
An Introduction to MathComp-Analysis

Reynald Affeldt

January 13, 2025

2

Contents

1 Overview of Coq and MathComp 9
1.1 A Bit of History . 9
1.2 What are Proof Assistants Good for? 10
1.3 Short Presentation of Coq . 12
1.4 The Rest of this Document . 15

2 Introduction to Coq using SSReflect 17
2.1 The Languages of the Coq Proof Assistant 17

2.1.1 Gallina: the Language of Proofs 17
2.1.2 Vernacular: the Language of Commands 18

2.2 Interactive Proof . 19
2.3 Discoverability of Definitions and Lemmas 21

2.3.1 Checking Existing Lemmas 21
2.3.2 Searching for Lemmas and Notations 22

2.4 Inductive Types . 23
2.4.1 Boolean Numbers . 23
2.4.2 Proof by Case Analysis . 24
2.4.3 Natural Numbers . 25
2.4.4 Recursive Functions . 26
2.4.5 Proof by Induction . 26

2.5 List Data Structures . 27
2.5.1 Lists . 27
2.5.2 Vectors . 27

2.6 The Leibniz Equality and Rewriting 27
2.7 More Propositional Logic with Coq 29
2.8 Predicate Logic: the Existential Quantifier and Sigma-types . . . 29
2.9 Views . 30
2.10 Implicit Arguments . 31
2.11 Script Management . 32

3 Introduction to the MathComp Library 35
3.1 Useful Notation Scopes in MathComp 35
3.2 Generic Definitions and Notations 35
3.3 IMPORTANT Naming Conventions 37

3

CONTENTS CONTENTS

3.3.1 Properties of Operations . 37
3.3.2 Properties of Relations . 39

3.4 About Mathematical Structures . 39
3.5 Building Hierarchies with Hierarchy-Builder 40

3.5.1 ssrbool.v: Boolean Reasoning 42
3.5.2 eqtype.v: Decidable Equality 43
3.5.3 ssrnat.v: Natural Numbers 44
3.5.4 fintype.v: Finite Types . 46
3.5.5 seq.v: Lists . 47
3.5.6 order.v: Ordered Types . 47
3.5.7 IMPORTANT bigop.v: Iterated Operations 48
3.5.8 About Finite Sets . 50

3.6 Mathematical Structures in algebra 50
3.6.1 ssralg.v: Algebraic Structures 50
3.6.2 poly.v: Polynomials . 51
3.6.3 ssrnum.v: Numeric Types 52
3.6.4 interval.v: Intervals . 52

4 Classical Reasoning using MathComp 55
4.1 Axioms Introduced by MathComp-Analysis 55

4.1.1 Propositional Extensionality 55
4.1.2 Functional Extensionality 56
4.1.3 Constructive Indefinite Description 56
4.1.4 Consequences of Classical Axioms 56

4.2 Naive Set Theory . 57
4.2.1 Basic Set-theoretic Operations 57
4.2.2 More Set-theoretic Constructs 58

4.3 Supremum and Infimum . 58
4.4 Mathematical Structures in MathComp-Analysis 59

4.4.1 Pointed Types . 59
4.4.2 Real Numbers . 59

4.5 Convergence . 60
4.5.1 Filters . 60
4.5.2 Convergence using Filters 61
4.5.3 Filtered Types . 62

4.6 Other Structures in MathComp-Analysis 62
4.6.1 Topological Spaces . 62
4.6.2 Uniform Spaces . 63
4.6.3 Pseudometric Spaces . 64
4.6.4 Complete Spaces . 65
4.6.5 Normed Modules . 65

4.7 near Notations and Tactics . 66
4.8 Sequences . 69

4

CONTENTS CONTENTS

5 Measure Theory with MathComp-Analysis 73
5.1 Extended Real Numbers . 73
5.2 Formalization of σ-algebras . 75
5.3 Generated σ-algebra . 79
5.4 Formalization of Measures . 81

5.4.1 Example: the Dirac Measure 83
5.4.2 Other Instances of Measures 86

5.5 Measurable Functions . 86

6 Integration Theory with MathComp-Analysis 87
6.1 Simple Functions . 87

6.1.1 Approximation Theorem . 88
6.2 Integral of Measurable Functions 90

6.2.1 Integral of a Simple Function 90
6.2.2 Integral of a Non-negative Function 90
6.2.3 Integral of a Measurable Function 90
6.2.4 Properties of the Integral 91

6.3 Monotone Convergence Theorem 91
6.3.1 Monotone Convergence for Simple Functions 91
6.3.2 Monotone Convergence Intermediate Lemma 92
6.3.3 Proof of the Monotone Convergence Theorem 92

6.4 Fubini’s Theorem . 94

7 Derivation with MathComp-Analysis 97
7.1 Differentiation . 97

8 Conclusion 99

Bibliography 101

A Cheat Sheets 107

B Coq and MathComp Installation 113

List of Tables 115

List of Figures 117

Index 118

5

CONTENTS CONTENTS

6

Abstract

This document is a memo written for a class of about ten hours held at the
Graduate School of Mathematics at Nagoya University from [2022-12-19] to
[2022-12-23]. The intent is to provide the necessary background about the Coq
proof assistant and the MathComp library (for students who already had an
exposition to these pieces of software) to be able to understand and get started
with the MathComp-Analysis library. This document is meant to be self-
contained. Since Coq and MathComp are already explained elsewhere, the
parts about them are rather cursory, relying on pointers to the appropriate lit-
erature such as the Coq reference manual [The Coq Development Team, 2024],
the original SSReflect manual [Gonthier et al., 2016], and the Mathemati-
cal Components book [Mahboubi and Tassi, 2021]. And for Japanese readers:
[Affeldt, 2017], [Hagiwara and Affeldt, 2018].

Revision history:

• Version 1: [2022-12-23]

• Version 2: [2023-01-27] (typos)

• Version 3: [2023-03-17] (update w.r.t. MathComp-Analysis version 0.6.1)

• Version 4: [2023-04-22] (update w.r.t. MathComp-Analysis version 0.6.2)

• Version 5: [2024-01-03] (update w.r.t. MathComp-Analysis version 0.6.6)

• Version 6: [2024-02-12] (update w.r.t. MathComp-Analysis version 1.0.0)

• Version 7: [2024-06-26] (update w.r.t. MathComp-Analysis version 1.2.0)

• Version 8: [2024-08-06] (update w.r.t. MathComp-Analysis version 1.3.0)

• Version 9: [2025-01-13] (update w.r.t. MathComp-Analysis version 1.8.0)

7

CONTENTS CONTENTS

8

Chapter 1

Overview of Coq and
MathComp

Goal of this chapter: This chapter is an overview about proof assistants based
on dependent type theory and serves as an introduction to the topic of this
document which is more specifically about the MathComp-Analysis library.

1.1 A Bit of History
The creation of proof assistants is the result of research on the foundations of
mathematics that has been happening since the last century.

It started with the discovery of contradictions in early set theory, contradic-
tions such as this one explained by Russell in 1901: a ∈ a is equivalent to a ∉ a if
one defines a

def= {x ∣ x ∉ x}. Set theory has been quickly patched to avoid such
contradictions.

The idea to use types to prevent contradictions provides an alternative to set
theory to describe the foundations of mathematics. This alternative has been
proposed by Russell in 1908:

Whatever contains an apparent variable must not be a possible value
of that variable. (Bertrand Russell, [Russell, 1908])

The theory of types has been developed in the Principia Mathematica written
in 1910–1913 by Whitehead and Russell [Whitehead and Russell, 1927]. In the
1930s, Curry showed a correspondence between propositional logic and com-
binators. In 1940, Church used the λ-calculus to propose the simple theory of
types [Church, 1940]. It was becoming clear that types could be used to perform
proof checking and that there was a relation with algorithms. This ultimately
led to the Curry-Howard correspondence in 1969 [Howard, 1980].

Proof checking using types was soon implemented using a computer by de
Bruijn in 1967–1968 as the proof assistant AUTOMATH. Research on type the-
ory and its implementation continued in the 1970s with Martin-Löf and Milner

9

CHAPTER 1. OVERVIEW OF COQ AND MATHCOMP 1.2. WHAT ARE PROOF ASSISTANTS GOOD FOR?

in particular and led to the implementation of LCF among others. As for the
Coq proof assistant (Coq website), its implementation started in France in
1984 and is still thriving.

It is worth noting that in parallel efforts were also undertaken to put more
structure in mathematics. In particular, starting in 1934–1935, Bourbaki has
been using set theory for that purpose. On this occasion, Bourbaki put an
emphasis on the notion of mathematical structure. However:

Theory of Sets was meant to provide a formally rigorous basis for the
whole of the treatise, and the concept of structure represented the ul-
timate stage of this undertaking. The result, however, was different:
Theory of Sets appears as an ad-hoc piece of mathematics imposed
upon Bourbaki by his own declared positions about mathematics,
rather than as a rich and fruitful source of ideas and mathematical
tools. (Leo Corry, [Corry, 1992])

Retrospectively, it seems that the notion of mathematical structure could not re-
ally be used systematically for the lack of a mechanical tool. In some sense, the
Mathematical Components project (Mathematical Components website) that
started at the Inria-Microsoft Research Joint Center in 2005 can be seen as an
attempt at fulfilling this goal. By the way, here is what the hierarchy of mathe-
matical structures in core MathComp looked like in May 2023 (at the time of
the release of MathComp 2):

Monoid_ComLaw

Monoid_AddLaw

SemiGroup_ComLaw Monoid_Law

SemiGroup_Law

GRing_Algebra

Algebra

ComAlgebraGRing_UnitAlgebraSubAlgebra

UnitAlgebra

ComUnitAlgebraFalgebra

choice_Choice

CountableGRing_Nmodule POrderSubChoice

fintype_FiniteNmodule SubCountableGRing_SemiRingGRing_ZmoduleSubNmodule

FinPOrderNum_POrderedZmodule

LatticeBPOrder SubPOrderTPOrder

FinRing_Nmodule BaseFinGroup SubFiniteSemiRingZmodule

eqtype_Equality

SubEqualityEqQuotient

ZmodQuotient

FinRing_SemiRingFinRing_Zmodule FinGroup

FinLattice

Lalgebra

GRing_Lalgebra

SubLalgebra Lmodule

GRing_Lmodule

vector_Vector SubLmodule Ring ComSemiRing

FinRing_Ring FinRing_ComSemiRing

GRing_Ring GRing_ComSemiRingSubSemiRing

Num_NormedZmodule

SubZmodule

ComRingUnitRing

FinRing_ComRingFinRing_UnitRingComUnitRing

FinRing_ComUnitRing

GRing_ComRingGRing_UnitRingRingQuotient SubRing

GRing_ComUnitRingSubComRingSubUnitRingUnitRingQuotient

SubComSemiRing

Num_NumDomain

GRing_IntegralDomainSubComUnitRing

GRing_Field IntegralDomainSubIntegralDomain

FieldExt

DistrLattice

Total

BDistrLattice

Num_RealDomain

FinTotal

SubOrder

CBDistrLattice TBDistrLattice

Num_NumFieldGRing_DecidableField FieldSubField

Num_RealField

Num_ClosedField

GRing_ClosedFieldDecidableField FinRing_Fieldgalois_SplittingField

FinRing_IntegralDomain

BLattice SubPOrderLatticeTLattice

SubPOrderBLatticeTBLattice JoinSubLattice SubPOrderTLattice MeetSubLattice

Num_ArchimedeanFieldNum_RealClosedField

TBPOrder

JoinSubBLattice SubPOrderTBLattice MeetSubBLattice

CTBDistrLattice FinDistrLattice

BLatticeClosed

BJoinLatticeClosed TBLatticeClosed

JoinLatticeClosed

LatticeClosed

BJoinSubLattice

BJoinSubTLattice BSubLattice

BSubTLattice

JoinSubTBLattice SubBLattice

SubTBLattice

JoinSubTLattice SubLattice

SubTLatticeMeetSubTBLattice

MeetSubTLattice

SubType

TBSubLattice

TSubBLattice

TSubLatticeTMeetSubBLattice

TMeetSubLattice

FinCDistrLattice

ClosedField

Mul2Closed

MulClosedSemiring2Closed

DivClosedSemiringClosed SmulClosed

SdivClosed

DivringClosed

SubringClosed

AddClosed

ZmodClosed

SubmodClosedIdealr

DivalgClosed

OppClosed

SubalgClosedPrimeIdealr

generic_quotient_Quotient

ProperIdeal

OrderMorphism

JoinLatticeMorphism MeetLatticeMorphism

LatticeMorphism

GRing_Additive

GRing_Linear RMorphism

GRing_LRMorphism

MeetLatticeClosed

TMeetLatticeClosed

TLatticeClosed BLatticeMorphism

TBLatticeMorphism

TLatticeMorphism

With that many structures, it is no wonder that one cannot manage on paper.
See Fig. 3.1, page 41 for a bit more readable hierarchy.

1.2 What are Proof Assistants Good for?
Today formal verification has emerged as a mean to guarantee the correctness
of software and mathematics and it is often carried out using proof assistants.

The most obvious application of formal verification is to prevent bugs in
computer programs. Formal verification is indeed recommended to provide the
highest level of assurance in the international standard Common Criteria for
Information Technology Security Evaluation for computer security (ISO/IEC
15408).

Formal verification is also useful to verify large mathematical proofs. The
proof of the Kepler conjecture by Hales is a famous example. Though his proof
was accepted as a theorem in 1998 by the Annals of Mathematics, referees said
that they were only “99% certain” of the correctness because of a substantial use
of computer programs in the course of the proof. Subsequently, Hales started
the Flyspeck project in 2003 to formally verify his proof using the Isabelle/HOL

10

https://coq.inria.fr/
https://math-comp.github.io/

1.2. WHAT ARE PROOF ASSISTANTS GOOD FOR? CHAPTER 1. OVERVIEW OF COQ AND MATHCOMP

and the HOL Light proof assistants. It took eleven years. Other famous math-
ematicians have recognized the need for formal verification:

A technical argument by a trusted author, which is hard to check
and looks similar to arguments known to be correct, is hardly ever
checked in detail. (Vladimir Voevodsky [Voevodsky, 2014])

The Coq proof assistant is a piece of software used to verify computer pro-
grams and mathematics. Coq has been awarded the ACM SIGPLAN Program-
ming Languages Sofware Award and the ACM Software System Award in 2013.
Xavier Leroy at Collège de France and his colleagues have been awarded the
ACM Software System Award in 2021 for their verification of a C compiler in
Coq. Though there are other proof assistants around (Mizar, Isabelle/HOL,
PVS, Lean, etc.), none has received so much academic recognition so far. Coq
has also been used to formalize mathematics, for example the Four Color The-
orem in 2004 [Gonthier, 2008]

Theorem four_color (m : map R) : simple_map m -> map_colorable 4 m.

the Odd Order Theorem in 2013 [Gonthier et al., 2013]

Theorem Feit_Thompson (gT : finGroupType) (G : {group gT}) :
odd #|G| -> solvable G.

the Abel–Ruffini theorem in 2021 [Bernard et al., 2021], etc. These examples
are about algebra, the goal of this class is rather about analysis.

You can find online a list of research papers using MathComp. More gener-
ally, research papers on proof assistants can be found in the proceedings of the
International Conference on Interactive Theorem Proving (ITP) or the ACM
SIGPLAN International Conference on Certified Programs and Proofs (CPP).
Yet, the usage of proof assistants has been spreading to other conferences in
computer science, in particular programming languages.

The author of this memo has been using Coq with colleagues to perform a
few experiments, e.g.:

• Formalization of information theory (e.g., Shannon’s source and channel
coding theorems [Affeldt et al., 2014]), formalization of error-correcting
codes [Affeldt et al., 2020b]

• 3D geometry for robotics [Affeldt and Cohen, 2017]

• Formalization of analysis [Affeldt et al., 2018, Affeldt et al., 2020a], mea-
sure and integration theory [Affeldt and Cohen, 2023, Ishiguro and Affeldt, 2024]

• Verification of probabilistic programs [Affeldt et al., 2021, Affeldt et al., 2023,
Saito and Affeldt, 2023]

In particular, the formalization of analysis gave rise to an extension of the
MathComp library called MathComp-Analysis. It is available online as open
source software (MathComp-Analysis) and this will be the main topic of this
class.

11

https://math-comp.github.io/papers.html
https://github.com/math-comp/analysis

CHAPTER 1. OVERVIEW OF COQ AND MATHCOMP 1.3. SHORT PRESENTATION OF COQ

1.3 Short Presentation of Coq
It is maybe better to follow this introduction using a proper installation of the
Coq proof assistant, see Appendix B. Do not worry too much about details, we
will come back to them in the next two chapters.

The Coq proof assistant is essentially a programming environment in which
one can write functions. Let us define the addition of natural numbers (encoded
in unary) using the Gallina language of the Coq proof assistant:

From mathcomp Require Import ssreflect ssrfun ssrbool eqtype.
From mathcomp Require Import ssrnat.

Fixpoint add n m :=
if n is n'.+1 then (add n' m).+1
else m.

When writing Coq code using the theory X, it is better to go to the file X.v,
copy-paste the header (Require Imports, etc.), and add Require Import X. This
should explain the first two lines above.

We can compute the result of, say, 2 + 3:

Compute add 2 3.
(* = 5 : nat *)

What will turn out to be very important is the type of expressions. Each
expression has a type. The type of 0, 1, 2, etc. is nat, the type of natural
numbers. The type of add is:

About add.
(* add : nat -> nat -> nat *)

In other words, add is a function that takes two natural numbers and returns a
natural number. More precisely, add is a function that given a natural number
returns a function that takes a natural number and returns a natural number,
so that add 2 actually makes sense as an expression:

Check add 2.
(* add 2 : nat -> nat *)

In the simple case of the addition of natural numbers, the type information
should not be surprising since it is what one can find in most typed programming
languages.

Instead of natural numbers, let us consider the data structure of lists (no-
tation: [:: a; b; c]) and their concatenation as implemented by the function
cat (which is coming from the file MathComp

seq.v):

From mathcomp Require Import seq.

Compute cat [:: 1; 2; 3] [:: 4].
(* = [:: 1; 2; 3; 4] : seq nat *)

12

1.3. SHORT PRESENTATION OF COQ CHAPTER 1. OVERVIEW OF COQ AND MATHCOMP

About cat.
(* cat : forall {T : Type}, seq T -> seq T -> seq T *)

We can observe that, even though we computed the concatenation of lists of
natural numbers, the cat function is not restricted to numerical types in par-
ticular. It can handle any type: the type of cat is parameterized by a type T
that is generic. Type is a type provided by the Gallina language to mean “any
type”. We say that cat is polymorphic.

We actually brought up the example of lists to explain another, more im-
portant feature of the Coq proof assistant: dependent types, i.e, types that
depends on functions’ inputs. The basic example used to illustrate dependent
types is the type of “fixed-size lists”; you can think also of the type of vectors
in algebra. Let us ignore for now how it is implemented and only look at the
construct [tuple of xyz] that turns a list xyz into a fixed-size list (a tuple in
MathComp parlance).

From mathcomp Require Import tuple.

Check [tuple of cat [:: 1; 2; 3] [:: 4]].
(* [tuple of [:: 1; 2; 3] ++ [:: 4]] : (3 + 1).-tuple nat *)

Thanks to the type of fixed-size lists, the type system of Coq displays the size of
the list in its type of the form n.-tuple nat. This is already a form of program
verification in the sense that one can use the type system to verify the output
of the cat function:

Check cat [:: 1; 2; 3] [:: 4] : 4.-tuple _.
Fail Check cat [:: 1; 2; 3] [:: 4] : 3.-tuple _.
(* The command has indeed failed with message:

The term "[:: 1; 2; 3] ++ [:: 4]" has type "seq nat"
while it is expected to have type "3.-tuple ?T". *)

The fact that the above command succeeds is a proof that the result has the
right size.

The property of the cat function that we just used can be expressed in
general terms:

Check (fun n m (x : n.-tuple nat) (y : m.-tuple nat) => [tuple of cat x y]).
(* : forall n m : nat, n.-tuple nat -> m.-tuple nat -> (n + m).-tuple nat *)

The forall expression indicates that the return type is depending on inputs.
This notation suggests that types can be used to represent lemmas.

Indeed, let us work out some proof now. The following expression is a valid
type ([::] is a notation for the empty list):

Check forall l : list nat, cat [::] l = l.
(* forall l : seq nat, [::] ++ l = l : Prop *)

13

CHAPTER 1. OVERVIEW OF COQ AND MATHCOMP 1.3. SHORT PRESENTATION OF COQ

Like Type, Prop is a Coq type. Type and Prop are (essentially) the only types
provided by default by Coq. = is a binary predicate for equality. We will come
back to them later.

The following type is also valid:

Check forall l : list nat, cat l l = l.

The statement is valid, that does not mean that it is true.
We can use Coq to discriminate between propositions that hold and proposi-

tions that do not hold. It is simply by providing a term that has the appropriate
type. For example:

Check (fun l => erefl) : forall l : list nat, cat [::] l = l.

So, fun l => erefl (whatever it is) is a proof that the statement

forall l : list nat, cat [::] l = l

is true. In contrast, it is not a proof of forall l : list nat, cat l l = l:

Fail Check (fun l => erefl) : forall l : list nat, cat l l = l.

In Coq, we can regard types as lemmas and terms as proofs. This is the
basic idea of the Curry-Howard correspondence we mentioned in § 1.1.

Let us go back to natural numbers. fun n => erefl is also a proof that
add 0 n = n:

Check (fun n => erefl) : forall n, add 0 n = n.

But it is not a proof for add n 0 = n:

Fail Check (fun l => erefl) : forall n, add n 0 = n.

What could be a proof then? Here is one:

Check (nat_ind (fun n => add n 0 = n) (erefl 0)
(fun n (ih : add n 0 = n) =>

eq_trans (f_equal (fun f => f (add n 0)) (erefl S)) (f_equal S ih)))
: forall n, add n 0 = n.

Whatever that term is, it should be clear that it is not going to be practical to
require a user to write such programs to serve as proofs.

In the Coq proof assistant (actually in most proof assistants), proofs are
written incrementally using tactics. Tactics are provided to the proof assistant
in the form of scripts. Here is a script (a one-liner) corresponding to the proof
above:

Lemma addn0 n : add n 0 = n.
Proof. by elim: n => //= n ->. Qed.

About addn0.
(* addn0 : forall n : nat, add n 0 = n *)

14

1.4. THE REST OF THIS DOCUMENT CHAPTER 1. OVERVIEW OF COQ AND MATHCOMP

We will explain the tactics in the next chapter but you can already guess that,
even though it is definitely shorter than providing a term, it is still going to be
a bit technical.

Let us conclude with a proof that the addition of natural numbers is com-
mutative. It requires one more intermediate lemma:

Lemma addnS m n : add m n.+1 = (add m n).+1.
Proof. by elim: m => //= m ->. Qed.

Lemma addC m n : add m n = add n m.
Proof. by elim: m n => [n|m ih n]; rewrite ?addn0 //= ih -addnS. Qed.

This small example shows that to prove the commutativity of the addition of
natural numbers addC, we needed already two lemmas: addn0 and addnS. When
developing a theory of lemmas, which lemma should be proved? How should
they be organized in files? How should they be named and documented? There
are going to be a lot of them. In fact, when developing a formal theory, many
problems are not so much about the proof, because after all its main idea is
already known, but rather about problems akin to software engineering.

1.4 The Rest of this Document
Hopefully, we are going to end the week by looking at the proof of Fubini’s
theorem. In other words, we are going to produce a proof term whose type will
be something like:

Context d1 d2
(T1 : measurableType d1) (T2 : measurableType d2) (R : realType).

Variables (m1 : {sigma_finite_measure set T1 -> \bar R})
(m2 : {sigma_finite_measure set T2 -> \bar R}).

Variable f : T1 * T2 -> \bar R.
Hypothesis imf : (m1 \x m2).-integrable setT f.

Theorem Fubini :
\int[m1]_x \int[m2]_y f (x, y) = \int[m2]_y \int[m1]_x f (x, y).

For this purpose, we will explain

• the commands and tactics of the Coq proof assistant that we will use,

• the mathematical structures provided by MathComp, the mathematical
structures provided by MathComp-Analysis (Fig. 4.1), as well as new
mathematical structures (for measure theory: semiring of sets, ring of sets,
algebra of sets, σ-algebras—Fig. ??; etc.), and

• the libraries of definitions, lemmas, notations, etc. that we have used or
newly developed.

15

CHAPTER 1. OVERVIEW OF COQ AND MATHCOMP 1.4. THE REST OF THIS DOCUMENT

16

Chapter 2

Introduction to Coq using
SSReflect

Goal of this chapter: This chapter aims at a technical introduction to the Coq
proof assistant using its SSReflect extension. We try to favor the information
that is the most useful to use the MathComp libraries and refer to the Coq
documentation [The Coq Development Team, 2024] otherwise.

