

Context d (T : measurableType d) (R : realType).

Definition dominates m1 m2 := forall A, measurable A -> m2 A = 0 -> m1 A = 0.

Notation "m1 `<< m2" := (dominates m1 m2).

Theorem 4.1 (Radon-Nikodým). Let (T,A) be a σ-algebra. Given a σ-finite measure µ and a
charge ν on A such that ν ≪ µ, there exists an extended real-valued function f that is integrable
w.r.t. µ and that satisfies ν(A) =

∫
x∈A f(x)(dµ) for all measurable sets A. Moreover, any two

functions with this property are equal almost-everywhere on T .

The statement of Theorem 4.1 also translates directly in MathComp-Analysis using its
formalization of measure and integration theory and the formalization of charges we developed in
Sect. 3.1:

Theorem Radon_Nikodym d (T : measurableType d) (R : realType)

(mu : {sigma_finite_measure set T -> \bar R}) (nu : {charge set T -> \bar R}) :

nu `<< mu ->

exists2 f : T -> \bar R, mu.-integrable setT f &

forall E, measurable E -> nu E = \int[mu]_(x in E) f x.

The proviso about almost-everywhere equality is a consequence of a generic lemma that can be
found in [19].

4.2 Proof of the Radon-Nikodým Theorem

The first and main step of the proof of the Radon-Nikodým theorem is to prove it for finite
measures.

Radon-Nikodým for Finite Measures The main idea of this proof is to introduce a set G
of non-negative and integrable functions g whose integrals under-approximate ν(E) for all mea-
surable sets E, i.e., such that

∫
x∈E g(x)(dµ) ≤ ν(E). The proof consists in showing that there

exists a function f ∈ G such that
∫
x f(x)(dµ) = sup{

∫
x g(x)(dµ) | g ∈ G} def

= M and that this
function satisfies ν(E) =

∫
x∈E f(x)(dµ) for all measurable sets E.

From the definition of M , we get a sequence gk of functions in G such that
∫
x gk(x)(dµ) >

M − 1
k+1 . We define Fk(x)

def
= max{gi(x) | i ≤ k} and f = limn→∞ Fn.

We then introduce a covering partition of the domain of the functions Fm and gk in the form
of sets Em,j such that x ∈ Em,j if and only if j ≤ m is the smallest natural number such that
Fm(x) = gj(x):

Em,j
def
= {x | Fm(x) = gj(x) ∧ ∀k < j, gk(x) < gj(x)}.

4One can also say that µ1 is “absolutely continuous” w.r.t. µ2. However, we use “domination” for measures to
avoid confusion with the absolutely continuous functions seen in Sect. 1.
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The sets Em,j are pairwise disjoint for all j and for each m, and the sets Em,j cover the full set.
Using the sets Em,i, we can show that Fm ∈ G and that f ∈ G by the monotone convergence
theorem, which leads ultimately to the proof that

∫
x f(x)(dµ) = M , which concludes the first

part of the proof.
We show that

∫
x∈E f(x)(dµ) = ν(E) for any measurable set E by contradiction. We suppose

that there is a measurable set A such that
∫
x∈A f(x)(dµ) < ν(A). Then we can define ε such

that
∫
x∈A(f(x) + ε)(dµ) < ν(A) and define a charge σ(B)

def
= µ(B)−

∫
x∈B(f(x) + ε)(dµ).

By the Hahn decomposition theorem (Theorem 3.1), there exist a positive set P and a negative
set N for σ. We define

h(x)
def
=

{
f(x) + ε x ∈ A ∩ P

f(x) otherwise.

We can show that, on the one hand, for all S ⊆ A ∩ P ,
∫
x∈S h(x)(dµ) ≤ ν(S) and, on the other

hand, for all S ⊆ A ∩ P ∁,
∫
x∈S h(x)(dµ) ≤ ν(S). This leads to h ∈ G which is impossible because∫

x h(x)(dµ) > M .

Once Radon-Nikodým is proved for finite measures, it can be generalized to the case where µ
is σ-finite, and then to the case where ν is a charge.

4.3 Formalization of the Proof of the Radon-Nikodým Theorem

In this section, we explain the formalization of the main elements of the proof sketched in Sect. 4.2:
the set G, the bound M , the functions gk, Fm, and f , as well as the charge σ.

Let us first assume two measures mu and nu. The set G of functions g can be defined directly as
the following definition approxRN using the predicates integrable, measurable, and the definition
of the Lebesgue integral:

Definition approxRN := [set g : X -> \bar R | [/\

forall x, 0 <= g x, mu.-integrable setT g &

forall E, measurable E -> \int[mu]_(x in E) g x <= nu E] ].