There exist many introductions to the Coq proof assistant, most notably
the standard textbook [Bertot and Castéran, 2004] (whose French translation is
available online [Bertot and Castéran, 2015]). Regarding SSReflect tactics,
there is [Gonthier et al., 2016, Mahboubi and Tassi, 2021] as well as cheat sheets
made available by the developers of SSReflect that might be worth printing.

2.1 The Languages of the Coq Proof Assistant

2.1.1 Gallina: the Language of Proofs

Gallina is an extensible language with which we will write formal statements
and proofs. It is an implementation of a variant of the typed λ-calculus suitable

17

https://www-sop.inria.fr/teams/marelle/MC-2022/cheatsheet.pdf

CHAPTER 2. INTRODUCTION TO COQ USING . . . 2.1. THE LANGUAGES OF THE COQ PROOF . . .

for constructive reasoning. The core Gallina terms are (approximate syntax):

t ∶= Prop ∣ Set ∣ Type sorts
∣ x, A variables
∣ _ triggers type inference
∣ forall x : A, B dependent product
∣ A -> B non-dependent product
∣ fun x => t function abstraction
∣ let x := t1 in t2 local definition
∣ t1 t2 function application
∣ c constant
∣ match t1 with pattern => t2 end patter-matching
∣ fix f x : A := t anonymous fixpoint

Type is actually one identifier hiding a hierarchy (in the sense of subtyp-
ing) of types (Type1, Type2, etc.). We can see the actualy indices by using
Set Printing Universes but that is rarely needed.

Type is predicative, so that, for example, one can write
(forall A : Type, A) : Type

but then if the first Type is Type1, then the second Type should be, say, Type2.
See [Affeldt, 2017, slide 58] for a type derivation.

Prop is impredicative, so that for example:
(forall A : Prop, A -> A) : Prop

See [Affeldt, 2017, slide 58] for a type derivation.
Prop is intuitively the type of propositions (and predicates). Strictly speak-

ing it is different from the type of boolean numbers (see § 2.4.1). We can however
extend the system to blur this difference (see § 3.5.1 and § 4.1) but, in general,
the user should be aware that Prop and bool are different in Coq.

Set can be understood as Type0. There is a Coq option to make Set impred-
icative which is occasionally useful (see [Affeldt and Nowak, 2021] for example)
but this has not been a concern so far with MathComp and MathComp-
Analysis.

There are two useful notations in MathComp for functions. A function that
ignores its first argument can be write fun _ => xyz or fun=> xyz. The notation
f ^~ x is a replacement for fun y => f y x.

The rest of the syntax is similar to programming languages from the ML
family.

The user can augment this syntax with new constants using definitions
(Definition, see § 2.1.2), inductives (Inductive, see § 2.4), and notations (see
§ 2.3.2).

2.1.2 Vernacular: the Language of Commands
The Vernacular is a language of commands to organize Gallina terms.
In this document, these commands will appear in dark magenta and will be
explained along the way.

18

2.2. INTERACTIVE PROOF CHAPTER 2. INTRODUCTION TO COQ USING . . .

The Definition command binds a term to an identifier. The term is vis-
ible and can be used to perform computation. We say it is transparent. See
Definition in the Coq manual.

The Lemma command binds a type to an identifier. There is a term that is
built incrementally by the tactics but it is kept hidden, not available for com-
putation. We say it is opaque. Lemma is essentially a special case of Definition.
See Lemma in the Coq manual.

The language of tactics should also maybe be counted as a third language.
It will however be introduced incrementally along this chapter.

2.2 Interactive Proof
In a proof assistant (and in Coq in particular), it is maybe better not to think
of a proof as something static, that you read, like a book. It is maybe better
to think of it as something dynamic, that you interactively execute, and main-
tain in the long run. Of course, it can also be read, but maybe rather to get
the gist of the proof or to retrieve useful information such as the key lemmas
or the main technique (proof by contradiction, generalization of the induction
principle, etc.).

A proof starts with a statement. At first, the statement is not yet proved,
so it appears as a goal. Then the user writes a script, and the script shall
fulfill the goal upon execution. Under the hood, the script is actually building
a monolithic term by incrementally opening and closing subgoals like branches
on a tree.

What the interface displays is only the current state which is a local context
and a subgoal. The goal itself appears as a stack of hypotheses ended by a
conclusion. This distinction between local context, stack of hypotheses, and
conclusion is important to use tactics efficiently (in particular, SSReflect’s
ones).

Let us use the following notations to describe a goal. In particular, T corre-
sponds to the top of the stack of hypotheses:

h1 : t1
h2 : t2
...
====================
T -> T1 -> T2 -> ... -> C

Example: Basic Propositional Logic Proving a lemma means to provide
a term whose type reads as the wanted statement. Let us consider the following
example: for all propositions A, B, C, (A→ B → C) → (A→ B) → A→ C.

This can be proved by providing directly a Gallina term:

Definition axiomS (A B C : Prop) : (A -> B -> C) -> (A -> B) -> A -> C :=
fun f g a => f a (g a).

19

https://coq.inria.fr/distrib/current/refman/language/core/definitions.html#top-level-definitions
https://coq.inria.fr/distrib/current/refman/language/core/definitions.html#assertions-and-proofs

CHAPTER 2. INTRODUCTION TO COQ USING . . . 2.2. INTERACTIVE PROOF

Obviously, formal proof using Definition and Gallina will not scale, hence the
use of tactics.

The move Tactic

Used in isolation, move does almost nothing.
move can be combined with the tactical => (this is not the same arrow as in

fun=> ...) to pop objects from the stack of hypotheses. From the point of view
of the λ-calculus, using the move=> tactic corresponds to having a λ-abstraction
to the proof term. move can also be combined with the tactical : to push objects
to the stack of hypotheses.

• move=> h pops T and adds h:T to the local context.

• move=> _ removes T. More precisely, it removes it after the complete tactic
has been executed. This is why you sometimes see tactics like move=> _ ->
that seemingly delete something and then rewrite it, in fact deletion is not
performed right away.

• move: h1 puts t1 as T (and removes h1:t1 from the local context, this is
often what the user wants).

• move: (h1) puts t1 as T but does not remove h1 from the local context.

• move=> /h applies the lemma h to T.

• move=> /[dup] duplicates T.

• move=> /[swap] swaps T and T1.

• move=> /[apply] replaces T and T1 by (T T1).

• move=> /(_ x) replaces T with T x.

• move=>{h1} removes h1:t1, this is called a clear-switch.

That is essentially it about move.

Exercise 2.2.1. Correct the spelling:

Lemma ISAAC I S A C : I -> A -> S -> C.

Exercise 2.2.2. Correct the spelling:

Lemma ISAAC I S A C : I -> (I -> A) -> S -> C.

20

2.3. DISCOVERABILITY OF DEFINITIONS AN‌ . . . CHAPTER 2. INTRODUCTION TO COQ USING . . .

The apply Tactic

From the view point of the λ-calculus, the apply tactic corresponds to function
application. When used alone, apply applies T to T1-> ... -> C (so that T
ought better be a function). If you want to apply the lemma h to the conclusion,
you use apply: h. You can often omit the : and use apply h but this is not
recommended in general (MathComp expects apply:, in some advanced cases
we risk performance problems).

Here is an example of interactive proof:

Lemma axiomS (A B C : Prop) : (A -> B -> C) -> (A -> B) -> A -> C.
Proof.
move=> f.
move=> g.
move=> a.
apply: f.
apply: a.
apply: g.
apply: a.
Qed.

exact is a variant of apply that must prove the current goal. This is a
terminating tactic. Terminating tactic appear in red.

Exercise 2.2.3. Prove forall P Q R : Prop, (P -> Q) -> ((Q -> R) -> (P -> R)).

2.3 Discoverability of Definitions and Lemmas
In practice, one spends a lot of time searching for existing lemmas to build a
proof. It is therefore important to learn as soon as possible how to explore
existing libraries to find out already available definitions and lemmas.

2.3.1 Checking Existing Lemmas

The Print command prints the term corresponding to an identifier. This is the
command that we want to use to see the body of a function when we know its
name.

The command Check t : T checks that term t has type T; it prints the type
of the term t. This is the command to use to see the statement of a lemma
given its name.

The command About t provides information about the identifier t. It is more
informative than Check t. In particular, it provides information about implicit
arguments (see § 2.10) that is often useful to understand how to pass a lemma
its arguments to apply it.

21

CHAPTER 2. INTRODUCTION TO COQ USING . . . 2.3. DISCOVERABILITY OF DEFINITIONS AN‌ . . .

2.3.2 Searching for Lemmas and Notations
Search is performed using the command Search.

Once naming conventions are understood, searching using substrings of the
name of a lemma is very effective. Concretely, Search "abc" "d". returns the
lemmas with names such as *abc*d* or *d*abc. See § 3.3 for naming conventions
in MathComp.

Searching can also be done using patterns to represent the shape of a lemma.
It is therefore important to anticipate what can be the shape of the lemma
searched for. Here again it is useful to know the naming conventions. Let us
assume that the theory of natural numbers has been imported. What are the
lemmas using the expression “2 ×_”?

Search (2 * _).

does not give much information but it indicates the existence of a .*2 notation
that gives better results:

Search (_.*2).

Another example: How to find the right-distributivity of multiplication over
addition of natural numbers?

Search (_ * (_ + _)).

does not give much information. The right way to look for it is by knowing the
naming conventions (see § 3.3):

Search "mul" "D".
(* mulnDr: right_distributive muln addn

mulnDl: left_distributive muln addn *)

Locate can be used to search for the location of an identifier, i.e., the file
in which it has been defined. After having discovered the file, you might want
to look at its contents. See Table 2.1 for a few files from the Coq distribution
worth looking at.

In general, when Coq displays symbols that are not characters, this is a
notation. For example, the type of pairs is as follows:

Inductive prod (A B : Type) : Type := pair : A -> B -> A * B.

Here, A * B is a notation for prod A B.
Locate can also be used to look for the term behind a notation Locate "xyz"

looks for a notation that has xyz as part of it. For example:

Locate "*".
(* ...

Notation "x * y" := (prod x y) : type_scope
... *)

Another example: What is behind the .*2 notation we saw just above?

22

2.4. INDUCTIVE TYPES CHAPTER 2. INTRODUCTION TO COQ USING . . .

Locate ".*2".
(* Notation "n .*2" := (double_rec n) : nat_rec_scope

Notation "n .*2" := (double n) : nat_scope (default interpretation) *)

You can observe that notations belong to scopes and in case of conflicting nota-
tions this is the latest opened scopes that are given priority. So before starting
a proof, one has to open the right scopes in the right order. In case of doubt,
the stack of notation scopes can be observed using the following command:

Print Visibility.

If you think that notations are making it harder to understand the current
goal, you can disable the display of notations by using:

Unset Printing Notations.

Less aggressive but often useful is to force Coq to print all the parentheses:

Set Printing Parentheses.

Knowing the precise positions of parentheses is in particular useful to design an
adequate Search pattern.

The user can create new notations but designing a notation in a proof assis-
tant is not an easy task: which ASCII/unicode symbols should we use? what
are the right precedence levels? what will happen behind the scene? etc. In
general, when one declares a new notation, one needs to choose a precedence
level and a scope. It is often useful to check the existing notations and their
precedence levels. This is can be done using:

Print Grammar constr.

See also Syntax extensions and notation scopes in the Coq reference manual.
Summary: When you are facing an unknown notation or definition,

you should locate it, check for its terms, and maybe also search for
related lemmas. That is one way to discover formal libraries.

Exercise 2.3.1. What is the ++ notation and where is it defined?

2.4 Inductive Types
The user is not limited to the types provided by default by Gallina (§ 2.1.1).
The command Inductive adds to Coq constants (a new type and constructors
for objects of this type) as well as induction principles (automatically generated
and proved). Use Variant when the induction principles are not needed.

2.4.1 Boolean Numbers
Definition of boolean numbers:

23

https://coq.inria.fr/refman/user-extensions/syntax-extensions.html

CHAPTER 2. INTRODUCTION TO COQ USING . . . 2.4. INDUCTIVE TYPES

Coq libraries
Init/Datatypes.v nat, list, etc.
Init/Logic.v eq_refl, True, etc.
Init/nat.v nat, sub, etc.
Logic/Classical_Prop.v axioms for classical reasoning, etc.
.
SSReflect libraries
ssr/ssrfun.v injective, etc.
ssr/ssrbool.v notations for boolean numbers, etc.
ssrmatching/ssrmatching.v LHS, RHS
.

Table 2.1: Some files of interest in the Coq source code (directory coq/theories)

Inductive bool : Set :=
true : bool

| false : bool.

This introduces the type bool of boolean numbers with two constructors true
and false.

We can do pattern matching with inductive types, e.g.:

Definition negb := fun b : bool => if b then false else true.

This is actually a notation for:

Definition negb := fun b : bool =>
match b with

true => false
| false => true
end.

More generally, the notation if ... is ... then ... else ... performs pattern-
matching in only one branch.

Boolean connectives: negb (notation ~~), andb (notation &&), orb (nota-
tion ||), implyb (notation ==>), etc.

2.4.2 Proof by Case Analysis
The existence of several ways to construct the same type calls for case analysis.

The case Tactic

The case tactic performs case analyis. Given b : bool, case: b (which can be
understood as move: b; case, where ; is a tactical to chain tactics in sequence)
creates two subgoals: in the first one, b has been replaced by true, in the second
one, b has been replaced by false. Used without argument, case applies to T.

It is possible to use the => tactical to perform case analysis. The tactic case
is actually equivalent to move=> [... | ... | ... | ...] where the number of

24

2.4. INDUCTIVE TYPES CHAPTER 2. INTRODUCTION TO COQ USING . . .

... is equal to the number of constructors (so no | when there is only one
constructor). The tactic creates as many subgoals as there are constructors.
This is an example of intro-pattern 1.

Exercise 2.4.1. Prove forall b, b || ~~ b,
forall b, (~~ ~~ b) ==> b,
forall a b, ((b ==> a) ==> b) ==> b,
forall a b, (~~ b ==> ~~ a) ==> (a ==> b).

2.4.3 Natural Numbers
Definition of natural numbers:

Inductive nat : Set :=
O : nat

| S : nat -> nat.

The constructors really are capital letters: O and S. Observe that the type of S
is defined using nat: inductive types can be recursive.

Along with the definition nat, O, and S, Coq generates the nat_ind induction
principle:

Check nat_ind.
(* nat_ind : forall P : nat -> Prop,

P 0 ->
(forall n : nat, P n -> P n.+1) ->
forall n : nat, P n *)

This is a term whose type is the induction principle over natural numbers. Coq
actually proves a standard induction principle for each defined inductive type.
We will see in § 2.4.5 how to use it.

In MathComp, S n appears as n.+1 (.+1 is a notation). There are also the
.+2, the .+3, etc. notations. Strictly speaking, the notation +.1 is not part of
the Coq distribution since it comes from a file of MathComp: ssrnat.v (see
§ 3.5.3). We are however anticipating on the next chapter because ssrnat.v
is so much more practical than the theory of natural numbers from the Coq
standard library.

Advanced Induction Principles Note that one can also define mutually
recursive inductive types in which case the induction principle needs to be de-
fined by the user using the Scheme command. This will not be relevant in this
document, see [The Coq Development Team, 2024]. As for strong induction,
MathComp will provide a solution in the next chapter (§ 3.5.3).

1More generally, the complete syntax for case analysis is: case: d-item+ / d-item* where
d-item can be a term, an occurrence switch, or a clear switch (i.e., not an intro-pattern). It
is advanced usage.

25

CHAPTER 2. INTRODUCTION TO COQ USING . . . 2.4. INDUCTIVE TYPES

2.4.4 Recursive Functions
The existence of recursive inductive types calls for recursive functions. They
can be written with the Fixpoint command.

The functions that one can write in Coq need to be terminating. When the
recursion is structural (i.e., it can be decided by a syntactic criterion), the sys-
tem detects termination automatically. Otherwise, one needs to resort to Coq
extensions like Equations [Sozeau, 2009] or more generally the Program/Fix ap-
proach (see, e.g., [Saito and Affeldt, 2022, § 3.1] for details). This is occasionally
useful but we will not need it in this document.

Here is the example of Fibonacci numbers (the if-is-then-else was ex-
plained in § 2.4.2):
From mathcomp Require Import ssreflect eqtype ssrbool ssrnat.

Fixpoint fib n :=
if n is n'.+1 then

if n' is n''.+1 then
fib n' + fib n''

else
1

else
1.

Compute fib 5.

Here is a variant of Fibonacci numbers borrowed from [Appel, 2022]:
From mathcomp Require Import ssreflect eqtype ssrbool ssrnat.

Fixpoint loop n a b :=
if n is n'.+1 then

loop n' (a + b) a
else

b.

Definition fastfib n := loop n 1 1.

Compute fastfib 5.

2.4.5 Proof by Induction
The elim Tactic

The elim tactic applies an induction principle to the goal. Its syntax is similar
to the case tactic (§ 2.4.2). It looks at the type of its parameter to decide the
induction principle to apply, so that elim: n performs a proof by induction on
natural numbers when n : nat.
Exercise 2.4.2. Prove forall n, n < 2 ^ n.
Exercise 2.4.3. Prove forall n, n ^ 2 < 3 ^ n.

26

2.5. LIST DATA STRUCTURES CHAPTER 2. INTRODUCTION TO COQ USING . . .

2.5 List Data Structures

2.5.1 Lists
Lists are an example of inductive type with a parameter:

Inductive list (A : Type) : Type :=
nil : list A

| cons : A -> list A -> list A.

Observe that the parameter is shared by all constructors. We will come back to
lists in § 3.5.5.

2.5.2 Vectors
Inductive types can also have indices: a “parameter” that changes for each
constructor. Here is for example the type of vectors from the Coq standard
library:

Inductive t A : nat -> Type :=
|nil : t A 0
|cons : forall (h:A) (n:nat), t A n -> t A (S n).

Although an archetypal example of dependent type, this type is notoriously
difficult to use and not really recommended in practice if avoidable.

Inductive types with indices can also be referred to as type families.

2.6 The Leibniz Equality and Rewriting
Until now, inductive types were defining data structures. We now look at in-
ductive types defining propositions.

Equality is defined as an inductive type:

Inductive eq (A : Type) (x : A) : A -> Prop :=
eq_refl : x = x

This defines the predicate “being equal to x” and the only proof is eq_refl.
Observe that the index is not used.

The corresponding inductive principle is (defined in
Coq

Logic.v):

eq_ind : forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

It says that given a proof of x = y, what holds for x also holds for y. This is
called the Leibniz equality.
Exercise 2.6.1. Prove the symmetry of equality using eq_ind directly (i.e., no
rewrite).

27

CHAPTER 2. INTRODUCTION TO COQ USING . . . 2.6. THE LEIBNIZ EQUALITY AND REWRITING

The rewrite Tactic

The rewrite tactic is by far the most used tactic [Gonthier and Tassi, 2012].
When h is an equality (see § 2.6), the semantics of rewrite h is to rewrite the
“first” occurrence of the left-hand side in the goal (it sometimes happens that the
first occurrence cannot be determined easily, it may be invisible for example).
The tactic rewrite -h rewrites with h in the reverse direction (i.e., trying to
match the right-hand side of h).

We can be more precise about what we want to rewrite by using occurrence
switches: rewrite {3}h performs rewriting of the 3rd occurrence of the left-hand
side of h.

We can use patterns to be even more precise w.r.t. what we want to rewrite
with the following syntax: rewrite [pattern]h. There is a number of predefined
patterns: LHS for the left-hand side of a goal when it is an equality, leLHS for
the left-hand side of a goal when it is a large inequality, etc.

We can even use contextual patterns to indicate a precise X inside a pat-
tern: rewrite [X in pattern]h or rewrite [in X in pattern]h where pattern
contains an occurrence of X.

See [Gonthier et al., 2016, § 8] or [Mahboubi and Tassi, 2021, § 2.4.1] for
more about contextual patterns.

The following idiom isolates some expression X in the goal and rewrites it
into t, generating the equality (*1*) = t as a new subgoal:

rewrite [X in pattern](_ : _(* 1*) = t)

The tactic rewrite can also be used with a number of simplification opera-
tions (“s-item”, [Gonthier et al., 2016, § 5.4]):

• //: tries to get rid of easy subgoals

• /=: tries to perform reduction in the subgoal

• //=: combines both

In fact, simplification operations can also be used with move and conversely
move can also perform rewriting:

• move=> -> is equivalent to rewrite T

• move=> {n}-> is equivalent to rewrite {n}T

This might seem confusing at first but in practice this quickly feels very natural.
Last, rewrite /identifier unfold the definition of identifier when it is

transparent. In practice, you often want to do it in the course of a sequence of
rewrites, that it is why it is provided as part of the rewrite tactic.
Exercise 2.6.2. Complete the following proof:

Lemma fastfibE n : fastfib n = fib n.
Proof.
suff : forall i, i <= n -> loop i (fib (n - i + 1)) (fib (n - i)) = fib n.

by move/(_ _ (leqnn n)); rewrite subnn.

28

2.7. MORE PROPOSITIONAL LOGIC WITH COQ CHAPTER 2. INTRODUCTION TO COQ USING . . .

2.7 More Propositional Logic with Coq
Definition of falsity:

Inductive False : Prop :=

This is not a typo: there is no constructor at all. ~ A is a notation for A -> False.
Exercise 2.7.1. Prove forall P Q, (P -> Q) -> (~ Q -> ~ P).

Definition of truth:

Inductive True : Prop := I : True.

Disjunction:

Inductive or (A B : Prop) : Prop :=
or_introl : A -> A \/ B

| or_intror : B -> A \/ B.

The symbol \/ is a notation. When the goal is of the form A \/ B, the tactic
left turns the goal into A, and right turns the goal into B. Note that there is
also a version of or that resides in Set:

Inductive sumbool (A B : Prop) : Set :=
left : A -> {A} + {B}

| right : B -> {A} + {B}.

We can perform case analysis on a proof of a disjunction with the case tactic
or with the intro-pattern [|] (see § 2.4.2).

Conjunction:

Inductive and (A B : Prop) : Prop := conj : A -> B -> A /\ B.

The symbol /\ is a notation. Yes, this is really just the Prop-Prop version
of the Type-Type definition of prod we saw page 22. When the goal is of the
form A /\ B, it is customary to use the split tactic. It has the same effect as
apply: xyz where xyz is the only constructor of the inductive type in question.
Conversely, to perform case analysis on a proof of a conjunction, we can use
case tactic or the intro-pattern [] (no | since there is no additional subgoal to
generate: there is only one contructor).
Exercise 2.7.2. Prove the commutativity of the conjunction without using tac-
tics.
Exercise 2.7.3. Prove that A ∧B → A ∨B without using tactics.
Exercise 2.7.4. Prove that ⊥→ A without using tactics.

2.8 Predicate Logic: the Existential Quantifier
and Sigma-types

While the universal quantifier is built-in in the logic of Coq, the existential
quantifier needs to be defined:

29

CHAPTER 2. INTRODUCTION TO COQ USING . . . 2.9. VIEWS

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex_intro : forall x : A, P x -> exists y, P y

Here, A and P are parameters. The constructor has two parameters: the witness x
and a proof that P holds for x, i.e., an object of type P x. This is a dependent
pair, in the sense that the second projection depends on the first one.

Note that the P predicate is Prop-valued and that an existential formula is
Prop-valued. There are variants that are at least as useful:
Inductive sig (A : Type) (P : A -> Prop) : Type :=

exist : forall x : A, P x -> {x : A | P x}

This is referred to as a sigma-type.

Inductive sigT (A : Type) (P : A -> Type) : Type :=
existT : forall x : A, P x -> {x : A & P x}

Exercise 2.8.1. Prove:
Lemma ex_ex_ex (X : Type) (A B : X -> Prop) :

(exists x, A x /\ B x) -> ((exists x, A x) /\ (exists x, B x)).

The existential exists2 x : A, P x & Q x is equivalent to exists x : A, P x /\ Q x
but is defined in such a way that its case analysis can be done in only one step.

2.9 Views
Equivalences are very important and are therefore given a special treatment.
There are equivalences between two propositions in Prop (P <-> Q, which is a
notation for (P -> Q) /\ (Q -> P)) and equivalence between a proposition in
Prop and a proposition in bool (contributing to blurring the difference between
Prop and bool). In the latter case, the equivalence is expressed using a reflect
predicate:
Inductive reflect (P : Prop) : bool -> Set :=

ReflectT : P -> reflect P true
| ReflectF : ~ P -> reflect P false.

What happens when one does a case analysis on a proof of reflect P b? Case
analysis is happening w.r.t. b.
Lemma test (P : Prop) (b : bool) : reflect P b -> P = b.
Proof.
case.

P : Prop
b : bool
============================
P -> P = true

goal 2 is:
~ P -> P = false

30

2.10. IMPLICIT ARGUMENTS CHAPTER 2. INTRODUCTION TO COQ USING . . .

Here is an example of reflect taken from
Coq

ssrbool.v:

Variable b1 b2 : bool.
Lemma andP : reflect (b1 /\ b2) (b1 && b2)

One can apply the view to the goal by using apply/view or exact/view or to T
(the top of the stack of hypotheses) by using move/view. For example:

Lemma andbC' (a b : bool) : a && b -> b && a.
Proof.

a, b : bool
============================
a && b -> b && a

move=> /andP.

a, b : bool
============================
a /\ b -> b && a

This way, we have switched from a boolean view to a Prop view, and then we
can use case, move=>, etc.

2.10 Implicit Arguments
A term can have several parameters and some of them can sometimes be inferred
from others. It would be cumbersome to ask the user to provide systematically
all the arguments in such cases. It is therefore possible to declare some argu-
ments as implicit: the user does not need to provide them explicitly and Coq
synthesizes them automatically.

Let us look again at the type of lists (§ 2.5.1):

About cons.
(* cons : forall {T : Type}, T -> seq T -> seq T *)

The parameter T : Type is displayed into curly brackets { ... } to indicate that
it is implicit. It means that Coq will try to infer the parameter T : Type given
the other arguments. This is the reason why the following command succeeds:

Check cons 0 nil.
(* [:: 0] : seq nat *)

It is because we are in a context where Coq can figure out that 0 is actually
a natural number. In case of doubt, one can disable this automatic inference
using the @ prefix:

Check @cons nat 0 nil.

31

CHAPTER 2. INTRODUCTION TO COQ USING . . . 2.11. SCRIPT MANAGEMENT

or

Check @cons _ 0 nil.

Recall that the underscore _ is a place holder that Coq tries to fill using type
inference.

An implicit argument is strict when it is inferable from the type of some
other arguments (this is the case of T in cons).

Implicit arguments may also be marked by square brackets [...]. This
means that the implicit argument is non-maximally inserted.

By default, the user has to distinguish itself between implicit and non-
implicit arguments by using parentheses, curly or square brackets. The setting
of implicit arguments can be decided globally so that Coq decides automati-
cally which arguments are implicit. That is why most MathComp files start
with the following commands:

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Set Implicit Arguments sets automatically as implicit arguments that can be
detected as such. Thanks to Unset Strict Implicit, even non-strict arguments
are marked as implicit. Unset Printing Implicit Defensive is to simplify the
display of arguments.

When in some case the setting of implicit arguments turns out to be wrong,
this can be adjusted using the command Arguments, e.g.:

Arguments cons [T].
About cons.
(* cons : forall [T : Type], T -> seq T -> seq T *)

See the Coq reference manual on Implicit arguments for more details, in
particular, for an example of an implicit argument that is not strict.

2.11 Script Management
IMPORTANT Terminating tactics When a tactic solves a subgoal, it is im-
portant for maintenance to mark it as such. The tactic exact is a terminating
tactic in itself but rewrite, apply: for example are not. In such cases, the by
tactical should be used. This way, when a script breaks, it will break as soon
as possible, usually at a point where it is easier to fix.

IMPORTANT Indentation Indentation is two spaces and it must be done such
that the level of indentation at any time indicates the number of subgoal still
to be solved. Bullets (-, +, *) are also available to structure scripts it à la
org-mode2.

2https://orgmode.org/

32

https://coq.inria.fr/refman/language/extensions/implicit-arguments.html
https://orgmode.org/

2.11. SCRIPT MANAGEMENT CHAPTER 2. INTRODUCTION TO COQ USING . . .

Reorganizing subgoals The application of a tactic can generate several
goals. It is often convenient to get rid of easy subgoals in priority. This is
often true after a rewrite and this can sometimes by just a matter of using a
simplification operation. More generally, it is customary to end the tactic with
“; last first.” so as to bring the subgoal upfront (if there is only one, use
last 2 first if there are two, etc.)3.

Forward reasoning On paper, mathematical proofs are often performed by
forward reasoning: intermediate facts are proved incrementally to reach a goal.
Backward reasoning is then rather when we massage the goal we want to prove.
The basic tactic to do backward reasoning is apply and since it is such a primitive
tactic the user might be tempted to use backward reasoning more than necessary.
The main tactic that implements forward reasoning is have.

have H : statement.
(* prove statement here *)

(* continue with H : statement in the local context *)

The have tactic is also often used to apply a lemma directly:

have := lemma_instance.

Note the := syntax. With this tactic, T is now lemma_instance and the proof
can go on by using move, etc. It is possible (and better) to put intro-patterns
between have and :=.

The tactic pose can be used to introduce definitions locally inside a script (see
[Gonthier et al., 2016, § 4.1]). The tactic set also introduces a local definition
but it does that by pattern-matching an expression in the goal or in the local
context (see [Gonthier et al., 2016, § 4.1]).

Factorize Arguments with Section and Variable

Theories (sets of lemmas that share common parameters) are better organized
inside sections using the commands Section/End. Common parameters are in-
troduced at the top of the section using Variable, Hypothesis, or Context. When
used inside Section/End, Let acts like Definition inside the section but it is un-
folded outside. See also [Mahboubi and Tassi, 2021, § 1.4].

3Note however that Coq makes generated subgoals last in the stack of subgoals to be
solved by default, and that this setting can be changed, rendering last first’s less useful
after rewrite’s.

33

CHAPTER 2. INTRODUCTION TO COQ USING . . . 2.11. SCRIPT MANAGEMENT

34

Chapter 3

Introduction to the
MathComp Library

Goal of this chapter: In this chapter, we review the parts of the MathComp
library that are the most useful for MathComp-Analysis. It is mostly about
algebra, not yet about analysis.

3.1 Useful Notation Scopes in MathComp
Mathematics relies a lot on notations. It is therefore no surprise that Math-
Comp relies a lot on Coq’s notations (see § 2.3.2).

Notations are organized in scopes. MathComp provides several notation
scopes. For example, depending on the scope, + does not have the same meaning.
(_ + _)%N is the addition of natural numbers, (_ + _)%R is the addition of rings,
etc.

Notations need not be declared and defined in the same file. For example,
notations about natural numbers need not be declared along the definition and
the basic theory of natural numbers. The notation \sum_(i <- r | P) F belongs
to the scope nat_scope but is declared along with iterated operations (§ 3.5.7).
See Table 3.1 for examples of scopes.

3.2 Generic Definitions and Notations
MathComp introduces a number of generic definitions so that definitions are
more uniform. For example, the property of right identity is captured by the
generic definition right_id e op, meaning that for the binary operation op, e is
the neutral element on the right, i.e., op x e = x. See Table 3.2.

The downside of such generic definitions is that it complicates search of
lemmas for a given operator (as we saw in § 2.3.2).

35

CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . . 3.2. GENERIC DEFINITIONS AND NOTATIONS

Scope Delimiter Meaning Where declared

type_scope type product, etc.
Coq

Init/Notations.v
function_scope function function Init/Notations.v

bool_scope B boolean numbers
Coq

Init/Datatypes.v

nat_scope N natural numbers
Coq

Init/Nat.v

fun_scope FUN \o, ^~, +%R, -%R, etc.
Coq

ssr/ssrfun.v

pair_scope PAIR projections .1, .2
Coq

ssr/ssrfun.v

seq_scope SEQ [::] , [:: ...; ...]
Coq

ssreflect/seq.v

order_scope O ordered types
MathComp

ssreflect/order.v

big_scope BIG iterated operations
MathComp

ssreflect/bigop.v

ring_scope R ring
MathComp

algebra/ssralg.v

int_scope Z integers
MathComp

algebra/ssrint.v

Table 3.1: Examples of scopes used in MathComp

Notations about Functions The fact that the function f is (monotonically)
non-decreasing is noted

{homo f : x y / x <= y >-> x <= y}

which means forall x y, x <= y -> f x <= f y.
If one uses mono instead of homo, one gets an equivalence instead of an impli-

cation:

{mono f : x y / y <= x >-> y <= x}

means forall x y, (f x <= f y) = (x <= y).
The mono notation can be used with partially applied functions:

{mono +%R x : y z / y < z}

which means forall y z, (x + y < x + z) = (y < z).

{morph f : x y / x + y}

means forall a b, f (x + y) = f x + f y. For example, here is an alternative
statement for the right-distributivity of multiplication over addition of natural
numbers:

Lemma mulnDr' n : {morph muln n : x y / x + y}.
Proof. exact: mulnDr. Qed.

Exercise 3.2.1. What does Lemma opprD : {morph -%R: x y / x + y : V} mean?
(From

MathComp
ssralg.v.)

36

3.3. IMPORTANT NAMING CONVENTIONS CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . .

injective f forall x1 x2, f x1 = f x2 -> x1 = x2
cancel f g g (f x) = x
involutive f cancel f f
left_injective op injective (op^~ x)
right_injective op injective (op y)
left_id e op e op x = x
right_id e op x op e = x
left_zero z op z op x = z
right_zero z op x op z = z
self_inverse e op x op x = e
idempotent op x op x = x
commutative op x op y = y op x
associative op x op (y op z) = (x op y) op z
right_commutative op (x op y) op z = (x op z) op y
left_commutative op x op (y op z) = y op (x op z)
left_distributive op add (x + y) * z = (x * z) + (y * z)
right_distributive op add x * (y + z) = (x * y) + (x * z)
left_loop inv op cancel (op x) (op (inv x))

Table 3.2: A few generic definitions in MathComp

3.3 IMPORTANT Naming Conventions
The user needs to be able to find lemmas quickly and to type them quickly. The
names of lemmas therefore need to be easy to remember, short, with a uniform
and precise format. This also makes the lemmas easier to search for (in the
sense of § 2.3.2).

More generally, being picky about names is customary in programming, see
for example the Hungarian notation, or standard literature:

“A name should be informative, concise, memorable, and pronounce-
able if possible.“ [Kernighan and Pike, 1999, § 1.1]

MathComp libraries enforce a strict naming convention. There are a few
rules to remember.

3.3.1 Properties of Operations
There is a couple of a long and a short identifiers for most basic operations.
In the name of lemmas, the long identifier is typically used as a prefix when
it is the head symbol of the left-hand side. When two operators are involved,
the main one is used as a prefix and the other one is referred to by its short
identifier, e.g., D for the addition. See Table 3.3. Furthermore, there are also
one-letter identifiers for standard types. For example, n corresponds to natural
numbers. See Table 3.4. From these rules, we can guess the names of many

37

CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . . 3.3. IMPORTANT NAMING CONVENTIONS

lemmas. For example, the right-distributivity of multiplication over addition is
mulnDr for the natural numbers and mulrDr for rings.

Long identifier Short identifier Meaning
add D addition
sub B subtraction
opp N opposite
mul M multiplication
exp X exponentiation (by a natural number)

Table 3.3: Naming Convention: Identifiers for operations

One-letter identifier Meaning
n natural numbers
r elements of a ring
f elements of a field
e extended real numbers
y ∞
Ny −∞

Table 3.4: Naming Convention: Identifiers for positional notation

When a lemma looks like a rewriting rule (most of them do), the name of the
lemma is often prefixed by a long identifier (corresponding to the head symbol
of the left-hand side) and it is followed by a pattern that corresponds to the
shape of the left-hand side. This pattern uses one-letter identifiers. Constants
are referred as such (e.g., 0 for the 0 of the addition). Standard types are
referred to by their one-letter identifier from Table 3.4. This way, the name of
the lemma gives a good idea of what the lemma does. For example, n0 indicates
that the lemma is of the form n op 0. For illustration, addn0 should correspond
to forall n, n + 0 = n and indeed:

About addn0.
(* addn0 : right_id 0%N addn *)
(* Print right_id.
fun (S T : Type) (e : T) (op : S -> T -> S) => forall x : S, op x e = x

: forall S T : Type, T -> (S -> T -> S) -> Prop *)

Let us call that this naming scheme the positional notation.
There is also a number of one-letter identifiers used as suffixes for prop-

erties of operations (see Table 3.5). From this table, we can guess that the
associativity of nat is mulnA, its commutativity is mulnC, etc. In particular, the
cancellation property is typically written with the generic cancel predicate and
marked with K. The suffix E is for rewriting lemmas that “unfold” a term into
its definition. See Table 3.5.

38

3.4. ABOUT MATHEMATICAL STRUCTURES CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . .

Identifier Property
A associativity
C commutativity
C set complement
D set theoretic difference
K cancellation
E equality

Table 3.5: Naming Convention: Suffixes for the properties of operations

3.3.2 Properties of Relations

le ≤ for ordered types
leq ≤ for nat
lt < for ordered types
ltn < for nat

Table 3.6: Naming Convention: Identifiers for relations

Table 3.6 does not provide all the information but it is supposed to lead you
to valuable lemmas such as:

Lemma leq_pmul2l m n1 n2 : 0 < m -> (m * n1 <= m * n2) = (n1 <= n2).

or

Lemma ltrDl x y : (x < x + y) = (0 < y).

3.4 About Mathematical Structures
In mathematics, structures are organized as a hierarchy, in the sense that, e.g.,
a field is defined using a ring. In consequence, an element of a field is also an
element of the underlying ring. It is an important issue in formal mathematics
to get this inheritance right. A mathematical structure consists typically of:

1. a carrier (typically an object in Set or Type)

2. a set of operations (including constants, i.e., 0-ary operations)

3. the properties of the operations (one also says the “axioms” of the base
theory, not to be confused with Coq Axioms which are unproved lemmas)

In proof assistants, the elements of a mathematical structure are declared by
an interface. In MathComp, an interface is essentially a record (see Record
types in the reference manual). A record is in fact an inductive type, and since
the axioms depend on the operations, which depend on the carrier, it should
be obvious that dependent types are here again put at work. An instance of

39

https://coq.inria.fr/refman/language/core/records.html
https://coq.inria.fr/refman/language/core/records.html

CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . . 3.5. BUILDING HIERARCHIES WITH . . .

an interface is an implementation of this interface. For example, nat (and its
comparison function eqn) is an instance of eqType (a type with a decidable
equality).

But how should we use records? There are several strategies depending on
what we put in parameters. Bundled: everything as fields. Semi-bundled: only
the carrier is a parameter. Unbundled: only the axioms are fields. In Math-
Comp, mathematical structures are bundled. However, they are implemented
by first providing a semi-bundled record (the “class”) and then a bundled record
using the class (the “structure”). This is the packed classed methodology. To
make inference work in presence of inheritance, MathComp uses the mechanism
of canonical structures of Coq in a clever way [Garillot et al., 2009].

Until very recently, the construction of hierarchies was done by hand and it
was error-prone. Today, MathComp uses a dedicated tool called Hierarchy-
Builder [Cohen et al., 2020]. See § 3.5.

The hierarchy of mathematical structures provided by MathComp is dis-
played in Fig. 3.1. You can also check for [Gonthier et al., 2016, page 65, version
16 not 17)] for an older but easier to read hierarchy.

The main thing to remember is that the definition of a mathematical struc-
ture is to be found in interfaces. In MathComp, they are referred to as mixins.
It is a technical term that comes from object-oriented programming and it can
be understood as an interface.

directory files of interest
mathcomp/ssreflect ssrnat.v (§ 3.5.3), seq.v (§ 3.5.5),

order.v (§ 3.5.6), etc.
mathcomp/algebra ssralg.v (§ 3.6.1), ssrnum.v (§ 3.6.3),

ssrint.v (§ 3.6.3),
matrix.v (not a topic in this document), etc.

Table 3.7: Some files of interest in MathComp, see also Table 2.1 for Math-
Comp files distributed with Coq

3.5 Building Hierarchies with Hierarchy-Builder
Hierarchy-Builder is a tool introduced in [Cohen et al., 2020] to facilitate
the construction of hierarchies of mathematical structures. It adds new com-
mands to Coq, the main ones being HB.mixin, HB.structure, HB.factory, and
HB.instance. The rest of this document will provide concrete examples of their
usage.

Let us just explain in a generic way the most basic scenario. Here is the
pattern to declare a structure Struct intended to sit at the bottom of a hierarchy.
The interface of the structure goes into a mixin:
HB.mixin Record isStruct params carrier := {

... properties about the carrier ...
}

40

3.5. BUILDING HIERARCHIES WITH . . . CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . .

M
o
n
o
id
_C

o
m
L
a
w

M
o
n
o
id
_A
d
d
L
a
w

S
e
m
iG
ro
u
p
_C

o
m
L
a
w

M
o
n
o
id
_L
a
w

S
e
m
iG
ro
u
p
_L
a
w

G
R
in
g
_A
lg
e
b
ra

A
lg
e
b
ra

C
o
m
A
lg
e
b
ra

G
R
in
g
_U

n
it
A
lg
e
b
ra

S
u
b
A
lg
e
b
ra

U
n
it
A
lg
e
b
ra

C
o
m
U
n
it
A
lg
e
b
ra

F
a
lg
e
b
ra

ch
o
ic
e
_C

h
o
ic
e

C
o
u
n
ta
b
le

G
R
in
g
_N

m
o
d
u
le

P
O
rd
e
r

S
u
b
C
h
o
ic
e

fi
n
ty
p
e
_F
in
it
e

N
m
o
d
u
le

S
u
b
C
o
u
n
ta
b
le

G
R
in
g
_S
e
m
iR
in
g

G
R
in
g
_Z
m
o
d
u
le

S
u
b
N
m
o
d
u
le

F
in
P
O
rd
e
r

N
u
m
_P
O
rd
e
re
d
Z
m
o
d
u
le

L
a
tt
ic
e

B
P
O
rd
e
r

S
u
b
P
O
rd
e
r

T
P
O
rd
e
r

F
in
R
in
g
_N

m
o
d
u
le

B
a
se
F
in
G
ro
u
p

S
u
b
F
in
it
e

S
e
m
iR
in
g

Z
m
o
d
u
le

e
q
ty
p
e
_E

q
u
a
li
ty

S
u
b
E
q
u
a
li
ty

E
q
Q
u
o
ti
e
n
t

Z
m
o
d
Q
u
o
ti
e
n
t

F
in
R
in
g
_S
e
m
iR
in
g

F
in
R
in
g
_Z
m
o
d
u
le

F
in
G
ro
u
p

F
in
L
a
tt
ic
e

L
a
lg
e
b
ra

G
R
in
g
_L
a
lg
e
b
ra

S
u
b
L
a
lg
e
b
ra

L
m
o
d
u
le

G
R
in
g
_L
m
o
d
u
le

v
e
ct
o
r_
V
e
ct
o
r

S
u
b
L
m
o
d
u
le

R
in
g

C
o
m
S
e
m
iR
in
g

F
in
R
in
g
_R

in
g

F
in
R
in
g
_C

o
m
S
e
m
iR
in
g

G
R
in
g
_R

in
g

G
R
in
g
_C

o
m
S
e
m
iR
in
g

S
u
b
S
e
m
iR
in
g

N
u
m
_N

o
rm

e
d
Z
m
o
d
u
le

S
u
b
Z
m
o
d
u
le

C
o
m
R
in
g

U
n
it
R
in
g

F
in
R
in
g
_C

o
m
R
in
g

F
in
R
in
g
_U

n
it
R
in
g

C
o
m
U
n
it
R
in
g

F
in
R
in
g
_C

o
m
U
n
it
R
in
g

G
R
in
g
_C

o
m
R
in
g

G
R
in
g
_U

n
it
R
in
g

R
in
g
Q
u
o
ti
e
n
t

S
u
b
R
in
g

G
R
in
g
_C

o
m
U
n
it
R
in
g

S
u
b
C
o
m
R
in
g

S
u
b
U
n
it
R
in
g

U
n
it
R
in
g
Q
u
o
ti
e
n
t

S
u
b
C
o
m
S
e
m
iR
in
g

N
u
m
_N

u
m
D
o
m
a
in

G
R
in
g
_I
n
te
g
ra
lD
o
m
a
in

S
u
b
C
o
m
U
n
it
R
in
g

G
R
in
g
_F
ie
ld

In
te
g
ra
lD
o
m
a
in

S
u
b
In
te
g
ra
lD
o
m
a
in

F
ie
ld
E
x
t

D
is
tr
L
a
tt
ic
e

T
o
ta
l

B
D
is
tr
L
a
tt
ic
e

N
u
m
_R

e
a
lD
o
m
a
in

F
in
T
o
ta
l

S
u
b
O
rd
e
r

C
B
D
is
tr
L
a
tt
ic
e

T
B
D
is
tr
L
a
tt
ic
e

N
u
m
_N

u
m
F
ie
ld

G
R
in
g
_D

e
ci
d
a
b
le
F
ie
ld

F
ie
ld

S
u
b
F
ie
ld

N
u
m
_R

e
a
lF
ie
ld

N
u
m
_C

lo
se
d
F
ie
ld

G
R
in
g
_C

lo
se
d
F
ie
ld

D
e
ci
d
a
b
le
F
ie
ld

F
in
R
in
g
_F
ie
ld

g
a
lo
is
_S
p
li
tt
in
g
F
ie
ld

F
in
R
in
g
_I
n
te
g
ra
lD
o
m
a
in

B
L
a
tt
ic
e

S
u
b
P
O
rd
e
rL
a
tt
ic
e

T
L
a
tt
ic
e

S
u
b
P
O
rd
e
rB

L
a
tt
ic
e

T
B
L
a
tt
ic
e

Jo
in
S
u
b
L
a
tt
ic
e

S
u
b
P
O
rd
e
rT
L
a
tt
ic
e

M
e
e
tS
u
b
L
a
tt
ic
e

N
u
m
_A
rc
h
im

e
d
e
a
n
F
ie
ld

N
u
m
_R

e
a
lC
lo
se
d
F
ie
ld

T
B
P
O
rd
e
r

Jo
in
S
u
b
B
L
a
tt
ic
e

S
u
b
P
O
rd
e
rT
B
L
a
tt
ic
e

M
e
e
tS
u
b
B
L
a
tt
ic
e

C
T
B
D
is
tr
L
a
tt
ic
e

F
in
D
is
tr
L
a
tt
ic
e

B
L
a
tt
ic
e
C
lo
se
d

B
Jo
in
L
a
tt
ic
e
C
lo
se
d

T
B
L
a
tt
ic
e
C
lo
se
d

Jo
in
L
a
tt
ic
e
C
lo
se
d

L
a
tt
ic
e
C
lo
se
d

B
Jo
in
S
u
b
L
a
tt
ic
e B
Jo
in
S
u
b
T
L
a
tt
ic
e

B
S
u
b
L
a
tt
ic
e

B
S
u
b
T
L
a
tt
ic
e

Jo
in
S
u
b
T
B
L
a
tt
ic
e

S
u
b
B
L
a
tt
ic
e S
u
b
T
B
L
a
tt
ic
e

Jo
in
S
u
b
T
L
a
tt
ic
e

S
u
b
L
a
tt
ic
e

S
u
b
T
L
a
tt
ic
e

M
e
e
tS
u
b
T
B
L
a
tt
ic
e

M
e
e
tS
u
b
T
L
a
tt
ic
e

S
u
b
T
y
p
e

T
B
S
u
b
L
a
tt
ic
e

T
S
u
b
B
L
a
tt
ic
e

T
S
u
b
L
a
tt
ic
e

T
M
e
e
tS
u
b
B
L
a
tt
ic
e

T
M
e
e
tS
u
b
L
a
tt
ic
e

F
in
C
D
is
tr
L
a
tt
ic
e

C
lo
se
d
F
ie
ld

M
u
l2
C
lo
se
d

M
u
lC
lo
se
d

S
e
m
ir
in
g
2
C
lo
se
d

D
iv
C
lo
se
d

S
e
m
ir
in
g
C
lo
se
d

S
m
u
lC
lo
se
d

S
d
iv
C
lo
se
d

D
iv
ri
n
g
C
lo
se
d

S
u
b
ri
n
g
C
lo
se
d

A
d
d
C
lo
se
d

Z
m
o
d
C
lo
se
d

S
u
b
m
o
d
C
lo
se
d

Id
e
a
lr

D
iv
a
lg
C
lo
se
d

O
p
p
C
lo
se
d

S
u
b
a
lg
C
lo
se
d

P
ri
m
e
Id
e
a
lr

g
e
n
e
ri
c_
q
u
o
ti
e
n
t_
Q
u
o
ti
e
n
t

P
ro
p
e
rI
d
e
a
l

O
rd
e
rM

o
rp
h
is
m

Jo
in
L
a
tt
ic
e
M
o
rp
h
is
m

M
e
e
tL
a
tt
ic
e
M
o
rp
h
is
m

L
a
tt
ic
e
M
o
rp
h
is
m

G
R
in
g
_A
d
d
it
iv
e

G
R
in
g
_L
in
e
a
r

R
M
o
rp
h
is
m

G
R
in
g
_L
R
M
o
rp
h
is
m

M
e
e
tL
a
tt
ic
e
C
lo
se
d

T
M
e
e
tL
a
tt
ic
e
C
lo
se
d

T
L
a
tt
ic
e
C
lo
se
d

B
L
a
tt
ic
e
M
o
rp
h
is
m

T
B
L
a
tt
ic
e
M
o
rp
h
is
m

T
L
a
tt
ic
e
M
o
rp
h
is
m

Figure 3.1: The hierarchy of mathematical structures of MathComp as of 2023-
05-10 (MathComp 2)

41

CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . . 3.5. BUILDING HIERARCHIES WITH . . .