The set {
∫
x g(x)(dµ) | g ∈ G} of integrals of the g functions and its supremum (M in the

pencil-and-paper proof) can be defined using set comprehension and ereal_sup:

Definition int_approxRN := [set \int[mu]_x g x | g in approxRN].

Definition sup_int_approxRN := ereal_sup int_approxRN.

The definition of the functions gk requires a proof of the existence of such functions as
a sequence whose elements belong to G and such that

∫
x gk(x)(dµ) > M − 1

k+1 for each k.
Since this proof requires that the measure ν is finite, we assume hereafter that nu has type
{finite_measure set X -> \bar R}:

Lemma approxRN_seq_ex : { g : (X -> \bar R)^nat |

forall k, g k \in approxRN /\ \int[mu]_x g k x > M - k.+1%:R^-1%:E }.

Since the proof of existence of the functions gk takes the form of a sigma-type, we can obtain the
sequence gk by taking the first projection using the generic function sval:

Definition approxRN_seq : (X -> \bar R)^nat := sval approxRN_seq_ex.

To define Fm, it suffices to take the maximum of the functions gk using the generic iterated
operators from MathComp (see Sect. 2.2):

Definition max_approxRN_seq m x := \big[maxe/-oo]_(k < m.+1) g_ k x.

The function f is the limit of the functions Fm. Given the definitions so far, the start of the proof
of the Radon-Nikodým theorem is the matter of the following declarations (where mu and nu are
both finite measures as far as this first step is concerned):
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Let G := approxRN mu nu.

Let M := sup_int_approxRN mu nu.

Let g := approxRN_seq mu nu.

Let F := max_approxRN_seq mu nu.

Let f := fun x => lim (F ^~ x).

It remains to show that f is the function searched for, see [19] for these details.
We now move on to explain the construction of the charge σ. When constructing σ, we are

in the second part of the proof sketched in the previous section. This is a proof by contradiction
in the context of which we are given a measurable set A such that

∫
x∈A f(x)(dµ) < µ(A), that

is, we are in the following local context:

Context A (mA : measurable A) (h : \int[mu]_(x in A) f x < nu A).

In this precise context, we first prove the existence of an ε > 0 such that
∫
x∈A(f(x) + ε)(dµ) <

ν(A):

Lemma epsRN_ex : {eps : {posnum R} | \int[mu]_(x in A) (f x + eps%:num%:E) < nu A}.

Since the conclusion of the lemma epsRN_ex is a sigma-type, we can obtain the wanted ε by taking
its first projection:

Definition epsRN := sval epsRN_ex.

We now have enough material to define the function σ (however we do not know yet whether it
is a charge):

Definition sigmaRN B := nu B - \int[mu]_(x in B) (f x + epsRN%:num%:E).

To show that the function σ is actually a charge, we need to show that it satisfies the interface
SigmaFinite_isFinite, i.e., that sigmaRN is not infinite (see Sect. 3.1):

Let fin_num_sigmaRN B : measurable B -> sigmaRN B \is a fin_num.

We also need to show that sigmaRN is additive so that it satisfies the interface isAdditiveCharge:

Let sigmaRN_semi_additive : semi_additive sigmaRN.

And that it is σ-additive, i.e., that it satisfies the interface isCharge:

Let sigmaRN_semi_sigma_additive : semi_sigma_additive sigmaRN.

Since σ has been shown to be a genuine charge, we can apply the Hahn decomposition theorem
of Sect. 3.2.3 to pursue and conclude the proof of the Radon-Nikodým theorem sketched in the
previous section. See [19, lemma radon_nikodym_finite_ge0] for the remaining details of the
proof of Radon-Nikodým for finite measures, [19, lemma radon_nikodym_sigma_finite_ge0] for the
generalization of mu to a σ-finite measure, and [19, theorem Radon_Nikodym] for the final statement
where nu is a charge. In particular, this last step makes use of the Jordan decomposition of a
charge into a difference of two measures (this is where we use the construction measure_of_charge

from Sect. 3.1).