The structure per se (and its type) is declared in a way that is reminiscent of
sigma-types (§ 2.8):

#[short(type=structType)]
HB.structure Definition Struct := {carrier of isStruct carrier}

Hierarchy-Builder is using Coq attributes (#[...]) to declare the type cor-
responding to a structure. See the Coq reference manual for more information
about Coq attributes, although there is not much to know about them for our
purpose.

Here is the pattern to declare a new structure NewStruct that extends an
existing structure Struct; note the of syntax.

HB.mixin Record Struct_isNewStruct params carrier
of Struct params carrier := {

... more properties about the carrier ...
}

In the case of the extended structure, the structure definition makes appear the
dependency to the parent structure.

#[short(type=newStructType)]
HB.structure NewStruct params :=

{carrier of Struct_isNewStruct params carrier
& Struct params carrier}.

This process results in the creation of the types structType and newStructType
such that elements of the latter are also understood to be elements of the former.

3.5.1 ssrbool.v: Boolean Reasoning

The file
Coq

ssrbool.v comes with the Coq proof assistant. It contains defini-
tions and lemmas about boolean numbers that we already discussed. See also
Appendix A.

To blur the difference between Prop and bool,
Coq

ssrbool.v contains a coercion
is_true that the user should be aware of:

(* Definition is_true b := b = true. defined in Init/Datatypes.v *)
Coercion is_true : bool >-> Sortclass.

The effect of that command is that instead of printing is_true b, i.e., b = true
when b is a boolean number (actually, anything that has the type of a boolean
number), Coq displays simply b. Because of the heavy use of boolean numbers
with MathComp, this makes for clearer statements and goals, but it might
surprise you from time to time, so it is good to keep it in mind. In case of
doubt, use

Set Printing Coercions.

42

https://coq.inria.fr/distrib/current/refman/language/core/basic.html#term-attribute
https://coq.inria.fr/distrib/current/refman/language/core/basic.html#term-attribute

3.5. BUILDING HIERARCHIES WITH . . . CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . .

to see the coercions.
A boolean statement b can be rewritten using rewrite since it is actually

b = true thanks to the is_true coercion.
The file

Coq
ssrbool.v also defines the type of boolean predicates

Definition pred T := T -> bool.

and a few boolean predicates such as the predicate that is always true:

Notation xpredT := (fun=> true).

Because of the pervasive use of if ... then else ..., there is a couple
of useful lemmas about branching. The lemma ifT rewrites if b then t1 else t2
into t1 and generates b as a subgoal. Similarly for ifF. To perform a case anal-
ysis on a goal that contains a branching expression, one can do:

case: ifPn.

The lemma ifPn is often more appropriate than using ifP.
The idiom to do a case analysis on an arbitrary boolean expression b is:

have [|] := boolP b.

The implementation of boolP is similar to the one of the reflect predicate of
§ 2.9.

There is a family of contraposition lemmas that are very useful, such as

contra : forall [c b : bool], (c -> b) -> ~~ b -> ~~ c
contraTN: forall [c b : bool], (c -> ~~ b) -> b -> ~~ c
contraTT: forall [c b : bool], (~~ c -> ~~ b) -> b -> c

Given this partial list, contraNT should be easy to guess. Search for "contra" to
look for an appropriate contraposition lemma when in need.

3.5.2 eqtype.v: Decidable Equality
This file contains the most basic mathematical structure in MathComp. It
introduces the type eqType of types with a decidable equality, i.e., types that
can be related with the boolean equality ==. To find the interface of eqType,
look for mixin in

MathComp
eqtype.v (eqtype.v on github):

Definition eq_axiom T (e : rel T) := forall x y, reflect (x = y) (e x y).

HB.mixin Record hasDecEq T := { eq_op : rel T; eqP : eq_axiom eq_op }.

#[mathcomp(axiom="eq_axiom"), short(type="eqType")]
HB.structure Definition Equality := { T of hasDecEq T }.

So, an eqType is a type that has an equality relation == that satisfies axiom which
is a reflect relation (§ 2.9).

Natural numbers and boolean numbers are declared to be eqTypes by pro-
viding instances, so that one can check:

43

https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/eqtype.v

CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . . 3.5. BUILDING HIERARCHIES WITH . . .

Check 0 == 1.
(* 0 == 1 : bool *)
Check true == false.
(* true == false : bool *)

This is actually the same as @eq_op _ O 1 and @eq_op _ true false but Coq
fills the placeholder with the right instance. See [Mahboubi and Tassi, 2021,
§ 6.3–6.4] for more details.

The lemma eqVneq from
MathComp
eqtype.v is useful to do case analysis in the course

of proofs with the idiom:

have [->|ab] := eqVneq a b.

In the first subgoal, a is replaced by b, in the second subgoal, the local context
now contains the hypothesis ab : a != b. As a side effect, occurrences of a == b
and b == a are replaced by their truth values.

Case analysis with eqVneq is possible this way because it is specified using
an inductive predicate with two constructors:

Variant eq_xor_neq (T : eqType) (x y : T) : bool -> bool -> Set :=
| EqNotNeq of x = y : eq_xor_neq x y true true
| NeqNotEq of x != y : eq_xor_neq x y false false.

Lemma eqVneq (T : eqType) (x y : T) : eq_xor_neq x y (y == x) (x == y).

This way of providing case analysis is very common in MathComp, this is
actually similar to the reflect relation (§ 2.9).

3.5.3 ssrnat.v: Natural Numbers

The file
MathComp
ssrnat.v contains the theory of natural numbers. The proofs there are

short (many one-liners) and it is a good place to learn and appreciate SSRe-
flect tactics. See also Appendix A.

This file does not redefine totally the operations on natural numbers. For

example, subtraction and multiplication are coming from
Coq

Init/Nat.v.
The comparison operations are boolean functions, i.e., they have type bool,

not Prop. In the past, relations were given the type Prop in the standard library
of Coq but this turned out to be inconvenient in practice. For example, large
inequality is formalized as follows:

Definition leq m n := m - n == 0.

This is the notation m <= n. The notation m < n is really just m.+1 <= n. It
might be surprising at first to define inequalities in such a convoluted way, but
this enables more sharing of proofs and contributes to simplify the theory.

There is a number of useful lemmas that have been designed to make case
analysis more efficient. E.g.:

44

3.5. BUILDING HIERARCHIES WITH . . . CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . .

Variant leq_xor_gtn m n : nat -> nat -> nat -> nat -> bool -> bool -> Set :=
| LeqNotGtn of m <= n : leq_xor_gtn m n m m n n true false
| GtnNotLeq of n < m : leq_xor_gtn m n n n m m false true.

Lemma leqP m n : leq_xor_gtn m n (minn n m) (minn m n) (maxn n m) (maxn m n)
(m <= n) (n < m).

Case analysis on leqP m n will generate two subgoals. In the first one, m <= n
is true and n < m is false. In the second one, m <= n is false and n < m is true.
Occurrences of m <= n and n < m are replaced by their truth values. In addition,
maxn m n, etc., are also replaced by the adequate values.
Exercise 3.5.1. Prove leqP.

Other interesting contents: the notation .*2 we already saw, the theory of
the predicate odd, etc.

Related files: Properties about division in
MathComp

div.v (m %/ d, m %% d: quotient

and remainder of euclidean division) and prime numbers in
MathComp
prime.v (prime p:

p is a prime number)

Strong Induction Recent versions of MathComp suggest to use the predi-
cate ubnP to perform proofs by strong induction:

Check ubnP.
(* ubnP : forall m : nat, {n : nat | m < n} *)

The lemma ubnP is using the type sig from § 2.8.
. . . /. . .

45

CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . . 3.5. BUILDING HIERARCHIES WITH . . .

Example of proof by strong induction:
Fixpoint a n :=

match n with
| O => 2
| 1 => 4
| n'.+1 => a n' + (a n'.-1).*2
end.

Lemma ha n : 2 ^ n <= a n.
Proof.
have [m nm] := ubnP n.

n, m : nat
nm : n < m
--
2 ^ n <= a n

elim: m => // m ih in n nm *.
(* this is the same as move: m n nm; elim=> // m ih n nm. *)

m : nat
ih : forall n : nat, n < m -> 2 ^ n <= a n
n : nat
nm : n < m.+1
--
2 ^ n <= a n

Exercise 3.5.2. Complete the proof of forall n, 2 ^ n <= a n.

3.5.4 fintype.v: Finite Types

The file
MathComp

fintype.v contains a theory of finite types, i.e., types with a finite
number of inhabitants. The example of interest for us is the type of so-called
ordinals 'I_n where n is a natural number (and 'I_ is a notation). It is the type
of the natural numbers {0, . . . , n − 1}.

Though conceptually simple, ordinals can be painful to manipulate and
should therefore not be used without a good reason. They are however im-
portant for iterated operations (see § 3.5.7). In particular, for the type 'I_n.+1
(note the .+1), ord0 is 0 and ord_max is n. Ordinals are automatically turned
into natural numbers if needed thanks to the coercion nat_of_ord (that is there-
fore hidden to the user by default). Turning a natural number into an ordinal
requires a bit of help from the user:
From mathcomp Require Import fintype.

Fail Check 0 : 'I_3.
Check inord 0 : 'I_3.
About inord.
(* inord : forall {n' : nat}, nat -> 'I_n'.+1 *)

46

3.5. BUILDING HIERARCHIES WITH . . . CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . .

3.5.5 seq.v: Lists
This is recap of lists notations (in scope seq_scope) and of standard functions
about lists:

• Variables (T1 T2 : Type) (f : T1 -> T2).
Fixpoint map s := if s is x :: s' then f x :: map s' else [::].

Notation: [seq f i | i <- s]

• Variable a : pred T.
Fixpoint filter s :=

if s is x :: s' then if a x then x :: filter s' else filter s' else [::].

Notation: [seq i <- s | a i]

• Variables (T : Type) (R : Type) (f : T -> R -> R) (z0 : R).
Fixpoint foldr s := if s is x :: s' then f x (foldr s') else z0.

foldr f z0 [:: a; b; c] is f a (f b (f c z0))

• Fixpoint iota m n := if n is n'.+1 then m :: iota m.+1 n' else [::].

So iota m n is the list [:: m; m + 1; ...; m + n - 1].

Extended explanations about lists can be found in [Mahboubi and Tassi, 2021,
§ 1.3.1].

3.5.6 order.v: Ordered Types
There are several ordered types, most notably porderType and orderType. See
MathComp
order.v, beware: this is a huge file (try looking at Fig. 3.1). Theories are
organized in modules, so that, for example, to enjoy the lemmas about totally
ordered types, the development should start with Import Order.TTheory.

Transitivity lemmas are particularly useful. Given a goal of the form:

a < K

rewrite (@le_lt_trans _ _ M)// generates two goals:

a <= M

and

M < K

Similarly for lt_le_trans, le_trans, lt_trans. They are (of course) often used
in practice.

Similarly to leqP (§ 3.5.3) for natural numbers, we can do case analysis with
any ordered type using:

47

CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . . 3.5. BUILDING HIERARCHIES WITH . . .

have [|] := leP a b.

Although there is a bridge to treat natural numbers as an ordered type, the
former have been kept separated because what is gained by generalization is
not obvious, hence the apparent duplication of lemmas.

3.5.7 IMPORTANT bigop.v: Iterated Operations
Iterated operations is the formalization of notations such as Σi, Πi, ∪i, etc. They
were introduced in MathComp by [Bertot et al., 2008] and were instrumental
to complete the formal proof of the Odd Order Theorem [Gonthier et al., 2013].

The first lines of Table 3.8 introduce the generic notation. The implemen-
tation \big[op/idx]_(i <- s | P i) F i of iterated operations is essentially a
wrapper for a foldr (§ 3.5.5) of a function F that represents each term (of the
sum, product, etc.) along a list s, filtered by a boolean predicate P (§ 3.5.1).

It is important to understand that in Table 3.8, in i < n, i is an ordinal
(§ 3.5.4). In contrast, the enumeration m <= i < n is implemented by the iota
function as iota m (n - m) (§ 3.5.5), so there i is a natural number.

From the user point of view, the lemmas listed in Appendix A are maybe
among the most useful ones (e.g., big1, eq_bigr).

From the developer point of view, it is sometimes useful to use more technical
lemmas, that reveal a bit about the formalization of iterated operations. For
example, big_mkcond is sometimes useful to get rid (temporarily) of the filtering
predicate by putting it into the function body:

Lemma big_mkcond I r (P : pred I) F :
\big[*%M/1]_(i <- r | P i) F i =

\big[*%M/1]_(i <- r) (if P i then F i else 1).

Similarly, big_seq “duplicates” the enumeration list as a predicate so that it can
be available to prove properties of F if needed:

Lemma big_seq (I : eqType) (r : seq I) F :
\big[op/idx]_(i <- r) F i = \big[op/idx]_(i <- r | i \in r) F i.

There is a number of generic lemmas that are useful for proving properties of
iterated operations. For example, to prove a property for an iterated operation
knowing it is true for each element, one can use elim/big_ind : _ => // (this is
the generic syntax for case analysis that we mentioned in § 2.4.2) where big_ind
is:

big_ind : K idx ->
(forall x y : R, K x -> K y -> K (op x y)) ->
forall (I : Type) (r : seq I) (P : pred I) (F : I -> R),
(forall i : I, P i -> K (F i)) -> K (\big[op/idx]_(i <- r | P i) F i)

Reminder: To do the following exercises, you should go to
MathComp
bigop.v and copy

the header to a new file (and append From mathcomp Require Import bigop.)

48

3.5. BUILDING HIERARCHIES WITH . . . CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . .

Exercise 3.5.3. Prove forall n, 2 * (\sum_(0 <= x < n.+1) x) = n * n.+1. (\sum_
is a notation for \big[addn/O]_)
Exercise 3.5.4. Prove

forall n : nat, \sum_(0 <= x < n.+1) (x + x) = 2 * \sum_(0 <= x < n.+1) x

using big_ind2.
Exercise 3.5.5. Prove 1 + 2 +⋯ + 2n = 2n+1 − 1
Exercise 3.5.6. Prove

forall n, (6 * \sum_(k < n.+1) k ^ 2) = n * n.+1 * (n.*2).+1.

Exercise 3.5.7. Prove

forall (x n : nat) :
1 < x -> (x - 1) * (\sum_(k < n.+1) x ^ k) = x ^ n.+1 - 1

Iterated operations are generic. It suffices for the operation to meet some
requirements to enjoy a particular lemma. For example, provided that the
carrier with the operation op forms a monoid (

MathComp
bigop.v)

(* in Module Monoid *)
HB.factory Record isLaw T (idm : T) (op : T -> T -> T) := {

opA : associative op;
op1m : left_id idm op;
opm1 : right_id idm op;

}.

the lemmas big1, big_nat_recr become available (see Appendix A). This is
because addn, the addition of natural numbers, has been shown to form a monoid
that one can use these lemmas. More precisely, addn has been shown to form a
commutative monoid

HB.instance Definition _ := isComLaw.Build nat 0 addn addnA addnC add0n.

from which the monoid structure is automatically derived by Hierarchy-
Builder.

Searching lemmas about iterated operations is notoriously difficult. It is
maybe better to look for the most generic notation

Search (\big[_/_]_(i <- _ | _) _).

or for lemmas with the substring "big" while restricting the search with in bigop.
The notation \big[op/idx]_(i \in D) f i (Table 3.8) assumes that f takes

a finite number of values (note the \in notation). This is useful as a notation
because it allows to write sums like \sum_(x \in [set: R]) f x when the sup-
port of f is finite, as we will do in § 6.2.1 to define integration. The definition
is a bit technical, see file

MathComp-Analysis
fsbig.v .

49

CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . . 3.6. MATHEMATICAL STRUCTURES IN ALGEBRA

Finitely iterated operations:
\big[op/idx]_(i <- s | P i) f i op

i<∣s∣,i∈P
f(si)

\big[op/idx]_(i < n | P i) f i op
0≤i<n,i∈P

f(i)
\big[op/idx]_(m <= i < n | P i) f i op

m≤i<n,i∈P
f(i)

Application to numeric functions:
\sum_(i <- s | P i) f i ∑i<∣s∣,i∈P f(si)
Iterated operations over finite support:
\big[op/idx]_(i \in D) f i op

i∈D
f(i) if f(i) has a finite number

of values in D s.t. f(i) ≠ idx o.w. idx
Countably iterated sum of numeric functions (see § 4.8):
\sum_(i <oo | P i) f i ∑∞i=0,i∈P f(i)
\sum_(m <= i <oo | P i) f i ∑∞i=m,i∈P f(i)
Sum of extended real numbers over general sets (see § 5.1):
\esum_(i in P) f i ∑i∈P f(i)

Table 3.8: Summary of iterated operations. The symbol op is the iterated
operation corresponding to op.

The under Tactic With iterated operators the need to use rewrite below λ-
abstractions becomes more pressing. The under tactic can be used for that pur-
pose [Martin-Dorel and Tassi, 2019]. A common usage with iterated operators is
under eq_bigr do rewrite ..., with series under eq_eseriesr do rewrite

3.5.8 About Finite Sets

MathComp comes with a theory of finite sets over finite types (
MathComp
finset.v). It is

moderately useful1 outside of MathComp, which has been designed originally
to develop the theory of finite groups. See also Appendix A.

The finmap library [Cohen and Sakaguchi, 2015] provides an alternative where
the carrier type only needs to be a choiceType, intuitively a type equipped
with a form of the axiom of choice (which extends eqType in the hierarchy of
mathematical structures in MathComp). This is less restrictive and useful in
MathComp-Analysis (for example to define countable sums, see § 5.1).

3.6 Mathematical Structures in algebra

3.6.1 ssralg.v: Algebraic Structures

Most algebraic mathematical structures can be found in
MathComp
ssralg.v. They can

also be found in Fig. 3.1. Let us just mention the most important ones.

1except maybe for the formalization of finite distributions in [Infotheo, 2024]. . .

50

3.6. MATHEMATICAL STRUCTURES IN ALGEBRA CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . .

• zmodType for abelian groups. It provides one constant (0), one unary oper-
ation (-%R), one binary operation (+%R) (all in ring_scope, see Table 3.1),
and the axioms of an abelian group (addrA, addrC, add0r, addNr). They are
in the module GRing so to use them one often starts its development with
Import GRing.Theory. (Otherwise, identifiers should be fully qualified.)

• ringType: rings, provides one constant (1), one binary operation (*%R),
and the axioms of a ring (mulrA, mul1r, mulr1, mulrDl, mulrDr, oner_neq0
for 1 ≠ 0, which means that the trivial ring is excluded).

• comRingType: commutative rings, adds mulrC

• lmodType R: left modules over R which have the following mixin:

HB.mixin Record Zmodule_isLmodule (R : ringType) V of Zmodule V := {
scale : R -> V -> V;
scalerA : forall a b v, scale a (scale b v) = scale (a * b) v;
scale1r : left_id 1 scale;
scalerDr : right_distributive scale +%R;
scalerDl : forall v, {morph scale^~ v: a b / a + b}

}.
#[short(type="lmodType")]
HB.structure Definition Lmodule (R : ringType) :=

{M of Zmodule M & Zmodule_isLmodule R M}.

The contents of this mixin should be entirely readable since we have ex-
plained in previous sections all the syntax. The notation for the scaling
operation it *:. Properties are available as the lemmas scalerA, scale1r,
scalerDr, scalerDl. Left modules will be used to define normed modules
in MathComp-Analysis (§ 4.6.5).

• idomainType: integral domains, with the axiom

forall x y : R, x * y = 0 -> (x == 0) || (y == 0)

• fieldType: fields. Note that the units of a field (more generally of a
unitRingType) are available though the predicate unit (which comes with
the unitRingType). The properties of units are recovered via lemmas such
as:

Variable F : fieldType.
Lemma unitfE x : (x \in unit) = (x != 0).

Needless to say, the properties of units will be useful to deal with real
numbers in MathComp-Analysis.

3.6.2 poly.v: Polynomials

The file
MathComp
poly.v defines polynomial. A polynomial with coefficients in R has

type {poly R}. The formal derivative of the univariate polynomial p is noted

51

CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . . 3.6. MATHEMATICAL STRUCTURES IN ALGEBRA

p^`() (in notation scope ring_scope). Note that this notation is reserved in the

file
MathComp

ssrnotations.v.

3.6.3 ssrnum.v: Numeric Types

The file MathComp
ssrnum.v provides mathematical structures for numeric types. The

type numDomainType combines integral domains, ordered types, and a notion of
norm (notation `| ... |). This is the basic numeric type.

The combination of an abelian group with a notion of norm is normedZmodType
and will also be used to define normed modules in § 4.6.5.

As of today, the formalization of these two mathematical structures is a
bit technical. This is not where you want to start to read MathComp

ssrnum.v. This is
also a huge file, organized with modules. To use the definitions and lemmas in
MathComp
ssrnun.v, developments usually start with

Import Num.Def Num.Theory.

The type numDomainType extends to numFieldType in a natural way, which
extends to realDomainType (all elements are non-positive or non-negative), which
extends to realFieldType, which extends to archiFieldType, etc. All these types
will be used pervasively in the development of MathComp-Analysis.

Exercise 3.6.1. Show that
√

4 + 2
√

3 = 1 +
√

3. Look at sqrt in MathComp
ssrnum.v.

Integers The numeric type of relative integers is provided by the file
MathComp
ssrint.v.

We can inject a natural number n to an integer using the notation n%:Z. Inte-
gers have their importance when dealing with real numbers in the next chapter
(Chapter 4) because of the flooring and ceiling functions.

Summary About Numerical Types There are several numeric types in
MathComp and going from one to another might sometimes feel painful. That
actually seems to be a common defect in proof assistants based on type the-
ory [Harrison, 2018]. Indeed, on paper, we take the following inclusions for
granted:

N ⊂ Z ⊂ Q ⊂ R ⊂ R

Figure 3.2 illustrates some ways to go between numeric types used in MathComp-
Analysis.

3.6.4 interval.v: Intervals
In MathComp, the type of intervals is interval R, where R is typically an
ordered type (§ 3.5.6). The ASCII notation uses square brackets. An interval
is defined as the pairs of bounds of type itv_bound:

52

3.6. MATHEMATICAL STRUCTURES IN ALGEBRA CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . .

N

%∶R

EE
%∶Z

;; Z

%∶˜R

>>
%∶Q $$ Q R

%∶E

;; R
fine
zz

Figure 3.2: Some conversions between numeric types. Anticipating on § 5.1

Variant itv_bound (T : Type) : Type :=
BSide : bool -> T -> itv_bound T | BInfty : bool -> itv_bound T.

Variant interval (T : Type) := Interval of itv_bound T & itv_bound T.

The constructor BSide is for open or closed bounds, BInfty is for infinite bounds.
How the boolean parameter distinguishes between open and closed bounds is
better explained with illustrations.

For example, the left bounds of the intervals `[x, +oo[and `]x, +oo[are
respectively BSide true x and BSide false x, while the right bound of the in-
terval `]-oo, x[is BSide true x. This type allows for the statement of generic
lemmas about intervals, when they happen to hold independently of whether a
bound is open or closed.

53

CHAPTER 3. INTRODUCTION TO THE MATHC‌ . . . 3.6. MATHEMATICAL STRUCTURES IN ALGEBRA

54

Chapter 4

Classical Reasoning using
MathComp

Goal of this chapter: This chapter introduces the basics of the formalization
of analysis in MathComp-Analysis. It covers material that can be found in
[Affeldt et al., 2018, Rouhling, 2019, Affeldt et al., 2020a].

The MathComp-Analysis [Affeldt et al., 2017] library contains two direc-
tories: classical and theories. The contents of classical is generic, it essen-
tially develops classical reasoning on top of MathComp. This is the purpose
of the first part of this chapter. The rest of this chapter deals with the topic
of convergence, which spans the files

MathComp-Analysis
filter.v ,

MathComp-Analysis
topology_structure.v,

MathComp-Analysis
uniform_structure.v,

MathComp-Analysis
separation_axioms.v,

MathComp-Analysis
normedtype.v , and MathComp-Analysis

sequences.v
from the directories classical and theories.

4.1 Axioms Introduced by MathComp-Analysis
MathComp is constructive: it relies solely on Coq, it does not rely on classical
reasoning. MathComp-Analysis starts by giving up on constructivism by
adding a bunch of axioms, which are known to be compatible with the logic of
Coq.

One of the motivation is to be able to do set-theoretic reasoning and to
further blur the difference between Prop and bool.

4.1.1 Propositional Extensionality
The equivalence between two propositions implies their equality:

Axiom propositional_extensionality :
forall P Q : Prop, P <-> Q -> P = Q.

Exercise 4.1.1. Prove True = true. Similarly, prove true = True.

55

CHAPTER 4. CLASSICAL REASONING USING . . . 4.1. AXIOMS INTRODUCED BY MATHCOMP- . . .

4.1.2 Functional Extensionality
Pointwise equality of functions implies their equality. This is stated more gen-
erally for functions with dependent types forall x : A, B x (instead of the less
general A -> B type, remember § 2.1.1).
Axiom functional_extensionality_dep :

forall (A : Type) (B : A -> Type) (f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g.

Here is an alternative representation of functional extensionality:
Lemma eq_fun T rT (U V : T -> rT) :

(forall x : T, U x = V x) -> (fun x => U x) = (fun x => V x).

It can be used together with the under tactic (§ 3.5.7) to do rewriting under
λ-abstractions as in under eq_fun do rewrite

4.1.3 Constructive Indefinite Description
The Prop-valued existential quantifier implies the Type-valued one (see § 2.8).
Axiom constructive_indefinite_description :

forall (A : Type) (P : A -> Prop),
(exists x : A, P x) -> {x : A | P x}.

The existential on the left is in Prop, the one on the right is the one in Type (as
we saw in § 2.8).

4.1.4 Consequences of Classical Axioms
We can derive a version of the axiom of choice which is very useful:
Lemma choice X Y (P : X -> Y -> Prop) :

(forall x, exists y, P x y) -> {f & forall x, P x (f x)}.

We can derive the law of the excluded middle:
Lemma pselect (P : Prop): {P} + {~P}.

Recall that the notation { ... } + { ... } is for a Set-version of the disjunction
(§ 2.7).

We can turn a proposition in Prop into a boolean number:
Definition asbool (P : Prop) :=

if pselect P then true else false.

`[< P >] is a notation for asbool P.
Contraposition lemmas that are true classically become provable, e.g.:

Lemma contra_notP (Q P : Prop) : (~ Q -> P) -> ~ P -> Q.

can be found in
MathComp-Analysis

boolp whereas
Lemma contraPnot (P Q : Prop) : (Q -> ~ P) -> (P -> ~ Q).

was already in
Coq

ssrbool.v (§ 3.5.1)

56

4.2. NAIVE SET THEORY CHAPTER 4. CLASSICAL REASONING USING . . .

4.2 Naive Set Theory
We now define a theory of sets which are not necessarily finite. This comes as
an addition to § 3.5.8 and the naming actually overlaps.

4.2.1 Basic Set-theoretic Operations
In MathComp-Analysis, a set is formalized as a (characteristic) function from
some type T to Prop (see § 2.1.1):

Definition set T := T -> Prop.

The identifier set0 represents the empty set (the function that returns False)
and setT is the full set (the function that returns True, notation [set: T] where
T is the support type). Any Prop-valued function P gives rise to a set using the
notation [set x | P] to define a set by comprehension. The notation scope is
classical_set_scope, the delimiter is classic.

Given an element x : T, we can write x \in A for a set A, this is a bool
expression. Of course, this is equivalent to A x, which is in Prop. Rewriting
with inE turns x \in A expression into a function application A x. Similarly, the
lemma mem_set allows to move from A x to x \in A (and back with the lemma
set_mem). One can use either x \in A or A x to state that an element belongs to
a set.

Basic operations on sets can be formalized using basic logic operators (see
§ 2.7). Intersection is essentially conjunction:

Definition setI A B := [set x | A x /\ B x].

One can use the notation A `&` B instead of setI A B, this is a notation in the
scope classical_set_scope.

Union is essentially disjunction (notation: A `|` B):

Definition setU A B := [set x | A x \/ B x].

Complement (notation: ~` A):

Definition setC A := [set a | ~ A a].

Subset relation (notation: A `<=` B):

Definition subset A B := forall t, A t -> B t.

Exercise 4.2.1. State and prove De Morgan’s laws.

Exercise 4.2.2. Find De Morgan’s laws in
MathComp-Analysis

classical_sets.v.

Exercise 4.2.3. Given a type T, show that set T with inclusion is a poset (re-
flexivity and transitivity). Show that set T with containment is a poset.

57

CHAPTER 4. CLASSICAL REASONING USING . . . 4.3. SUPREMUM AND INFIMUM

4.2.2 More Set-theoretic Constructs
The preimage of the set A by the function f is noted f @^-1` A (yes, you can get
used to this notation). This is a notation for [set t | A (f t)].

The iterated operations of core MathComp are finite (§ 3.5.7). With clas-
sical sets, we can deal with countable iterated unions:

Definition bigcup T I (P : set I) (F : I -> set T) :=
[set a | exists2 i, P i & F i a].

Notations are similar to the ones for finite sets, that is: \bigcup_(i in P) F,
\bigcup_(i : T) F, \bigcup_(i < n) F, etc. And similarly for countable iterated
intersections \bigcap_(i in P) F, etc.

In measure theory in particular, there is a pervasive use of families of pairwise
disjoint sets. trivIset D F is a predicate stating that the family of sets F indexed
by D is made of pairwise disjoint sets:

Definition trivIset T I (D : set I) (F : I -> set T) :=
forall i j : I, D i -> D j -> F i `&` F j !=set0 -> i = j.

There is an operation to pick a particular element from an arbitrary set
defined by comprehension: xget x0 P returns an element of the set P or x0 is P
is empty.

There is also a predicate finite_set defined in the file
MathComp-Analysis
cardinality.v that

discriminates sets that are actually finite. It uses a relation #= for the cardinality
sets.

4.3 Supremum and Infimum
Using classical sets (§ 4.2) and ordered types (§ 3.5.6), we can develop a theory
for supremums and infimums.

The set of upper bounds of a set A is formed by the elements y such that
∀x ∈ A, y ≥ x:

Definition ubound A : set T := [set y | forall x, A x -> (x <= y)%O].

Similarly for the set of lower bounds:

Definition lbound A : set T := [set y | forall x, A x -> (y <= x)%O].

A supremum is an upper bound that is less than or equal to any other upper
bound:

Definition supremums A := ubound A `&` lbound (ubound A).

We call supremum an element of supremums:

Definition supremum x0 A :=
if A == set0 then x0 else xget x0 (supremums A).

(xget is defined in § 4.2)

58

4.4. MATHEMATICAL STRUCTURES IN . . . CHAPTER 4. CLASSICAL REASONING USING . . .

4.4 Mathematical Structures in MathComp-Analysis
In § 3.4, we saw that MathComp introduces a number of mathematical struc-
tures for algebra. MathComp-Analysis extends MathComp with more math-
ematical structures, most of them appear in blue in Fig. 4.1. We do not dwell
upon the formalization of mathematical structures now; we will look at an ex-
ample in more details with better tools later when dealing with measure theory
(§ 5.2).

Figure 4.1: The hierarchy of mathematical structures of MathComp-Analysis
as of 2024-01-26.

4.4.1 Pointed Types
Mathematical structures introduced by MathComp-Analysis are pointed. They
necessarily have an object point that can be used as a default value.

This is useful for example to define the restriction of a function to a set.
The notation f _ D is the restriction of function f to the set D. Outside of D,
it returns the point of the supporting pointedType.

The notation get is for xget point (see § 4.2).

4.4.2 Real Numbers

Real numbers are defined in the file
MathComp-Analysis

reals.v . The type of real numbers
extends a type R : archiFieldType (§ 3.6.3) with the following axioms:

59

CHAPTER 4. CLASSICAL REASONING USING . . . 4.5. CONVERGENCE

1. for any non-empty set E with an upper bound, supremum 0 E is an upper
bound (supremum 0 is in fact noted sup)

2. for any non-empty set E with an upper bound, for any ε > 0, there is an
element e ∈ E such that sup E − ε < e

Look for the mixin in
MathComp-Analysis

reals.v . See § 4.6 for the other structures intro-
duced by MathComp-Analysis.

To construct a real number from a natural number n, one can write n%:R.
Exercise 4.4.1. Let d is a semimetric (d(x, x) = 0, d(x, y) = d(y, x) ≥ 0, d(x, z) ≤
d(x, y) + d(y, z)). Show that d

1+d
is a semimetric.

4.5 Convergence
4.5.1 Filters
Convergence in MathComp-Analysis is expressed using filters1. The notion
of filter was introduced by Henri Cartan:

Ça n’avait pas de nom naturellement, cette notion que je venais
de trouver, alors, pour se convaincre que ça marchait, on prenait
des exemples, et puis au moment où l’instrument arrivait, on disait
: “Boum !” Alors on a appelé ça les “boums” ! Évidemment ça ne
pouvait pas rester longtemps les boums, et surtout s’il fallait publier
le résultat. (Henri Cartan, [Broué, 2012])

The axioms of a filter F of type set_system T (i.e., a set of sets of elements of

type T) are defined as a typeclass called Filter in
MathComp-Analysis

filter.v :

1. The full set belongs to F (filterT).

2. F is closed by (binary) intersection (filterI).

3. F is closed by containment:

filterS : forall P Q : set T, P `<=` Q -> F P -> F Q

The empty set can belong to a filter in MathComp-Analysis; this is the type
of proper filter that excludes the empty set. See the typeclass ProperFilter in
MathComp-Analysis

filter.v . We thus recover the standard definition of filter [Bourbaki, 1971,
Chap. I][Wilansky, 2008, § 3.2].

Given a family of sets B : I -> set T indexed by a set D : set I, the ex-
pression filter_from D B is the set of sets P that are supersets of B i’s:

Definition filter_from
{I T : Type} (D : set I) (B : I -> set T) : set_system T :=

[set P | exists2 i, D i & B i `<=` P].

1Nothing to do with the filter function of lists from MathComp
seq.v .

60

4.5. CONVERGENCE CHAPTER 4. CLASSICAL REASONING USING . . .

The expression filter_from setT B forms a filter if I is not empty and if

forall i j, exists k, B k `<=` B i `&` B j

See lemma filter_fromT_filter in
MathComp-Analysis

filter.v . This corresponds to the
definition of a filterbase [Bourbaki, 1971, Chap. 1][Wilansky, 2008, § 3.2].

Example 4.5.1. The filter based on the sets {n ∣ N ≤ n} for all natural numbers N
(i.e., the “intervals” [N,+∞[) is the “eventually filter” \oo to talk about the
behavior of sequences when the index tends to infinity. This is a notation in the
scope classical_set_scope and it is defined as follows:

filter_from setT (fun N => [set n | (N <= n)%N])

See eventually and eventually_filter in
MathComp-Analysis

filter.v .

Example 4.5.2. The filter formed by the sets P such that there exists an M
such that for all M < x, x ∈ P is noted +oo (i.e., this filter contains all intervals
]M,+∞[). See pinfty_nbhs, declared to be a proper filter via proper_pinfty_nbhs,

in
MathComp-Analysis
normedtype.v .

See
MathComp-Analysis
normedtype.v for the examples of filters corresponding to convergence

to the right (at_right, notation ^'+), to the left (at_left, notation ^'-), etc.

4.5.2 Convergence using Filters
The notation for convergence in MathComp-Analysis is F --> G where F and G
are filters. What is behind is just an inclusion, namely G ⊆ F .

We define the image of a filter F by a function f as the set of sets P : set U
such that the preimage of P by f is in F:

Definition fmap {T U : Type} (f : T -> U)
(F : set_system T) : set_system U :=

[set P | F (f @^-1` P)].

The notation E @[x --> F] is the image of the filter F by the function fun x => E.
E x @[x --> F] is the same as E @ F.

By combining the notation for convergence of filters and the notation for
the image of a filter, we obtain a notation for convergence of functions (and of
sequences): f x @[x --> a] --> l, standing for

f(x) ÐÐ→
x→a

l.

We can already define continuity: a function f is continuous iff ∀a, f(x) ÐÐ→
x→a

f(a). See the notation continuous in
MathComp-Analysis

filter.v .

61

CHAPTER 4. CLASSICAL REASONING USING . . . 4.6. OTHER STRUCTURES IN MATHCOMP-ANALYSIS

4.5.3 Filtered Types
There is a notion of filtered type for types whose points can each be equipped
with a filter. Given a point x in some filtered type, nbhs x is the set of sets
associated with this point. See the structure Filtered in

MathComp-Analysis
filter.v , the

notation for filtered types is filteredType.

Limits

Given a filter F, lim F is defined as being a l such that F --> l. See lim_in

in
MathComp-Analysis

filter.v . This definition uses the get operation seen in § 4.2. Since
lim F is a notation, so it should be Searched as “(lim _)” rather than “lim”.

It can be proved that if the support set is Hausdorff (i.e., x ≠ y can be

separated by neighborhoods, see hausdorff_space in
MathComp-Analysis

separation_axioms.v),
then the limit is unique, and we have:

Lemma cvg_lim {U : Type} {F} {FF : ProperFilter F} (f : U -> T) (l : T) :
f @ F --> l -> lim (f @ F) = l.

4.6 Other Structures in MathComp-Analysis
4.6.1 Topological Spaces
In MathComp-Analysis, the interface of a topological space is defined by the
following mixin (file

MathComp-Analysis
topology_structure.v). It extends the structure Nbhs

which means that T is in particular equipped with a function nbhs that returns
a set of sets.

HB.mixin Record Nbhs_isTopological (T : Type) of Nbhs T := {
open : set_system T;
nbhs_pfilter_subproof : forall p : T, ProperFilter (nbhs p) ;
nbhsE_subproof : forall p : T, nbhs p =

[set A : set T | exists B : set T, [/\ open B, B p & B `<=` A]] ;
openE_subproof : open = [set A : set T | A `<=` nbhs ^~ A]

}.

Recall that set_system T means set (set T). A topological space is there-
fore given by a set of sets that corresponds to the open sets. The axiom
nbhs_pfilter_subproof adds that nbhs returns (proper) filters (§ 4.5.3). The
axiom nbhsE_subproof ensures that nbhs returns neighborhoods, i.e., given a
point p, a set in nbhs p is a set that contains an open that contains p. The
axiom openE_subproof is an alternative characterization of open sets: an open
set is a neighborhood of all of its points, i.e., for all p, A p implies nbhs p A when
A is an open. This gives rise to the type topologicalType. All the axioms are
named xyz_subproof but they are also available as lemmas xyz (this has been a
customary naming scheme in Coq but it is likely to change).

62

4.6. OTHER STRUCTURES IN MATHCOMP-ANALYSIS CHAPTER 4. CLASSICAL REASONING USING . . .

The structure of topological spaces is defined by combining the structure
Nbhs with the above mixin:

#[short(type="topologicalType")]
HB.structure Definition Topological :=

{T of Nbhs T & Nbhs_isTopological T}.

The definition of topological space in MathComp-Analysis departs from
the standard, textbook definition of topological space according to which a
topological space is a set equipped with a set of subsets which is stable by union
and by finite intersection, and that contains the empty set and the full set. The
factory isOpenTopological provides a way to construct the above mixin from
the standard, textbook axioms:

HB.factory Record isOpenTopological T of Choice T := {
op : set T -> Prop;
opT : op setT;
opI : forall (A B : set T), op A -> op B -> op (A `&` B);
op_bigU : forall (I : Type) (f : I -> set T), (forall i, op (f i)) ->

op (\bigcup_i f i);
}.

Exercise 4.6.1. Find the lemmas in
MathComp-Analysis

topology_structure.v corresponding to
the standard, textbook definition of topological spaces.

4.6.2 Uniform Spaces
Before defining uniform spaces, we define neighborhoods using entourages:

Definition nbhs_ {T T'} (ent : set_system (T * T')) (x : T) :=
filter_from ent (fun A => xsection A x).

The expression xsection A x is for the x-section of A, i.e., [set y | (x, y) \in A].
Like the default interface for topological spaces, the default interface of uni-

form spaces (file
MathComp-Analysis

uniform_structure.v) extends the Nbhs structure:

HB.mixin Record Nbhs_isUniform_mixin M of Nbhs M := {
entourage : set_system (M * M);
entourage_filter : Filter entourage;
entourage_diagonal_subproof :

forall A, entourage A -> diagonal `<=` A;
entourage_inv_subproof : forall A, entourage A -> entourage A^-1;
entourage_split_ex_subproof :

forall A, entourage A -> exists2 B, entourage B & B \; B `<=` A;
nbhsE_subproof : nbhs = nbhs_ entourage;

}.

A uniform space is therefore given by a set of entourages entourage. The axiom
entourage_filter tells that entourage is a filter. The axiom entourage_refl_subproof
ensures that entourages include their diagonal ([set x | x.1 = x.2]), i.e., they

63

CHAPTER 4. CLASSICAL REASONING USING . . . 4.6. OTHER STRUCTURES IN MATHCOMP-ANALYSIS

are connectors. The axiom entourage_inv_subproof tells that the inverse en-
tourage is an entourage. The axiom entourage_split_ex_subproof tells that
entourages include the self-composition of an entourage. The axioms so far
correspond precisely to the standard definition [Bourbaki, 1971, Chap. II]. The
axiom nbhsE_subproof says that the notion of neighborhood using entourages is
the same as the notion of neighborhoods from topological spaces.

The structure of uniform spaces extends a topological space with the above
interface:

#[short(type="uniformType")]
HB.structure Definition Uniform :=

{T of Topological T & Nbhs_isUniform_mixin T}.

4.6.3 Pseudometric Spaces
A pseudometric space extends a uniform space with a notion of ball (ball x r is
a ball centered at x of radius r) and three intuitive axioms (reflexivity ball_center,

symmetry ball_sym, triangle inequality ball_triangle) (file
MathComp-Analysis

pseudometric_structure.v):

HB.mixin Record Uniform_isPseudoMetric
(R : numDomainType) M of Uniform M := {

ball : M -> R -> M -> Prop ;
ball_center_subproof : forall x (e : R), 0 < e -> ball x e x ;
ball_sym_subproof : forall x y (e : R), ball x e y -> ball y e x ;
ball_triangle_subproof :

forall x y z e1 e2, ball x e1 y -> ball y e2 z -> ball x (e1 + e2) z;
entourageE_subproof : entourage = entourage_ ball

}.

The axiom entourageE_subproof states that the notion of entourage using balls
is the same as the notion of entourage from uniform spaces:

Definition entourage_
{R : numDomainType} {T T'} (ball : T -> R -> set T') :=

@filter_from R _ [set x | 0 < x] (fun e => [set xy | ball xy.1 e xy.2]).

The structure of pseudometric space follows:

#[short(type="pseudoMetricType")]
HB.structure Definition PseudoMetric (R : numDomainType) :=

{T of Uniform T & Uniform_isPseudoMetric R T}.

In a pseudometric space, we can define the set of balls centered at x with a
positive radius:

Definition nbhs_ball_ {R : numDomainType} {T T'} (ball : T -> R -> set T')
(x : T) := @filter_from R _ [set e | e > 0] (ball x).

Definition nbhs_ball {R : numDomainType} {M : pseudoMetricType R} :=
nbhs_ball_ (@ball R M).

64

4.6. OTHER STRUCTURES IN MATHCOMP-ANALYSIS CHAPTER 4. CLASSICAL REASONING USING . . .

The definition nbhs_ball is provably equivalent to the more primitive nbhs
(§ 4.6.1).

Given a norm, we can define balls the usual way:

Definition ball_
(R : numDomainType) (V : zmodType) (norm : V -> R) (x : V) (e : R) :=
[set y | norm (x - y) < e].

We use this definition of balls (ball_) with the definition of neighborhoods
defined using balls (nbhs_ball_) to define a filtered type for normedZmodType’s
(see § 3.6.3) and by extension for numDomainType, realDomainType, numFieldType,
realFieldType, realType, etc. so that for the latter mathematical structures, the
notion of ball coincides with the notion of ball defined using the norm.

4.6.4 Complete Spaces
We only mention for the sake of exhaustiveness that pseudometric spaces can
furthermore be extended to complete spaces but we do not use them in this
document. See

MathComp-Analysis
topology.v .

4.6.5 Normed Modules
Normed modules extend pseudometric spaces with a scaling operation.

We first introduce an intermediate (a bit artificial) mathematical structure
of pseudoMetricNormedZmodType:

HB.mixin Record NormedZmod_PseudoMetric_eq (R : numDomainType) T
of Num.NormedZmodule R T & PseudoPointedMetric R T := {

pseudo_metric_ball_norm : ball = ball_ (fun x : T => `| x |)
}.

The latter axiom is accessible as the lemma ball_normE. This mixin combines a
normedZmodType (§ 3.6.3) with a (pointed) pseudometric space (§ 4.6.3). Here is
the definition of the structure of pseudoMetricNormedZmodType:

#[short(type="pseudoMetricNormedZmodType")]
HB.structure Definition PseudoMetricNormedZmod (R : numDomainType) :=

{T of Num.NormedZmodule R T & PseudoMetric R T
& NormedZmod_PseudoMetric_eq R T & isPointed T}.

Then we combine a pseudoMetricNormedZmodType with a left module (see
§ 3.6.1) and the following axiom:

HB.mixin Record PseudoMetricNormedZmod_Lmodule_isNormedModule K V
of PseudoMetricNormedZmod K V & GRing.Lmodule K V := {

normrZ : forall (l : K) (x : V), `| l *: x | = `| l | * `| x |;
}.

The latter axiom is accessible by the lemma normrZ.
For example, the type of real numbers (§ 4.4.2) can be equipped with the

structure of normed module.

65

CHAPTER 4. CLASSICAL REASONING USING . . . 4.7. NEAR NOTATIONS AND TACTICS

4.7 near Notations and Tactics
As we saw in § 4.5, MathComp-Analysis is using filters for convergence.
The use of filters calls for the introduction of dedicated notations and tactics.
In general one does not use filters directly to prove a statement of the form
f @ F --> y but rather a combination of ε reasoning and filter reasoning through
the near notations and tactics [Affeldt et al., 2018].

The notation \forall t \near F, P is a notation for a proposition P that
holds when t “is near” F. For example, when F is the \oo or the +oo filter,
this intuitively means that t tends towards ∞. Of course, if one can prove
forall x, P x, one can also prove \forall x \near F, P x for any filter F:

Lemma nearW {T : Type} {F : set_system T} (P : T -> Prop) :
Filter F -> (forall x, P x) -> (\forall x \near F, P x).

Switching from a convergence statement of the form f x @[x --> F] --> y
to a combination of ε and near notations is the matter of a family of lemmas
such as:

Lemma cvgrPdist_lt {T} {F : set_system T} {FF : Filter F} (f : T -> V) (y : V) :
f @ F --> y <-> forall eps, 0 < eps -> \forall t \near F, `|y - f t| < eps.

Lemma cvgr_dist_lt {T} {F : set_system T} {FF : Filter F} (f : T -> V) (y : V) :
f @ F --> y -> forall eps, eps > 0 -> \forall t \near F, `|y - f t| < eps.

Lemma cvgrPdist_le {T} {F : set_system T} {FF : Filter F} (f : T -> V) (y : V) :
f @ F --> y <-> forall eps, 0 < eps -> \forall t \near F, `|y - f t| <= eps.

...

See
MathComp-Analysis
normedtype.v .

Introducing a near variable is performed by the tactic near=>. Discharging a
near variable is performed by the tactic near:. near do rewrite ... is a shortcut
for near=> x; rewrite ...; near: x. Note that at the time of this writing these
tactics are not obtained as a combination with the => and : tacticals of § 2.2.
Also, for technical reasons, scripts using the near tactic need to be concluded
with

Unshelve. all: end_near. Qed.

instead of Qed.

Example: . . . /. . .

66

4.7. NEAR NOTATIONS AND TACTICS CHAPTER 4. CLASSICAL REASONING USING . . .

Lemma opp_continuous : continuous (@GRing.opp V).
Proof.
move=> y.

y : V
--
- x @[x --> y] --> - y

apply/cvgrPdist_lt => e e0.

y : V
e : K
e0 : 0 < e
--
\forall t \near y, `|- y - - t| < e

This is a notation to say that the set [set t | `|- y - - t| < e] belongs to
nbhs, the neighboring filter of y. The neighboring filter of y is indeed defined
using the balls that are centered at x: [set z | norm (y - z) < e] for all e
(§ 4.6.3).

near=> t.

y : V, e : K, e0 : 0 < e
t : V
Hyp : t \is_near (nbhs y)
--
`|- y - - t| < e

rewrite -opprD normrN.

y : V, e : K, e0 : 0 < e
t : V
Hyp : t \is_near (nbhs y)
--
`|y - t| < e

near: t.

y : V, e : K, e0 : 0 < e
--
\forall t \near nbhs y, `|y - t| < e

exact: cvgr_dist_lt.
Unshelve. all: by end_near. Qed.