5 The Lebesgue-Stieltjes Measure

The last section of this paper documents the construction of the Lebesgue-Stieltjes measure.
Given a non-decreasing right-continuous real function f , the Lebesgue-Stieltjes measure Λf is the
measure such that the length of an interval ]a, b] is f(b) − f(a). This generalizes the Lebesgue
measure (which is the special case where f is taken to be the identity function). We recall in
Sect. 5.1 generic lemmas from previous work [3] that we use in Sect. 5.2 to build the Lebesgue-
Stieltjes measure by extension.
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5.1 Measure Extension with MathComp-Analysis

A standard way to construct measures (over a σ-algebra) is by extension of a measure over a
semiring of sets (to produce a measure over the σ-algebra generated by the semiring of sets).
To perform such a measure extension, MathComp-Analysis provides a generic construction
whose main elements are a definition Hahn_ext (which stands for “Hahn extension”) and a lemma
Hahn_ext_sigma_additive.

The definition Hahn_ext is an outer measure (notation ...^*) from a content mu over a semiring
of sets T :

Context d (R : realType) (T : semiRingOfSetsType d).

Variable mu : {content set T -> \bar R}.

Let I := [the measurableType _ of salgebraType (@measurable _ T)].

Definition Hahn_ext : set I -> \bar R := mu^*.

The type I is the σ-algebra generated from the semiring of sets T. The notation [the aType of b]

is a Hierarchy-Builder notation to infer explicitly the type aType from b provided that b has
indeed been shown to be an instance of aType. See [3, Sect. 3.3] for the formalization of generated
σ-algebra and [3, Sect. 4.1] for the formalization of outer measures.

The lemma Hahn_ext_sigma_additive shows that the measure extension Hahn_ext is actually
σ-additive. It requires a proof that mu is σ-subadditive (hypothesis mu_sub below):

Hypothesis mu_sub : sigma_sub_additive mu.

Lemma Hahn_ext_sigma_additive : semi_sigma_additive Hahn_ext.

Proof. (* see [2] *) Qed.

It is easier to construct a measure by extension rather than by a direct construction in part
because it is easier to prove σ-subadditivity rather than σ-additivity directly. The measure
extension of MathComp-Analysis has already been used to construct the Lebesgue measure
in [3, Sect. 5].

5.2 Construction of the Lebesgue-Stieltjes Measure

The construction of the Lebesgue-Stieltjes measure by extension starts by defining the semiring
of sets of open-closed intervals. Let ocitv by the set of such intervals:

Variable R : realType.

Definition ocitv_type : Type := R.

Definition ocitv := [set `]x.1, x.2]%classic | x in [set: R * R]].

(The ocitv_type identifier is an alias for R to be used below.) This set forms a semiring of sets
because it contains the empty set set0 (proof ocitv0), it is closed under finite intersection (proof
ocitvI), and it is “closed under finite difference” (see Sect. 2) (proof ocitvD). We use these
proofs to declare a Hierarchy-Builder instance of semiring of sets attached to the identifier
ocitv_type5:

HB.instance Definition _ d := @isSemiRingOfSets.Build d ocitv_type

(Pointed.class R) ocitv ocitv0 ocitvI ocitvD.

Second, we define the length of an interval. Recall that the Lebesgue-Stieltjes measure is
parameterized by a non-decreasing real function; since the goal is to produce a measure, and thus
an extended real-valued function, we need to embed the real function f using:

Definition EFinf {R : numDomainType} (f : R -> R) : \bar R -> \bar R :=

fun x => if x is r%:E then (f r)%:E else x.

5The occurrence of Pointed.class R in the declaration of this instance is a technicality that can be ignored by
the reader.
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For the sake of generality, the length of an interval is defined over arbitrary sets for which we take
the hull using Rhull (see [2, file normedtype.v]):

Let g : \bar R -> \bar R := EFinf f.

Definition hlength (A : set itvs) : \bar R := let i := Rhull A in g i.2 - g i.1.

The function hlength is non-negative (proof hlength_ge0') and additive (proof hlength_semi_additive).
We can therefore instantiate the interface of contents with hlength:

HB.instance Definition _ (f : cumulative R) :=

isContent.Build _ R _ (hlength f : set ocitv_type -> _)

(hlength_ge0' f) (hlength_semi_additive f).

(The type cumulative R is for non-decreasing real functions.) Since hlength is a content, we can
use the definition Hahn_ext of the previous section (Sect. 5.1) to define the Lebesgue-Stieltjes
measure:

Definition lebesgue_stieltjes_measure (f : cumulative R) :=

Hahn_ext [the content _ _ of hlength f : set ocitv_type -> _ ].