Another example: . . . /. . .

67

CHAPTER 4. CLASSICAL REASONING USING . . . 4.7. NEAR NOTATIONS AND TACTICS

Lemma cvgD f g a b : f @ F --> a -> g @ F --> b -> (f + g) @ F --> a + b.
Proof.
move=> fFa gFb; apply/cvgrPdist_lt => e e0.
near=> t.

fFa : f x @[x --> F] --> a
gFb : g x @[x --> F] --> b
e : K
e0 : 0 < e
t : T
Hyp : t \is_near (nbhs F)
============================
`|a + b - (f + g) t| < e

rewrite opprD addrAC addrA -(addrA (a - _)) -(addrC b) (splitr e).

============================
`|a - f t + (b - g t)| < e / 2 + e / 2

rewrite (le_lt_trans (ler_normD _ _))// ltrD//.

t : T
Hyp : t \is_near (nbhs F)
============================
`|a - f t| < e / 2

goal 2 is:
`|b - g t| < e / 2

near: t.

e : K
e0 : 0 < e
============================
\forall x \near nbhs F, `|a - f x| < e / 2

apply: cvgr_dist_lt => //.

e : K
e0 : 0 < e
============================
0 < e / 2

by rewrite divr_gt0.

The proof is similar for the other goal.
. . . /. . .

68

4.8. SEQUENCES CHAPTER 4. CLASSICAL REASONING USING . . .

Other lemmas to look at if time permits:

• In
MathComp-Analysis

topology.v : closed_cvg, etc.

• In
MathComp-Analysis
normedtype.v : lime_le, cvgr_lt, etc.

4.8 Sequences

Sequences are defined in the eponymous file MathComp-Analysis
sequences.v . They are just

functions with domain nat:

Definition sequence R := nat -> R.

where R is expected to be a numeric type. R ^nat is a notation for sequence R.
Because sequences are a special case of functions, the lemmas from

MathComp-Analysis
topology.v

and
MathComp-Analysis
normedtype.v are readily available to deal with sequences.

Example: the squeeze lemma . . . /. . .

69

CHAPTER 4. CLASSICAL REASONING USING . . . 4.8. SEQUENCES

Context {T : Type} {a : set_system T} {Fa : Filter a} {R : realFieldType}.
Lemma squeeze_cvgr f g h : (\near a, f a <= g a <= h a) ->

forall (l : R), f @ a --> l -> h @ a --> l -> g @ a --> l.
Proof.
move=> fgh l lfa lga.

fgh : \near a, f a <= g a <= h a
l : R
lfa : f x @[x --> a] --> l
lga : h x @[x --> a] --> l
============================
g x @[x --> a] --> l

apply/cvgrPdist_lt => e e_gt0; near=> x.

e : R
e_gt0 : 0 < e
x : T
Hyp : x \is_near (nbhs a)
============================
`|l - g x| < e

have := near fgh x. (* near lemma here *)

x : T
Hyp : x \is_near (nbhs a)
============================
(x \is_near (nbhs a) -> f x <= g x <= h x) -> `|l - g x| < e

move=> /(_ _)/andP[//|fg gh].

fg : f x <= g x
gh : g x <= h x
============================
`|l - g x| < e

rewrite distrC ltr_distl (lt_le_trans _ fg) ?(le_lt_trans gh)//=.

fg : f x <= g x
gh : g x <= h x
============================
h x < l + e

goal 2 is:
l - e < f x

by near: x; apply: (cvgr_lt l); rewrite // ltrDl.

And the other goal is similar. . . . /. . .

70

4.8. SEQUENCES CHAPTER 4. CLASSICAL REASONING USING . . .

Countable sums are defined in MathComp-Analysis
sequences.v . This is just a combination

of the iterated operations of MathComp (§ 3.5.7) and of the notion of limit

from
MathComp-Analysis

filter.v (§ 4.5.3):

Notation "\big [op / idx]_ (i <oo | P) F" :=
(lim (fun n => (\big[op / idx]_(i < n | P) F))) : big_scope.

In the development of measure theory (Chapter 5), we are going to use in
particular countable sums of extended real numbers.

71

CHAPTER 4. CLASSICAL REASONING USING . . . 4.8. SEQUENCES

72

Chapter 5

Measure Theory with
MathComp-Analysis

Goal of this chapter: We introduce the basics of measure theory with MathComp-
Analysis and illustrate the use of Hierarchy-Builder (§ 3.5) to build a
hierarchy of mathematical structures for measure theory.

5.1 Extended Real Numbers
At the time of this writing, the theory of extended real numbers spans two
files:

MathComp-Analysis
constructive_ereal.v and

MathComp-Analysis
ereal.v . The definition in itself is

in
MathComp-Analysis

constructive_ereal.v:

Variant extended (R : Type) := EFin of R | EPInf | ENInf.

The notation scope is ereal_scope, with delimiter E. The notation r%:E is
for EFin r; it is to inject a real number into the extended real numbers. The
notation +oo is for EPInf and the notation -oo is for ENInf. Regarding naming
conventions, y means ∞, Ny means −∞ (remember Table 3.4).

The extended real numbers do not have the best structure. They do not
form a group because ∞−∞ is undefined. How to deal with such exceptional
cases is always a delicate matter. The choice of MathComp-Analysis is to
define ∞−∞ to be −∞ so that the addition (+%E) is associative and that the set
of extended real numbers forms a monoid (see § 3.5.7):

Scope Delimiter Meaning Where declared

ereal_scope E extended real numbers
MathComp-Analysis

constructive_ereal.v

Table 5.1: Examples of scopes used in MathComp-Analysis

73

CHAPTER 5. MEASURE THEORY WITH . . . 5.1. EXTENDED REAL NUMBERS

Definition adde_subdef x y :=
match x, y with
| x%:E , y%:E => (x + y)%:E
| -oo, _ => -oo
| _ , -oo => -oo
| +oo, _ => +oo
| _ , +oo => +oo
end.

Exercise 5.1.1. Define the addition so that∞−∞ = 0 and show that the addition
is not associative.

We define the supremum of a set of extended real numbers using supremum,
like we did for real numbers in § 4.4.2, except that we can now take the default
value to be −∞:

Definition ereal_sup S := supremum -oo S

Sequences of Extended Real Numbers Sequences of extended real num-
bers are heavily used in measure theory.

The lemmas about sequences of extended real numbers should be reminis-
cent of their real numbers counterparts. For example, compare this lemma for
extended real numbers (where +oo refers to +oo%E)

Lemma cvgeyPge : f @ F --> +oo <-> forall A, \forall x \near F, A%:E <= f x.

with its counterpart for real numbers (where +oo refers to the filter seen in
§ 4.5.1):

Lemma cvgryPge : f @ F --> +oo <-> forall A, \forall x \near F, A <= f x.

In § 4.8, we explained that countable (generic) sums are formally defined
as a combination of (finite) iterated operations and limits. We instantiate this
definition with the addition of extended real numbers:

Notation "\sum_ (m <= i <oo | P) F" :=
(\big[+%E/0%E]_(m <= i <oo | P%B) F%E) : ereal_scope.

and then go on developing the theory of series of extended real numbers with
lemmas reminiscent of iterated operations such as:

Lemma eq_eseriesr (R : numFieldType) (f g : (\bar R)^nat) (P : pred nat)
{N} :

(forall i, P i -> f i = g i) ->
\sum_(N <= i <oo | P i) f i = \sum_(N <= i <oo | P i) g i.

You can Search for the eseries substring in MathComp-Analysis
sequences.v to find out generic

lemmas about countable sums and for the nneseries substring for lemmas about
non-negative terms.

74

5.2. FORMALIZATION OF σ-ALGEBRAS CHAPTER 5. MEASURE THEORY WITH . . .

The notations for countable sums that we introduced so far were defined
as a combination of MathComp (finite) iterated operations and limit. We in-
troduce another, compatible definition expressed as the combination of finitely-
supported sums (§ 3.5.7) and supremum: sums over general sets.

∑
i∈S

ai
def= sup{∑

i∈A

ai | A finite subset of S} .

In Coq:
Definition esum S a := ereal_sup [set \sum_(x \in A) a x | A in fsets S].
Notation "\esum_ (i 'in' P) A" := (esum P (fun i => A)).

where fsets S is the set of finite sets (defined using classical sets—§ 4.2) included
in S.

5.2 Formalization of σ-algebras
The type of a σ-algebra can be defined as the result of a hierarchy of mathe-
matical structures comprising semiring of sets, ring of sets, and algebra of sets
or σ-rings [Klenke, 2013, Fig. 1.1]. It is defined in this way in particular when
we build measures by extension using Carathéodory’s theorem.

SemiRingOfSets

RingOfSets

AlgebraOfSets SigmaRing

Measurable

Figure 5.1: Hierarchy of measure theory structures

Figure 5.1 pictures the hierarchy of measure theory structures in MathComp-
Analysis. A semiring of sets is a set of sets called measurable that contains the
empty set, that is closed under intersection (setI_closed) and that is “closed
by semi difference” (semi_setD_closed):
HB.mixin Record isSemiRingOfSets (d : measure_display) T := {

measurable : set (set T) ;
measurable0 : measurable set0 ;
measurableI : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable;

}.

Here the carrier is T : Type. Do not care too much about the measure_display
parameter, this is a trick to get nice notations (check [Affeldt and Cohen, 2023,
§ 3.4]).

The definition of setI_closed is obvious:

75

CHAPTER 5. MEASURE THEORY WITH . . . 5.2. FORMALIZATION OF σ-ALGEBRAS

Definition setI_closed := forall A B, G A -> G B -> G (A `&` B).

The definition of semi_setD_closed is more contrived:

Definition semi_setD_closed := forall A B, G A -> G B -> exists D,
[/\ finite_set D,

D `<=` G,
A `\` B = \bigcup_(X in D) X &
trivIset D id].

To paraphrase, it means that given two sets A and B belonging to G, there
exists a set of sets D such that: (1) D is finite, (2) D ⊆ G, (3) A∖B = ⋃X∈D X,
and (4) sets in D are pairwise disjoint.

The type of semirings of sets is semiRingOfSetsType; it is defined using
Hierarchy-Builder (§ 3.5) as follows, with a carrier that satisfies the mixin
isSemiRingOfSets:

#[short(type=semiRingOfSetsType)]
HB.structure Definition SemiRingOfSets d :=

{T of Pointed T & isSemiRingOfSets d T}.

Note that the structure is pointed (§ 4.4.1) by default.

A ring of sets is a semiring of sets that is closed by finite union (predicate
setU_closed):

HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :=
{ measurableU : @setU_closed T measurable }.

Observe that the mixin of ring of sets uses the measurable field of the mixin of
semiring of sets.

#[short(type=ringOfSetsType)]
HB.structure Definition RingOfSets d :=

{T of SemiRingOfSets d T
& SemiRingOfSets_isRingOfSets d T }.

An algebra of sets is a ring of sets that contains the full set:

HB.mixin Record RingOfSets_isAlgebraOfSets d T of RingOfSets d T :=
{ measurableT : measurable [set: T] }.

HB.structure Definition AlgebraOfSets d :=
{T of RingOfSets d T

& RingOfSets_isAlgebraOfSets d T }.

A σ-algebra is an algebra of sets that is closed by countable union. We start
by introducing a mixin for structures that are closed by countable union:

HB.mixin Record hasMeasurableCountableUnion d T of SemiRingOfSets d T := {
bigcupT_measurable : forall F : (set T)^nat, (forall i, measurable (F i)) ->

measurable (\bigcup_i (F i))
}.

76

5.2. FORMALIZATION OF σ-ALGEBRAS CHAPTER 5. MEASURE THEORY WITH . . .

We use this mixin to define the structure of σ-algebras:

#[short(type=measurableType)]
HB.structure Definition Measurable d :=

{T of AlgebraOfSets d T
& AlgebraOfSets_isMeasurable d T }.

In the end, we thus arrive at a type measurableType that is now available to
declare σ-algebras and develop their theory.
Exercise 5.2.1. Understand how the structure of σ-rings is added to the hierar-
chy explained above.

Example of a derived property: . . . /. . .

77

CHAPTER 5. MEASURE THEORY WITH . . . 5.2. FORMALIZATION OF σ-ALGEBRAS

Lemma bigcap_measurable F P :
(forall k, P k -> measurable (F k)) -> measurable (\bigcap_(i in P) F i).

Proof.
move=> PF; rewrite -[X in measurable X]setCK.

d : measure_display
T : measurableType d
F : (set T) ^nat
P : set nat
PF : forall k : nat, P k -> d.-measurable (F k)
============================
d.-measurable (~` ~` (\bigcap_(i in P) F i))

rewrite setC_bigcap.

============================
d.-measurable (~` (\bigcup_(i in P) ~` F i))

apply: measurableC.

============================
d.-measurable (\bigcup_(i in P) ~` F i)

apply: bigcup_measurable => k Pk.

PF : forall k : nat, P k -> d.-measurable (F k)
k : nat
Pk : P k
============================
d.-measurable (~` F k)

apply: measurableC.

PF : forall k : nat, P k -> d.-measurable (F k)
k : nat
Pk : P k
============================
d.-measurable (F k)

exact/PF.
Qed.

. . . /. . .

78

5.3. GENERATED σ-ALGEBRA CHAPTER 5. MEASURE THEORY WITH . . .

We have successful defined σ-algebras but we are in a situation similar to
topological spaces in § 4.6.1: the mixin of σ-algebra does not correspond to the
standard, stand-alone definition of a σ-algebra as a set of subsets that contains
the full set, and that is closed under complementation and countable unions.
For topological spaces, we saw in § 4.6.1 that

MathComp-Analysis
topology.v provides a fac-

tory Pointed_isOpenTopological whose signature corresponds to the standard,
stand-alone definition. The HB.factory command of Hierarchy-Builder is
for dealing with such situations. A factory is very much like a mixin in the
sense that it is an interface:

HB.factory Record isMeasurable (d : measure_display) T of Pointed T := {
measurable : set (set T) ;
measurable0 : measurable set0 ;
measurableC : forall A, measurable A -> measurable (~` A) ;
measurable_bigcup : forall F : (set T)^nat,

(forall i, measurable (F i)) -> measurable (\bigcup_i (F i))
}.

The difference with a mixin is that the developer has to provide a proof that from
the factory one can build the original mixin that defined the σ-algebra in the first
place. This is performed by the HB.builders command of Hierarchy-Builder
[Cohen et al., 2020]. From the user perspective, this is an improvement in terms
of usability: the user can use either interface to create a σ-algebra.

5.3 Generated σ-algebra
The goal of this section is to show that we can define a concrete example of
σ-algebra that inhabits the type measurableType.

A generated σ-algebra << G >> is the smallest σ-algebra that contains some
set of sets G.

We start by defining the notion of “smallest”. We want that smallest p G
defines the smallest set M such that G `<=` M and such that M verifies the prop-
erty C. We can take the intersection of all such M’s:

Context {T} (C : set T -> Prop) (G : set T).
Definition smallest := \bigcap_(A in [set M | C M /\ G `<=` M]) A.

This is actually already defined in
MathComp-Analysis

classical_sets.v.
We now define a predicate to qualify σ-algebras:

Definition sigma_algebra T (G : set (set T)) :=
[/\ G set0, (forall A, G A -> G (~` A)) &

(forall A : (set T)^nat, (forall n, G (A n)) -> G (\bigcup_k A k))].

This is not a type like measurableType, even though its contents are essentially
the axioms of a σ-algebra.

Therefore, the smallest σ-algebra that contains a set of sets G is:

79

CHAPTER 5. MEASURE THEORY WITH . . . 5.3. GENERATED σ-ALGEBRA

Notation "<< G >>" := (smallest (@sigma_algebra _) G).

Can we, for any G, use << G >> to instantiate the interface of σ-algebra from
§ 5.2? (MathComp-Analysis already provides this, as the notation <<s G>>;
here we are defining it again as an example of application of Hierarchy-
Builder.)

We start by proving that << G >> is a σ-algebra in the sense of the predicate
salgebra:

Variables (T : Type) (G : set (set T)).

Lemma salgebra0 : << G >> set0.
Proof. ... Qed.

Lemma salgebraC : forall A, << G >> A -> << G >> (~` A).
Proof. ... Qed.

Lemma salgebraU : forall A : (set T)^nat,
(forall n, << G >> (A n)) -> << G >> (\bigcup_k A k).

Proof. ... Qed.

Exercise 5.3.1. Prove salgebra0, salgebraC, salgebraU. Do that in a new file
that starts by reproducing the header of MathComp-Analysis

measure.v to which you append

From mathcomp Require Import measure.

Since we have verified all the properties of a σ-algebra, we can instantiate the
factory of § 5.2. This factory has one parameter (a display), a carrier (a Type),
a set of sets (the measurable sets), and three properties. Let us prepare one
identifier sdisplay for the display, one identifier salgType to extract the carrier
from a set of sets, and take << G >> to be the set of sets. We can instantiate
using the HB.instance command:

Variables (T : pointedType) (G : set (set T)).

HB.instance Definition _ := @isMeasurable.Build
(sdisplay G)
(salgType G)
<< G >>
(@salgebra0 _ G) (@salgebraC _ G) (@salgebraU _ G).

The function isMeasurable.Build is a constructor function that has been pro-
duced by Hierarchy-Builder upon definition of the isMeasurable interface,
be it a mixin or a factory.

As a consequence of the above instantiation, we are now given for any set of
sets G, the type salgType G of a generated σ-algebra:

Variable T : pointedType.
Variable G : set (set T).
Check << G >> : set (set T).
Check salgType G : measurableType _.

80

5.4. FORMALIZATION OF MEASURES CHAPTER 5. MEASURE THEORY WITH . . .

5.4 Formalization of Measures
In the same way that a σ-algebra is also an algebra of sets, a σ-ring, a ring
of sets, and a semiring of sets, a measure is also an additive measure, a.k.a.
a content. Hierarchy-Builder can also deal with hierarchy of morphisms,
where the carrier is not a Type but a function.

A function of type set T -> \bar R is semiadditive when for any sequence
of measurable, pairwise-disjoint sets F we have

∀n, measurable(⋃
k<n

Fk) → µ(⋃
k<n

Fk) = ∑
k<n

µ(Fk)

Formal paraphrase in MathComp-Analysis:

1 Definition semi_additive := forall F n,
2 (forall k : nat, measurable (F k)) -> trivIset setT F ->
3 measurable (\big[setU/set0]_(k < n) F k) ->
4 mu (\big[setU/set0]_(i < n) F i) = \sum_(i < n) mu (F i).

Of course, the condition line 3 is trivially satisfied when T is a measurableType.
A function of type set T -> \bar R is semi-σ-additive when, for any sequence

of measurable, pairwise-disjoint sets F we have

measurable(⋃
k

Fk) → ∑
k<n

µ(Fk) ÐÐÐ→
n→∞

µ(⋃
k

Fk)

Formal paraphrase in MathComp-Analysis:

Definition semi_sigma_additive :=
forall F, (forall i : nat, measurable (F i)) -> trivIset setT F ->
measurable (\bigcup_n F n) ->
(fun n => \sum_(0 <= i < n) mu (F i)) --> mu (\bigcup_n F n).

Hierarchy of Measures At the bottom of the hierarchy of measures, we put
contents. They are non-negative functions that are semiadditive:

HB.mixin Record isContent d
(T : semiRingOfSetsType d) (R : numFieldType)
(mu : set T -> \bar R) := {

measure_ge0 : forall x, 0 <= mu x ;
measure_semi_additive : semi_additive mu }.

HB.structure Definition Content d
(T : semiRingOfSetsType d) (R : numFieldType) := {

mu & isContent d R T mu }.

We do not restrict ourselves to the type of real numbers realType but instead
use the more general numFieldType. Similarly, we take the domain of the content
to be over a semiring of sets. The fact that the measure of the empty set is 0 is
a consequence of semiadditivity.

Measures extend semiadditive measures by adding semi-σ-additivity:

81

CHAPTER 5. MEASURE THEORY WITH . . . 5.4. FORMALIZATION OF MEASURES

HB.mixin Record Content_isMeasure d
(T : semiRingOfSetsType d) (R : numFieldType)
mu of Content d mu := {

measure_semi_sigma_additive : semi_sigma_additive mu }.

#[short(type=measure)]
HB.structure Definition Measure d

(T : semiRingOfSetsType d) (R : numFieldType) :=
{mu of Content d mu

& Content_isMeasure d R T mu}.

Content

Measure

SFiniteMeasure

SigmaFiniteContent

SigmaFiniteMeasure

FinNumFun
FiniteMeasure

AdditiveCharge

Charge

SubProbability

Probability

Figure 5.2: Hierarchy of measure structures

The hierarchy of measures is displayed in Fig. 5.2. Contents and measures
can be found at the root. The hierarchy also contains σ-finite measures with
notation

{sigma_finite_measure set T -> \bar R}

See [Ishiguro and Affeldt, 2024, § 3.1] for charges (a.k.a. signed measures).
Of course, it is not necessary to go through the trouble of systematically

defining an intermediate content to define a measure, the user can instantiate
directly a measure by using the isMeasure factory as we did for σ-algebras in
§ 5.2:

HB.factory Record isMeasure
d (T : semiRingOfSetsType d) (R : realFieldType)
(mu : set T -> \bar R) := {

measure0 : mu set0 = 0 ;
measure_ge0 : forall x, 0 <= mu x ;
measure_semi_sigma_additive : semi_sigma_additive mu }.

See the code [Affeldt et al., 2017, file measure.v].

82

5.4. FORMALIZATION OF MEASURES CHAPTER 5. MEASURE THEORY WITH . . .

5.4.1 Example: the Dirac Measure
In the same way we instantiated the interface of σ-algebra with generated σ-
algebras, we can populate the interface of measures with concrete measure. The
Dirac measure δa is the measure that is 1 for sets A such that a ∈ A and 0
otherwise:

Context d (T : sigmaRingType d) (a : T) (R : realFieldType).
Definition dirac (A : set T) : \bar R := (\1_A a)%:E.

The notation \1_A a is for the indicator function defined in
MathComp-Analysis

numfun.v . It
is really just a wrapper for the boolean test a \in A.

To declare it as a measure we need three proofs

Let dirac0 : dirac set0 = 0. Proof. by rewrite /dirac indic0. Qed.
Let dirac_ge0 B : 0 <= dirac B. Proof. by rewrite /dirac indicE. Qed.
Let dirac_sigma_additive : semi_sigma_additive dirac.
Proof. (* see page 84 *) Qed.

and an invocation of HB.instance:

HB.instance Definition _ := isMeasure.Build _ _ _
dirac dirac0 dirac_ge0 dirac_sigma_additive.

. . . /. . .

83

CHAPTER 5. MEASURE THEORY WITH . . . 5.4. FORMALIZATION OF MEASURES

Let dirac_sigma_additive : semi_sigma_additive dirac.
Proof.
move=> F mF tF mUF; rewrite /dirac indicE; have [|aFn] /= := boolP (a \in _).

F : nat -> set T
mF : forall i : nat, d.-measurable (F i)
tF : trivIset [set: nat] F
mUF : d.-measurable (\bigcup_n F n)
============================
a \in \bigcup_n F n ->

(fun n : nat => \sum_(0 <= i < n) (\1_(F i) a)%:E) --> 1

rewrite inE => -[n _ Fna].

n : nat
Fna : F n a
============================
(fun n0 : nat => \sum_(0 <= i < n0) (\1_(F i) a)%:E) --> 1

have naF m : m != n -> a \notin F m.
(* omitted *)

n : nat
Fna : F n a
naF : forall m : nat_eqType, m != n -> a \notin F m
============================
(fun n0 : nat => \sum_(0 <= i < n0) (\1_(F i) a)%:E) --> 1%:E

apply/cvg_ballP => _/posnumP[e]; near=> m.

e : {posnum R}
m : nat
Hyp : m \is_near (nbhs \oo)
============================
ball 1%:E e%:num (\sum_(0 <= i < m) (\1_(F i) a)%:E)

have mn : (n < m)%N by near: m; exists n.+1.

mn : (n < m)%N
============================
ball 1%:E e%:num (\sum_(0 <= i < m) (\1_(F i) a)%:E)

We can show that the sum is equal to 1 since there is only one n <m such that
a ∈ F n. Finally, we use a property of balls of a pseudometric spaces (§ 4.6.3)
to conclude.