The function lebesgue_stieltjes_measure is σ-additive. Indeed, we can prove that hlength

is σ-subadditive and use the generic lemma Hahn_ext_sigma_additive of Sect. 5.1 to prove that
lebesgue_stieltjes_measure is σ-additive. The proof that hlength is σ-subadditive is actually
where the mathematical difficulty lies, see [18, lemma hlength_sigma_sub_additive] for its for-
malization. Given the proofs that lebesgue_stieltjes_measure meets the properties of a measure,
we can declare its instance:

HB.instance Definition _ (f : cumulative R) := isMeasure.Build _ _ _

(lebesgue_stieltjes_measure f)

(lebesgue_stieltjes_measure0 f)

(lebesgue_stieltjes_measure_ge0 f)

(@lebesgue_stietjes_measure_semi_sigma_additive f).

This construction provides a measure that applies to a σ-algebra generated from open-closed
intervals. If we use for the f function the identity function, we recover the Lebesgue measure as
a special case, see [18].

6 Related Work

To the best of our knowledge, the formalizations explained in this paper (charges, Hahn decom-
position theorem, Radon-Nikodým theorem, Lebesgue-Stieltjes measure) have never been carried
out in the Coq proof assistant. However, one can find formal proofs of these results in other
proof assistants.

Isabelle/HOL has had an extensive formalization of measure and integration theory since
2011 [16]. With the contents of this paper, MathComp-Analysis now covers the same material.
Compared to [16], some aspects of our work are a bit more general thanks to the Lebesgue-Stieltjes
measure. As far as we understand, in [16], the Radon-Nikodým theorem seems to be specialized
to non-negative measures, [16] does not mention charges or signed measures. Signed measures
and the Hahn decomposition theorem have recently been added to the Isabelle Archive of Formal
Proofs [11] but as an independent development.

One can also find the Radon-Nikodým theorem in the HOL proof assistant [21]. In [21],
the Radon-Nikodým theorem is stated for finite measures, it is not clear from [21] whether it is
extended to charges, the source code available online does not seem to indicate so [9]. Mhamdi
et al. [21] point at other applications of the Radon-Nikodým theorem such as the formalization
of the Kullback-Leibler divergence.
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The Lean proof assistant also has an extensive and more recent formalization of measure
and integration theory. It contains a formalization of the Radon-Nikodým theorem [24] using
Lebesgue’s decomposition theorem.

The formalization of the Fundamental Theorem of Calculus that we have been using as a
motivating example has already been explored in Coq [12]. This is however a version using the
Riemann integral of continuous functions and a constructive proof while we are dealing with the
Lebesgue integral.

7 Conclusion

In this paper, we have extended the measure theory of MathComp-Analysis with new for-
malizations of standard constructions (charges and the Lebesgue-Stieltjes measure) and standard
theorems (Hahn decomposition and Radon-Nikodým theorems). We have chosen to formalize
these constructions and theorems because they are useful to deal with the semantics of proba-
bilistic programs and to formalize mathematics in general. To the best of our knowledge, this is
the first time that they are proved in the Coq proof assistant. These additions are now available
as reusable lemmas in the form of pull requests [17–19] to MathComp-Analysis.

Our next step is to formalize the Fundamental Theorem of Calculus of Sect. 1 using the Radon-
Nikodým theorem and the Lebesgue-Stieltjes measure. For this purpose, more formal theories
are needed to relate absolutely continuous functions and Lebesgue-Stieltjes measures, as well as
to relate other notions as explained below. An important point is to connect the definitions of
absolute continuity of functions and the one of domination for measures with the following lemma:
a function f is absolutely continuous if and only if the Lebesgue-Stieltjes measure associated with
f is absolutely continuous w.r.t. to the Lebesgue measure. We also need to take into account
the situation where f is not non-decreasing, in which case Λf should intuitively be replaced by a
charge. To see that the Radon-Nikodým derivative coincides with the usual derivative, we can use
the Lebesgue differentiation theorem. It says that when f : R → R is a function that is integrable

in a neighborhood of x ∈ R, then limr→0
1

Λ[x− r
2
;x+ r

2
]

∫ x+ r
2

t=x− r
2
f(t)(dΛ) = f(x). From this theorem,

we can show that a Radon-Nikodým derivative fRN is the derivative f ′ as follows:

fRN(x) = lim
r→0

1

r

∫ x+ r
2

t=x− r
2

fRN(t)(dΛ) = lim
r→0

f(x+ r
2)− f(x− r

2)

r
= f ′(x).

We are currently undertaking the formalization of the elements explained above usingMathComp-
Analysis.
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