The second goal (that was generated by the case analysis at the very first
line of the script) is:

84

5.4. FORMALIZATION OF MEASURES CHAPTER 5. MEASURE THEORY WITH . . .

aFn : a \notin \bigcup_n F n
============================
(fun n : nat => \sum_(0 <= i < n) (\1_(F i) a)%:E) --> 0

This holds because the left-hand side is the constant function 0. . . . /. . .

85

CHAPTER 5. MEASURE THEORY WITH . . . 5.5. MEASURABLE FUNCTIONS

5.4.2 Other Instances of Measures
MathComp-Analysis provides several instances of non-negative measures. In
MathComp-Analysis

measure.v , besides the Dirac measure, one can find the pushforward mea-
sure, the null measure, the sum of measures (be it finite or countable), the scaled
(by a non-negative number) measure, the restriction of a measure, the count-
ing measure, the product measure (notation \x), and other kinds of a bit more
abstract measures that are involved in the construction of the Lebesgue mea-
sure

MathComp-Analysis
lebesgue_measure.v [Affeldt and Cohen, 2023] or the Lebesgue-Stieltjes

measure [Ishiguro and Affeldt, 2024, § 5].

5.5 Measurable Functions
A function with domain D is measurable when the preimage of any measurable
set is measurable:

Definition measurable_fun d d' (T : sigmaRingType d) (U : sigmaRingType d')
(D : set T) (f : T -> U) :=

measurable D -> forall Y, measurable Y -> measurable (D `&` f @^-1` Y).

Note that this definition does not rely on the definition of measure, only on the
definition of σ-ring. Measurable functions are precisely the functions that we
will integrate in the next chapter (Chapter 6).

There is a fairly large theory of measurable functions developed in MathComp-Analysis
measure.v

and
MathComp-Analysis

lebesgue_measure.v. You may want to know, e.g., whether the set of mea-
surable functions is stable by composition (lemma measurable_comp), or whether
the set of real number-valued measurable functions is stable by pointwise addi-
tion:

Context d (T : measurableType d) (R : realType).
Lemma measurable_funD D (f g : T -> R) :

measurable_fun D f -> measurable_fun D g -> measurable_fun D (f \+ g).

Exercise 5.5.1. Show that λx.x2 +x3 is a measurable function. You need to use
lebesgue_measure.v.

86

Chapter 6

Integration Theory with
MathComp-Analysis

Goal of this chapter: We explain how we use the measure theory of MathComp-
Analysis to develop integration theory.

6.1 Simple Functions
On paper, a simple function f is typically defined by a sequence of pairwise-
disjoint and measurable sets A0, . . . An−1 and a sequence of elements a0, . . . , an−1
such that f(x) = ∑n−1

k=0 ak1Ak
(x). One can choose to formalize this definition

directly, for example by representing the ak’s by a list without duplicate, and
use this representation to develop the necessary theory to formalize integration.

MathComp-Analysis is taking a bit more abstract and compositional ap-
proach by formalizing the hierarchy of Fig. 6.1 where simple functions are mea-
surable functions with a finite image.

FImFun MeasurableFun

SimpleFun NonNegFun

NonNegSimpleFun

Figure 6.1: Hierarchy for non-negative simple functions

At the top of Fig. 6.1, we find functions with a finite image. Functions with
a finite image are defined in

MathComp-Analysis
cardinality.v by:

HB.mixin Record FiniteImage aT rT (f : aT -> rT) := {
fimfunP : finite_set (range f)

}.
HB.structure Definition FImFun aT rT := {f of @FiniteImage aT rT f}.

87

CHAPTER 6. INTEGRATION THEORY WITH . . . 6.1. SIMPLE FUNCTIONS

The notation range f stands for [set f x | x in setT]. Let {fimfun aT >-> rT}
be a notation for functions from T to R with a finite image. Given a function
with a finite image, we can prove that it decomposes into a sum of indicator
functions, like a simple function should, except that we do not need any mea-
surability hypotheses:

Lemma fimfunE T (R : ringType) (f : {fimfun T >-> R}) x :
f x = \sum_(y \in range f) (y * \1_(f @^-1` [set y]) x).

See
MathComp-Analysis

numfun.v for this lemma.
At the time of this writing, the interface for measurable functions is defined

in
MathComp-Analysis

lebesgue_integral.v by:

HB.mixin Record isMeasurableFun d (aT : sigmaRingType d) (rT : realType)
(f : aT -> rT) := {

measurable_funP : measurable_fun [set: aT] f
}.
HB.structure Definition MeasurableFun d aT rT :=

{f of @isMeasurableFun d aT rT f}.

The interface uses the measurable_fun predicate from § 5.5. This interface is
restricted to real-valued functions. Let {mfun aT >-> R} be the notation for
Hierarchy-Builder-defined measurable functions.

The structure of simple functions is obtained by combining the interfaces of
functions with a finite image and of measurable functions. Notation for simple
functions: {sfun aT >-> R}

Similarly, we can define the interface of non-negative functions with a no-
tation {nnfun T >-> R} and combine with simple functions to get non-negative
simple functions with notation {nnsfun T >-> R}.

6.1.1 Approximation Theorem
Before defining integration, we prove a theorem to approximate measurable
functions using simple functions. This is an important theorem because it is used
pervasively, in particular to prove the monotone convergence theorem (§ 6.3.3).
The idea to build the approximation function is explained in Fig. 6.2. It relies
on the definition of dyadic intervals and two sets Bn and An,k defined below.
Definition 6.1.1 (Dyadic Interval). Given n and k, we call dyadic interval the
interval In,k

def= [k
2n , k+1

2n [.
Let f be an extended real number-valued measurable function with do-

main D. Given a natural number n, we define Bn to be the set D∩{x ∣ n ≤ f(x)}:

Definition integer_approx n := D `&` [set x | n%:R%:E <= f x]%E.

Given n and k, we define An,k to be the set D ∩ {x ∣ f(x) ∈ In,k} if k < n2n and
∅ otherwise:

88

6.1. SIMPLE FUNCTIONS CHAPTER 6. INTEGRATION THEORY WITH . . .

An,k

k+1
2n

k
2n

n

Bn
0

Figure 6.2: Approximation of a measurable function using simple functions

Definition dyadic_approx n k := if (k < n * 2 ^ n)%N then
D `&` [set x | f x \in EFin @` [set` I n k]] else set0.

Using Bn and An,k, we define the nth approximation of the function f to be
the function

x↦ ∑
k<n2n

k

2n
1An,k

(x) + n1Bn(x)

Local Notation A := dyadic_approx.
Local Notation B := integer_approx.

Definition approx : (T -> R)^nat := fun n x =>
\sum_(k < n * 2 ^ n) k%:R * 2 ^- n * \1_(A n k) x + n%:R * \1_(B n) x.

Theorem 6.1.2 (Approximation Theorem). For any (*1*) measurable set D,
any (*2*) function f that is (*3*) measurable and (*4*) non-negative, there exists a
(*5*) sequence of non-negative simple functions g that is (*6*) non-decreasing and
that (*7*) converges towards f .

Context d (T : measurableType d) (R : realType).
Variables (D : set T) (mD : measurable D)(*1*) .
Variables (f : T -> \bar R)(*2*) (mf : measurable_fun D f)(*3*) .

Lemma approximation : (forall t, D t -> (0 <= f t)%E) -> (*4*)
exists g : {nnsfun T >-> R}^nat, (*5*)

nondecreasing_seq (g : (T -> R)^nat) /\ (*6*)
(forall x, D x -> EFin \o g ^~ x @ \oo --> f x). (*7*)

The notation nondecreasing_seq f is for

{homo f : n m / (n <= m)%nat >-> (n <= m)%O}

which is a specialization of a notation that we saw in § 3.2. The notation ^~
has been explained in § 2.1.1; informally, EFin \o g ^~ x means λn.gn(x).

89

CHAPTER 6. INTEGRATION THEORY WITH . . . 6.2. INTEGRAL OF MEASURABLE FUNCTIONS

6.2 Integral of Measurable Functions
6.2.1 Integral of a Simple Function
Let f be a simple function and µ be a non-negative measure. The integral of f
w.r.t. µ is defined by

∑
x∈R

xµ(f−1{x}).

This definition uses summation over a finite support (see § 3.5.7), so that we
are truly using the fact that f has a finite image.

Variables (T : Type) (R : numDomainType) (mu : set T -> \bar R) (f : T -> R).
Definition sintegral := \sum_(x \in [set: R]) x%:E * mu (f @^-1` [set x]).

6.2.2 Integral of a Non-negative Function
Let f be an extended real-valued function over some measurableType. Its integral
is defined by

sup
h
{∫

x
h(x)(d µ) ∣ h non-negative simple function ≤ f } .

(Note that we are abusing the integral sign notation.)

Let nnintegral mu f := ereal_sup [set sintegral mu h |
h in [set h : {nnsfun T >-> R} | forall x, (h x)%:E <= f x]].

The definition does not insist on having f non-negative but this will be necessary
to obtain the desired properties.

6.2.3 Integral of a Measurable Function
Let f be a extended real-valued function over some measurableType. We de-
fine its positive part as the (non-negative) function λx. max(f(x), 0) defined in
MathComp-Analysis

numfun.v with the notation f ^\+. Similarly, we define its negative part
as the (non-negative) function λx. max(−f(x), 0) with the notation f ^\-.

The integral of f over the domain D is defined by the difference between the
positive part and the negative part of the restriction of f to D:

Definition integral mu D f (g := f _ D) :=
nnintegral mu (g ^\+) - nnintegral mu (g ^\-).

Remember the definition of f _ D from § 4.4.1.
We introduce the ASCII notation \int[mu]_(x in D) f x for ∫x∈D f(x)(d µ).

Observe that this notation has the same form as the iterated operations. Com-
pare

\int[mu]_(x in D) f x

with, say,

90

6.3. MONOTONE CONVERGENCE THEOREM CHAPTER 6. INTEGRATION THEORY WITH . . .

\big[op/idx]_(x in D) f x

After all, we expect integration to have properties reminiscent of sums, so we’d
better have similar-looking notations and naming conventions to help us name
and search lemmas of the forthcoming theory of integration.

6.2.4 Properties of the Integral
Let f1 and f2 be two non-negative, measurable, extended real-valued functions
with domain D. We have the monotone integral property:

Lemma ge0_le_integral : (forall x, D x -> f1 x <= f2 x) ->
\int[mu]_(x in D) f1 x <= \int[mu]_(x in D) f2 x.

The proof uses the approximation theorem (Theorem 6.1.2).

6.3 Monotone Convergence Theorem
Informal statement: For any non-decreasing sequence of non-negative measur-
able functions gn, we have ∫x∈D(lim gn)(x)(d µ) = lim(∫x∈D gn(x)(d µ)).

The proof of the monotone convergence theorem is in three steps:

• proof for simple functions only (§ 6.3.1),

• proof for simple functions converging to a measurable function (§ 6.3.2),

• proof for measurable functions converging to a measurable function (§ 6.3.3).

6.3.1 Monotone Convergence for Simple Functions
For any (*1*) sequence of non-negative simple functions g that is (*3*) nondecreasing
and that (*4*) converges towards a (*2*) non-negative simple function f , we have

∫
x

f(x)(d µ) = lim
n→∞

∫
x

gn(x)(d µ).

Context d (T : measurableType d) (R : realType).
Variable mu : {measure set T -> \bar R}.
Variables (g : {nnsfun T >-> R}^nat)(*1*) (f : {nnsfun T >-> R})(*2*) .
Hypothesis nd_g : forall x, nondecreasing_seq (g^~ x)(*3*) .
Hypothesis gf : forall x, g ^~ x @ \oo --> f x(*4*) .

Lemma nd_sintegral_lim : sintegral mu f = lim (sintegral mu \o g).

The proof is by proving the <= part and the >= part. The difficult part is
sintegral mu f <= lim (sintegral mu \o g). See

MathComp-Analysis
lebesgue_integral.v.

91

CHAPTER 6. INTEGRATION THEORY WITH . . . 6.3. MONOTONE CONVERGENCE THEOREM

6.3.2 Monotone Convergence Intermediate Lemma
For any (*1*) function f ∶ T → R that is (*2*) non-negative and (*3*) measurable, any
(*4*) sequence g of non-negative simple functions that is (*5*) non-decreasing and
(*6*) converging towards f , we have

∫
x

f(x)(d µ) = lim
n→∞

∫
x

gn(x)(d µ).

Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (f : T -> \bar R)(*1*)

(g : {nnsfun T >-> R}^nat)(*4*) .
Hypothesis f0 : forall x, 0 <= f x(*2*) .
Hypothesis mf : measurable_fun setT f(*3*) .
Hypothesis nd_g : forall x, nondecreasing_seq (g^~x)(*5*) .
Hypothesis gf : forall x, EFin \o g^~x @ \oo --> f x(*6*) .

Lemma nd_ge0_integral_lim : \int[mu]_x f x = lim (sintegral mu \o g).

Again, the proof is by proving successively the <= part and the >= part.

6.3.3 Proof of the Monotone Convergence Theorem
For (*1*) any measurable set D and any (*3*) non-decreasing sequence of functions
(*2*) gn ∶ T → R that are (*4*) measurable and (*5*) non-negative, we have

∫
x∈D
(lim

n→∞
gn(x)) (d µ) = lim

n→∞
∫

x∈D
gn(x)(d µ).

Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T).
Variables (mD : measurable D)(*1*) (g : (T -> \bar R)^nat)(*2*) .
Hypothesis mg : forall n, measurable_fun D (g n)(*4*) .
Hypothesis g0 : forall n x, D x -> 0 <= g n x(*5*) .
Hypothesis nd_g : forall x, D x -> nondecreasing_seq (g^~ x)(*3*) .

Lemma monotone_convergence :
\int[mu]_(x in D) limn (g^~ x) = limn (fun n => \int[mu]_(x in D) g n x).

Easy Direction

lim
n→∞

∫
x∈D

gn(x)(d µ) ≤ ∫
x∈D
(lim

n→∞
gn(x)) (d µ)

In Coq, this appears as

lim (fun n => \int[mu]_x g n x) <= \int[mu]_x f x

92

6.3. MONOTONE CONVERGENCE THEOREM CHAPTER 6. INTEGRATION THEORY WITH . . .

where f is fun x => lim (g ^~ x). In particular, the domain of integration D has
been put under the integral by using the notation of restriction of a function
(notation _, see § 4.4.1).

The proof is by appealing to properties of sequences of extended real numbers
and to the fact that the integral is monotone (§ 6.2.4). Indeed, we can use
ge0_le_integral to show that:

• the sequence of integrals on the left-hand side is non-decreasing:

nondecreasing_seq (fun n => \int[mu]_x g n x)

• each of its terms is upper bounded by the right-hand side:

\int[mu]_x g n x <= \int[mu]_x f x

Therefore, the sequence on the left-hand side is convergent and its limit is
bounded by the right-hand side.

Difficult Direction

∫
x∈D
(lim

n→∞
gn) (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f(x)

(d µ) ≤ lim
n→∞

∫
x∈D

gn(x)(d µ)

In Coq, this appears as

\int[mu]_x f x <= lim (fun n => \int[mu]_x g n x)

with the same proviso as above.
The idea is to build a sequence of non-negative simple functions hn (see

below) that is non-decreasing and such that hn ≤ gn and limn→∞ hn = f .
Then we can use the lemma from § 6.3.2 to show

∫
x∈D

f(x)(d µ) = lim
n→∞

∫
x∈D

hn(x)(d µ)

which leads to

lim
n→∞

∫
x∈D

hn(x)(d µ) ≤ lim
n→∞

∫
x∈D

gn(x)(d µ)

and then we are able to conclude by appealing to the monotone properties of
limits and of integrals.

So, our problem is to find simple functions hn such that limn→∞ hn = f .
We approximate (in the sense of the approximation theorem—§ 6.1.2) each

measurable function g by a function g2:

(* raw functions *)
Let g2' n : (T -> R)^nat := approx setT (g n).
(* same functions but with their properties embedded in types *)
Let g2 n : {nnsfun T >-> R}^nat := nnsfun_approx measurableT (mg n).

93

CHAPTER 6. INTEGRATION THEORY WITH . . . 6.4. FUBINI’S THEOREM

(Note that g2' is a sequence of sequences.) And then use these g2 functions to
create the desired function h that we call max_g2 because it is defined by taken
the max of all g2 functions:

(* raw functions *)
Let max_g2' : (T -> R)^nat :=

fun k t => (\big[maxr/0]_(i < k) (g2' i k) t)%R.
(* same functions but with their properties embedded in types *)
Let max_g2 : {nnsfun T >-> R}^nat := fun k => bigmax_nnsfun (g2^~ k) k.

Does max_g2/h has the right properties? (I.e., non-decreasing, upper-bounded
by g, and converging to f.)

• hn non-decreasing? Yes, essentially because each g2 is.

• hn ≤ gn? Yes, essentially because g2n ≤ gn.

• limn→∞ hn = f? This is a bit more technical, this is cvg_max_g2_f in the
file

MathComp-Analysis
lebesgue_integral.v.

How do we prove limn→∞ hn = f = limn→∞ gn?

• limn→∞ hn ≤ limn→∞ gn is easy, this is by construction.

• limn→∞ gn ≤ limn→∞ hn requires a bit of work.

– Suppose that the right-hand side is < +∞ (otherwise this is obvious).
– It suffices to prove:

\forall n \near \oo, g n t <= lim (EFin \o max_g2 ^~ t)

Use the near=> n tactic (§ 4.7) to get a large enough n.
∗ If g n t is +∞:

then (approx D (g n))^~ t diverges,
then lim (EFin \o g2 n ^~ t) = +oo,
then lim (EFin \o max_g2 ^~ t) = +oo.

∗ If g n t < +∞:
then (approx D (g n))^~ t converges towards g n t,
then lim (EFin \o g2 n ^~ t) = g n t,
we conclude because each g2 is smaller or equal to max_g2.

That concludes the proof of the monotone convergence theorem.

6.4 Fubini’s Theorem
In § 1.4, we set our goal as going as far as Fubini’s theorem. The reader should
now be in a position to read

MathComp-Analysis
lebesgue_integral.v to understand how the proof

is carried out.

94

6.4. FUBINI’S THEOREM CHAPTER 6. INTEGRATION THEORY WITH . . .

Fubini’s theorem is about a function with two arguments that is measurable
and integrable (i.e., the integral of its absolute value is not ∞, see definition
integrable). See also [Affeldt and Cohen, 2023].

As an intermediate theorem, one uses Fubini-Tonelli’s theorem, which is a
similar statement for non-negative functions. Let us state one part of Fubini-
Tonelli’s theorem, which states the equality of the integration over the product
measure of m1 and m2 (notation: m1 \x m2) and of the successive integration over
m2 and then over m1 (Fubini-Tonelli’s theorem is obtained by combining with the
symmetric statement):

Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2)
(R : realType).

Variables (m1 : {sigma_finite_measure set T1 -> \bar R})
(m2 : {sigma_finite_measure set T2 -> \bar R}).

Variable f : T1 * T2 -> \bar R.
Hypothesis mf : measurable_fun setT f.
Hypothesis f0 : forall x, 0 <= f x.

Lemma fubini_tonelli1 : \int[m1 \x m2]_z f z = \int[m1]_x \int[m2]_y f (x, y).

This is proved by using the approximation theorem (Theorem 6.1.2) and the
monotone convergence theorem (§ 6.3.3).

Using the approximation theorem, we turn the function f into a non-decreasing
sequence of non-negative simple functions that converges towards f, thus trans-
forming the problem into an integration problem of non-negative simple func-
tions, which is arguably simpler (see lemma sfun_fubini_tonelli in the file

MathComp-Analysis
lebesgue_integral.v).

Since non-negative simple functions can be expressed as sums of indicator
functions (see lemma fimfunE in § 6.1), we can furthermore simplify the problem
to the integration of indicator functions (see lemma indic_fubini_tonelli in the

file
MathComp-Analysis

lebesgue_integral.v).

The formal proof of Fubini’s theorem is an application of Fubini-Tonelli’s
theorem with a bit of “almost everywhere” reasoning, which is provided by the
notation {ae mu, forall x, P x} where mu is a measure and P is a predicate
in the file MathComp-Analysis

measure.v . See Theorem Fubini towards the end of the file
MathComp-Analysis

lebesgue_integral.v for the formal proof of Fubini’s theorem.

95

CHAPTER 6. INTEGRATION THEORY WITH . . . 6.4. FUBINI’S THEOREM

96

Chapter 7

Derivation with
MathComp-Analysis

Goal of this chapter: This chapter will introduce the basics of differentiation and
to connect with measure theory (Chapter 5) with the Fundamental Theorem
of Calculus [Affeldt and Stone, 2024]. This chapter is however still work in
progress.

7.1 Differentiation

Differentiation is defined in the file
MathComp-Analysis

derive.v . The derivative of an uni-
variate function f is noted f^`() (in notation scope classical_set_scope). This
is the same notation as for polynomials (§ 3.6.2). Alternatively, f^`() can be
written 'D_1 f, using the more general notation 'D_v for any v. We can switch
between the two notations using the lemma derive1E.

Differentiation of univariate functions has the expected properties, e.g., deriveD.

97

CHAPTER 7. DERIVATION WITH MATHCOMP- . . . 7.1. DIFFERENTIATION

98

Chapter 8

Conclusion

This document tried to provide a self-contained introduction to MathComp-
Analysis so that newcomers can start exploring its formal proofs about real
analysis and eventually contribute. It is fair to say that formalization of math-
ematics using type theory still looks too technical but researchers have been
working hard to find a way to bridge the gap between the foundations of math-
ematics (type theory) and practical applications (e.g., software development):
many limitations have been lifted and it is arguably starting to scale. There are
still countless, unexplored topics of interest though and, regarding MathComp-
Analysis, discussions are happening online in particular with team chat tools
(mostly Zulip) and distributed software development tools (mostly GitHub).
Hope to see you there.

99

coq.zulipchat.com
https://github.com/math-comp/analysis

CHAPTER 8. CONCLUSION

100

Bibliography

[Affeldt, 2017] Affeldt, R. (2017). Formal verification using the Coq proof assis-
tant. https://staff.aist.go.jp/reynald.affeldt/ssrcoq/ssrcoq.pdf.
In Japanese. Slides.

[Affeldt et al., 2017] Affeldt, R., Bertot, Y., Bruni, A., Cohen, C., Kerjean,
M., Mahboubi, A., Rouhling, D., Roux, P., Sakaguchi, K., Stone, Z., Strub,
P.-Y., and Théry, L. (2017). Mathematical components compliant analysis li-
brary. https://github.com/math-comp/analysis. Last stable version 1.3.0
(2024).

[Affeldt and Cohen, 2017] Affeldt, R. and Cohen, C. (2017). Formal founda-
tions of 3D geometry to model robot manipulators. In 6th ACM SIGPLAN
Conference on Certified Programs and Proofs (CPP 2017), Paris, France,
January 16–17, 2017, pages 30–42. ACM Press. doi.

[Affeldt and Cohen, 2023] Affeldt, R. and Cohen, C. (2023). Measure construc-
tion by extension in dependent type theory with application to integration.
J. Autom. Reason., 67(3):28.

[Affeldt et al., 2020a] Affeldt, R., Cohen, C., Kerjean, M., Mahboubi, A., Rouh-
ling, D., and Sakaguchi, K. (2020a). Competing inheritance paths in depen-
dent type theory: a case study in functional analysis. In 10th International
Joint Conference on Automated Reasoning (IJCAR 2020), Paris, France,
June 29–July 6, 2020, volume 12167 of Lecture Notes in Artificial Intelli-
gence, pages 3–20. Springer. doi.

[Affeldt et al., 2018] Affeldt, R., Cohen, C., and Rouhling, D. (2018). Formal-
ization techniques for asymptotic reasoning in classical analysis. J. Formalized
Reasoning, 11(1):43–76.

[Affeldt et al., 2023] Affeldt, R., Cohen, C., and Saito, A. (2023). Seman-
tics of probabilistic programs using s-finite kernels in Coq. In 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs (CPP
2023), Boston, Massachusetts, USA, January 16–17, 2023. ACM Press.

[Affeldt et al., 2021] Affeldt, R., Garrigue, J., Nowak, D., and Saikawa, T.
(2021). A trustful monad for axiomatic reasoning with probability and non-

101

https://staff.aist.go.jp/reynald.affeldt/ssrcoq/ssrcoq.pdf
https://github.com/math-comp/analysis
http://dx.doi.org/10.1145/3018610.3018629
https://ijcar2020.org/
http://dx.doi.org/10.1007/978-3-030-51054-1_1

BIBLIOGRAPHY BIBLIOGRAPHY

determinism. Journal of Functional Programming, 31(E17). doi arXiv: cs.LO
2003.09993.

[Affeldt et al., 2020b] Affeldt, R., Garrigue, J., and Saikawa, T. (2020b). A li-
brary for formalization of linear error-correcting codes. Journal of Automated
Reasoning, 64:1123–1164.

[Affeldt et al., 2014] Affeldt, R., Hagiwara, M., and Sénizergues, J. (2014).
Formalization of Shannon’s theorems. Journal of Automated Reasoning,
53(1):63–103.

[Affeldt and Nowak, 2021] Affeldt, R. and Nowak, D. (2021). Extending equa-
tional monadic reasoning with monad transformers. In 26th International
Conference on Types for Proofs and Programs (TYPES 2020), volume 188
of Leibniz International Proceedings in Informatics, pages 2:1–2:21. Schloss
Dagstuhl.

[Affeldt and Stone, 2024] Affeldt, R. and Stone, Z. (2024). A comprehensive
overview of the Lebesgue differentiation theorem in Coq. In 15th International
Conference on Interactive Theorem Proving (ITP 2024), September 9–14,
2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 5:1–5:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik.

[Appel, 2022] Appel, A. W. (2022). Coq’s vibrant ecosystem for verification en-
gineering (invited talk). In 11th ACM SIGPLAN International Conference on
Certified Programs and Proofs (CPP 2022), Philadelphia, PA, USA, January
17–18, 2022, pages 2–11. ACM.

[Bernard et al., 2021] Bernard, S., Cohen, C., Mahboubi, A., and Strub, P.-Y.
(2021). Unsolvability of the Quintic Formalized in Dependent Type Theory.
In 12th International Conference on Interactive Theorem Proving (ITP 2021),
volume 193 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 8:1–8:18, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[Bertot and Castéran, 2004] Bertot, Y. and Castéran, P. (2004). Interactive
Theorem Proving and Program Development—Coq’Art: The Calculus of In-
ductive Constructions. Texts in Theoretical Computer Science. An EATCS
Series. Springer.

[Bertot and Castéran, 2015] Bertot, Y. and Castéran, P. (2015). Le Coq’Art
(V8). In French.

[Bertot et al., 2008] Bertot, Y., Gonthier, G., Biha, S. O., and Pasca, I. (2008).
Canonical big operators. In International Conference on Theorem Proving
in Higher Order Logics (TPHOLs 2008), Montreal, Canada, August 18–21,
2008, volume 5170 of Lecture Notes in Computer Science, pages 86–101.
Springer.

102

http://dx.doi.org/10.1017/S0956796821000137
https://arxiv.org/abs/2003.09993
https://arxiv.org/abs/2003.09993
https://types2020.di.unito.it/

BIBLIOGRAPHY BIBLIOGRAPHY

[Bourbaki, 1971] Bourbaki, N. (1971). Éléments de mathématique—Topologie
générale. Hermann.

[Broué, 2012] Broué, I. (2012). Actes des journées X-UPS 2012, chapter
Quelques Moments de Vie Privilégiés avec Henri et Nicole Cartan. Éditions
de l’École polytechnique.

[Church, 1940] Church, A. (1940). A formulation of the simple theory of types.
The Journal of Symbolic Logic, 5(2):56–68.

[Cohen and Sakaguchi, 2015] Cohen, C. and Sakaguchi, K. (2015). A finset
and finmap library: Finite sets, finite maps, multisets and order. Available at
https://github.com/math-comp/finmap. Last stable release: 2.1.0 (2024).

[Cohen et al., 2020] Cohen, C., Sakaguchi, K., and Tassi, E. (2020). Hierarchy
builder: Algebraic hierarchies made easy in coq with elpi (system description).
In 5th International Conference on Formal Structures for Computation and
Deduction (FSCD 2020), June 29–July 6, 2020, Paris, France (Virtual Con-
ference), volume 167 of LIPIcs, pages 34:1–34:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.

[Corry, 1992] Corry, L. (1992). Nicolas bourbaki and the concept of mathemat-
ical structure. Synthese, 92(3):315–348.

[Garillot et al., 2009] Garillot, F., Gonthier, G., Mahboubi, A., and Rideau, L.
(2009). Packaging mathematical structures. In 22nd International Confer-
ence on Theorem Proving in Higher Order Logics (TPHOLs 2009), Munich,
Germany, August 17–20, 2009, volume 5674 of Lecture Notes in Computer
Science, pages 327–342. Springer.

[Gonthier, 2008] Gonthier, G. (2008). Formal proof—the four-color theorem.
Notices of the AMS, 55(11):1382–1393.

[Gonthier et al., 2013] Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen,
C., Garillot, F., Roux, S. L., Mahboubi, A., O’Connor, R., Biha, S. O., Pasca,
I., Rideau, L., Solovyev, A., Tassi, E., and Théry, L. (2013). A machine-
checked proof of the odd order theorem. In 4th International Conference on
Interactive Theorem Proving (ITP 2013), Rennes, France, July 22–26, 2013,
volume 7998 of Lecture Notes in Computer Science, pages 163–179. Springer.

[Gonthier et al., 2016] Gonthier, G., Mahboubi, A., and Tassi, E. (2016). A
Small Scale Reflection Extension for the Coq system. Research Report RR-
6455, Inria Saclay Ile de France.

[Gonthier and Tassi, 2012] Gonthier, G. and Tassi, E. (2012). A language of
patterns for subterm selection. In Proceedings of the 3rd International Con-
ference on Interactive Theorem Proving (ITP 2012), Princeton, NJ, USA,
August 13–15, 2012, volume 7406 of Lecture Notes in Computer Science,
pages 361–376. Springer.

103

https://github.com/math-comp/finmap

BIBLIOGRAPHY BIBLIOGRAPHY

[Hagiwara and Affeldt, 2018] Hagiwara, M. and Affeldt, R. (2018). Formal
Proof using Coq/SSReflect/MathComp: Start Formalization of Mathematics
with Free Software. Morikita Publishing. In Japanese.

[Harrison, 2018] Harrison, J. (2018). Let’s make set theory great again. Invited
talk at the 3rd Conference on Artificial Intelligence and Theorem Proving
(AITP 2018), March 25–30, 2018, Aussois, France.

[Howard, 1980] Howard, W. A. (1980). The formulae-as-types notion of con-
struction.

[Infotheo, 2024] Infotheo (2024). A Coq formalization of information the-
ory and linear error-correcting codes. https://github.com/affeldt-aist/
infotheo. Open source software. Since 2009. Last stable version: 0.7.2.

[Ishiguro and Affeldt, 2024] Ishiguro, Y. and Affeldt, R. (2024). The Radon-
Nikodým theorem and the Lebesgue-Stieltjes measure in Coq. Computer
Software, 41(2):41–59.

[Kernighan and Pike, 1999] Kernighan, B. W. and Pike, R. (1999). The Prac-
tice of Programming. Addison-Wesley.

[Klenke, 2013] Klenke, A. (2013). Probability Theory: A Comprehensive
Course. Springer. 2nd edition.

[Mahboubi and Tassi, 2021] Mahboubi, A. and Tassi, E. (2021). Mathematical
Components. Zenodo.

[Martin-Dorel and Tassi, 2019] Martin-Dorel, E. and Tassi, E. (2019). SSRe-
flect in Coq 8.10. In The Coq Workshop 2019, September 8, 2019, Portland,
OR, USA.

[Rouhling, 2019] Rouhling, D. (2019). Outils pour la Formalisation en Analyse
Classique: Une Étude de Cas en Théorie du Contrôle. PhD thesis, Université
Côte d’Azur.

[Russell, 1908] Russell, B. (1908). Mathematical logic as based on the theory
of types. American Journal of Mathematics, 30(3):222–262.

[Saito and Affeldt, 2022] Saito, A. and Affeldt, R. (2022). Towards a practi-
cal library for monadic equational reasoning in Coq. In 14th International
Conference on Mathematics of Program Construction (MPC 2022), Tbilisi,
Georgia, September 26–28, 2022, volume 13544 of Lecture Notes in Computer
Science, pages 151–177. Springer.

[Saito and Affeldt, 2023] Saito, A. and Affeldt, R. (2023). Experimenting with
an intrinsically-typed probabilistic programming language in Coq. In 21st
Asian Symposium on Programming Languages and Systems (APLAS 2023),
November 26–29, 2023, Taipei, Taiwan, volume 14405 of Lecture Notes in
Computer Science, pages 182–202. Springer.

104

https://github.com/affeldt-aist/infotheo
https://github.com/affeldt-aist/infotheo

BIBLIOGRAPHY BIBLIOGRAPHY

[Sozeau, 2009] Sozeau, M. (2009). Equations—a function definitions plugin.
Available at https://mattam82.github.io/Coq-Equations/. Last stable
release: 1.3 (2021).

[The Coq Development Team, 2024] The Coq Development Team (2024). The
Coq Proof Assistant Reference Manual. Inria. Available at https://coq.
inria.fr. Version 8.19.2.

[Voevodsky, 2014] Voevodsky, V. (2014). Univalent foundations.
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/
files/2014_IAS.pdf. Lecture at IAS.

[Whitehead and Russell, 1927] Whitehead, A. N. and Russell, B. A. W. (1927).
Principia mathematica; 2nd ed. Cambridge Univ. Press, Cambridge.

[Wilansky, 2008] Wilansky, A. (2008). Topology for Analysis. Dover Publica-
tions. Republication. Originally work from 1970.

105

https://mattam82.github.io/Coq-Equations/
https://coq.inria.fr
https://coq.inria.fr
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2014_IAS.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2014_IAS.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

106

Appendix A

Cheat Sheets

The following cheat sheets might be useful to memorize naming conventions at
first, but after a while the Search command and navigation into the appropriate
files of MathComp should be a better substitute.

107

cheat sheet ssrbool.v (Coq v8.16)

ssrfun.v naming conventions

K cancel
LR move an op from the lhs of a rel to the rhs
RL move an op from the rhs to the lhs

ssrfun.v notations

f ^~ y fun x => f x y

p .1 fst p

p .2 snd p

f =1 g f x = g x

{morph f : x / aF x >-> rR x} f (aF x) = rF (f x)

{morph f : x y / aOp x y >-> rOp x y} f (aOp x y) = rOp (f x) (f y)

ssrfun.v definitions

injective f forall x1 x2, f x1 = f x2 -> x1 = x2

cancel f g g (f x) = x

involutive f cancel f f

left_injective op injective (op^~ x)

right_injective op injective (op y)

left_id e op e □ x = x

right_id e op x □ e = x

left_zero z op z □ x = z

right_zero z op x □ z = z

self_inverse e op x □ x = e

idempotent op x □ x = x

commutative op x □ y = y □ x

associative op x □ (y □ z) = (x □ y) □ z

right_commutative op (x □ y) □ z = (x □ z) □ y

left_commutative op x □ (y □ z) = y □ (x □ z)

left_distributive op add (x + y) * z = (x * z) + (y * z)

right_distributive op add x * (y + z) = (x * y) + (x * z)

left_loop inv op cancel (op x) (op (inv x))

ssrbool.v naming conventions

A associativity
AC right commutativity
b a boolean argument
C commutativity/complement
D predicate difference
E elimination
F/f boolean false
T/t boolean truth
U predicate union

(* bool_scope *)

Notation "~~ b":= (negb b)

Notation "b ==>c" := (implb b c).

Notation "b1 (+) b2":= (addb b1 b2).

Notation "a && b":= (andb a b) Generalized to [&& b1 , b2 , ... , bn & c]

Notation "a || b" := (orb a b) Generalized to [|| b1 , b2 , ... , bn | c]

Notation "x \in A" := (in_mem x (mem A)).

Notation "x \notin A" := (~~ (x \in A)).

negbT b = false -> ~~ b

negbTE ~~ b -> b = false

negbK involutive negb

contra (c -> b) -> ~~ b -> ~~ c

contraNF (c -> b) -> ~~ b -> c = false

contraFF (c -> b) -> b = false -> c = false

ifP if_spec (b = false) b (if b then vT else vF)

ifT b -> (if b then vT else vF) = vT

ifF b = false ->(if b then vT else vF) = vF

ifN ~~ b ->(if b then vT else vF) = vF

boolP alt_spec b1 b1 b1

negP reflect (~ b1) (~~ b1)

negPn reflect b1 (~~ ~~ b1)

andP reflect (b1 /\ b2) (b1 && b2)

orP reflect (b1 \/ b2) (b1 || b2)

nandP reflect (~~ b1 \/ ~~ b2) (~~ (b1 && b2))

norP reflect (~~ b1 /\ ~~ b2) (~~ (b1 || b2))

implyP reflect (b1 -> b2) (b1 ==> b2)

andTb left_id true andb

andbT right_id true andb

andbb idempotent andb

andbC commutative andb

andbA associative andb

orFb left_id false orb

orbN b || ~~ b = true

negb_and ~~ (a && b) = ~~ a || ~~ b

negb_or ~~ (a || b) = ~~ a && ~~ b

Variant if_spec (not_b : Prop) : bool -> A -> Set :=
| IfSpecTrue of b : if_spec not_b true vT
| IfSpecFalse of not_b : if_spec not_b false vF.

Inductive reflect (P : Prop) : bool -> Set :=
| ReflectT of P : reflect P true
| ReflectF of ~ P : reflect P false.

Variant alt_spec (P : Prop) (b : bool) : bool -> Type :=
| AltTrue of P : alt_spec P b true
| AltFalse of ~~ b : alt_spec P b false.

Notation xpred0 := (fun=> false).

Notation xpredT := (fun=> true).

Notation xpredU := (fun (p1 p2 : pred _) x => p1 x || p2 x).

Notation xpredC := (fun (p : pred _) x => ~~ p x).

Notation "A =i B" := (eq_mem (mem A) (mem B)).

http://staff.aist.go.jp/reynald.affeldt/ssrcoq/ssrbool_doc.pdf, November 23, 2022

cheat sheet ssrnat.v (SSReflect v1.15)

ssrfun.v naming conventions

K cancel
LR move an op from the lhs of a rel to the rhs
RL move an op from the rhs to the lhs

ssrfun.v notations

f ^~ y fun x => f x y

p .1 fst p

p .2 snd p

f =1 g f x = g x

{morph f : x / aF x >-> rR x} f (aF x) = rF (f x)

{morph f : x y / aOp x y >-> rOp x y} f (aOp x y) = rOp (f x) (f y)

ssrfun.v definitions
injective f forall x1 x2, f x1 = f x2 -> x1 = x2
cancel f g g (f x) = x
involutive f cancel f f
left_injective op injective (op^~ x)
right_injective op injective (op y)
left_id e op e □ x = x
right_id e op x □ e = x
left_zero z op z □ x = z
right_zero z op x □ z = z
self_inverse e op x □ x = e
idempotent op x □ x = x
commutative op x □ y = y □ x
associative op x □ (y □ z) = (x □ y) □ z
right_commutative op (x □ y) □ z = (x □ z) □ y

left_commutative op x □ (y □ z) = y □ (x □ z)

left_distributive op add (x + y) * z = (x * z) + (y * z)
right_distributive op add x * (y + z) = (x * y) + (x * z)
left_loop inv op cancel (op x) (op (inv x))

ssrbool.v naming conventions

A associativity
AC right commutativity
b a boolean argument
C commutativity/complement
D predicate difference
E elimination
F/f boolean false
T/t boolean truth
U predicate union

ssrnat.v naming conventions

A(infix) conjunction
B subtraction
D addition
p(prefix) positive
S successor
V(infix) disjunction

(* nat_scope *)

Notation "n .+1":= (succn n). Notation "n .*2":= (double n). Notation "n ‘!":=(factorial n).

Notation "n .-1":= (predn n). Notation "n ./2":= (half n).

Notation "m <n":= (m.+1 <=n). Notation "m ^ n":= (expn m n).

add0n/addn0 left_id 0 addn/right_id 0 addn

add1n/addn1 1 + n = n.+1/n + 1 = n.+1

addn2 n + 2 = n.+2

addSn m.+1 + n = (m + n).+1

addnS m + n.+1 = (m + n).+1

addSnnS m.+1 + n = m + n.+1

addnC commutative addn

addnA associative addn

addnCA left_commutative addn

eqn_add2l (p + m == p + n) = (m == n)

eqn_add2r (m + p == n + p) = (m == n)

sub0n/subn0 left_zero 0 subn/right_id 0 subn

subnn self_inverse 0 subn

subSS m.+1 - n.+1 = m - n

subn1 n - 1 = n.-1

subnDl (p + m) - (p + n) = m - n

subnDr (m + p) - (n + p) = m - n

addKn cancel (addn n) (subn^~ n)

addnK cancel (addn^~ n) (subn^~ n)

subSnn n.+1 - n = 1

subnDA n - (m + p) = (n - m) - p

subnAC right_commutative subn

ltnS (m < n.+1) = (m <= n)

prednK 0 < n -> n.-1.+1 = n

leqNgt (m <= n) = ~~ (n < m)

ltnNge (m < n) = ~~ (n <= m)

ltnn n < n = false

subnDA n - (m + p) = (n - m) - p

leq_eqVlt (m <= n) = (m == n) || (m < n)

ltn_neqAle (m < n) = (m != n) && (m <=n)

ltn_add2l (p + m < p + n) = (m < n)

leq_addr n <= n + m

addn_gt0 (0 < m + n) = (0 < m) || (0 < n)

subn_gt0 (0 < n - m) = (m < n)

leq_sub2r m <= n -> m - p <= n - p

leq_subLR (m - n <= p) = (m <= n + p)

ltn_sub2r p < n -> m < n -> m - p < n - p

ltn_subRL (n < p - m) = (m + n < p)

subnKC m <= n -> m + (n - m) = n

subnK m <= n -> (n - m) + m = n

addnBA p <= n -> m + (n - p) = m + n - p

subnBA p <= n -> m - (n - p) = m + p - n

subKn m <= n -> n - (n - m) = m

mul0n/muln0 left_zero 0 muln/right_zero 0 muln

mul1n/muln1 left_id 1 muln/right_id 1 muln

mul2n/muln2 2 * m = m.*2/m * 2 = m.*2

mulnC commutative muln

mulnA associative muln

mulSn m.+1 * n = n + m * n

mulnS m * n.+1 = m + m * n

mulnDl left_distributive muln addn

mulnDr right_distributive muln addn

mulnBl left_distributive muln subn

mulnBr right_distributive muln subn

mulnCA left_commutative muln

muln_gt0 (0 < m * n) = (0 < m) && (0 < n)

leq_pmulr n > 0 -> m <= m * n

leq_mul2l (m * n1 <= m * n2) = (m == 0) || (n1 <= n2)

leq_pmul2r 0 < m -> (n1 * m <= n2 * m) = (n1 <= n2)

ltn_pmul2r 0 < m -> (n1 * m < n2 * m) = (n1 < n2)

leqP leq_xor_gtn m n (m <= n) (n < m)

ltngtP compare_nat m n (m < n) (n < m) (m == n)

expn0 m ^ 0 = 1

expn1 m ^ 1 = m

expnS m ^ n.+1 = m * m ^ n

exp0n 0 < n -> 0 ^ n = 0

exp1n 1 ^ n =1

expnD m ^ (n1 + n2) = m ^ n1 * m ^ n2

expn_gt0 (0 < m ^ n) = (0 < m) || (n == 0)

fact0 0‘! = 1

factS (n.+1)‘! = n.+1 * n‘!

odd_add odd (m + n) = odd m (+) odd n

odd_double_half odd n + n./2.*2 = n

Variant leq_xor_gtn m n : nat -> nat -> nat -> nat -> bool -> bool -> Set :=
| LeqNotGtn of m <= n : leq_xor_gtn m n m m n n true false
| GtnNotLeq of n < m : leq_xor_gtn m n n n m m false true.

Variant compare_nat m n : nat -> nat -> nat -> nat -> bool -> bool -> bool -> bool -> bool -> bool -> Set :=
| CompareNatLt of m < n : compare_nat m n m m n n false false false true false true
| CompareNatGt of m > n : compare_nat m n n n m m false false true false true false
| CompareNatEq of m = n : compare_nat m n m m m m true true true true false false.

http://staff.aist.go.jp/reynald.affeldt/ssrcoq/ssrnat_doc.pdf, November 23, 2022

cheat sheet bigop.v (SSReflect v1.15)

big_morph (∀x y, f(x+ y) = f(x)+̂f(y)) → f(0) = 0̂ → f

(∑
i←r
P (i)

F (i)

)
=

∑̂
i←r
P (i)

f(F (i))

Section Extensionality

eq_bigl P1 =1 P2 → ∑
i←r
P1(i)

F (i) =
∑

i←r
P2(i)

F (i)

eq_bigr (∀i, P (i) → F1(i) = F2(i)) →
∑

i←r
P (i)

F1(i) =
∑

i←r
P (i)

F2(i)

big_nil
∑

i←∅
P (i)

F (i) = 0

big_pred0 P =1 xpred0 → ∑
i←r
P (i)

F (i) = 0

big_pred1 P =1 pred1(i) →
∏

j
P (j)

F (j) = F (i)

big_ord0
∑

i<0
P (i)

F (i) = 0

big_tnth
∑

i←r
P (i)

F (i) =
∑

i<size(r)
P (ri)

F (ri)

big_nat_recl m ≤ n → ∑
m≤i<n+1 F (i) = F (m) +

∑
m≤i<n F (i+ 1)

big_ord_recl
∑

i<n+1 F (i) = F (ord0) +
∑

i<n F (lift((n+ 1), ord0, i))

big_const_ord
∑

i<n x = iter(n, λy.x+ y, 0)

Section MonoidProperties

big1 (∀i, P (i) → F (i) = 1) → ∏
i←r
P (i)

F (i) = 1

big_nat_recr m ≤ n → ∏
m≤i<n+1 F (i) =

(∏
i<n F (i)

)
× F (n)

Section Abelian

big_split
∏

i←r
P (i)

(F1(i)× F2(i)) =
∏

i←r
P (i)

F1(i)×
∏

i←r
P (i)

F2(i)

bigU A ∩B = ∅ → ∏
i∈A∪B F (i) = (

∏
i∈A F (i))× (

∏
i∈B F (i))

partition_big (∀i, P (i) → Q(p(i))) → ∏
i←s
P (i)

F (i) =
∏

j:J
Q(j)

∏
i

P (i) p(i)=j
F (i)

reindex_onto (∀i, P (i) → h(h′(i)) = i) → ∏
i

P (i)
F (i) =

∏
j

P (h(j)) h′(h(j))=j

F (h(j))

pair_big
∏

i
P (i)

∏
j

Q(j)

F (i, j) =
∏

(p,q)
P (p)∧Q(q)

F (p, q)

exchange_big
∏

i←rI
P (i)

∏
j←rJ
Q(j)

F (i, j) =
∏

j←rJ
Q(j)

∏
i←rI
Q(i)

F (i, j)

Section Distributivity

big_distrl

(∑
i←r
P (i)

F (i)

)
× a =

∑
i←r
P (i)

(F (i)× a) (also big_distrr)

big_distr_big_dep
∏

i
P (i)

∑
j

Q(i,j)

F (i, j) =
∑

f∈pfamily(j0,P,Q)

∏
i

P (i)
F (i, f(i)) pfamily(j0, P,Q) ≃

functions QP

big_distr_big
∏

i
P (i)

∑
j

Q(j)

F (i, j) =
∑

f∈pffun_on(j0,P,Q)

∏
i

P (i)
F (i, f(i))

bigA_distr_big
∏

i

∑
i

Q(j)
F (i, f(i)) =

∑
f∈ffun_on(Q)

∏
i F (i, f(i))

bigA_distr_bigA
∏

i∈I
∑

j∈J F (i, j) =
∑

f∈JI

∏
i∈I F (i, f(i))

from finset.v also (SSReflect v1.15)

partition_big_imset
∑

i∈A F (i) =
∑

i∈h @:A

∑
i∈A

h(i)=j
F (i)

big_trivIset trivIset(P) → ∑
x∈cover(P) E(x) =

∑
A∈P

∑
x∈A E(x)

partition_disjoint_bigcup (∀i j, i ̸= j → F (i) ∩ F (j) = ∅) → ∑
x∈⋃i F (i) E(x) =

∑
i

∑
x∈F (i) E(x)

http://staff.aist.go.jp/reynald.affeldt/ssrcoq/bigop_doc.pdf, November 23, 2022

cheat sheet finset.v (SSReflect v1.15)

ssrfun.v naming conventions
K cancel
LR move an op from the lhs of a rel to the rhs
RL move an op from the rhs to the lhs

ssrbool.v naming conventions
A associativity
AC right commutativity
b a boolean argument
C commutativity/complement
D predicate difference
E elimination
F/f boolean false
T/t boolean truth
U predicate union

finset.v naming conventions
0 the empty set
T the full set
1 singleton set
C complement
U union
I intersection
D difference

ssrfun.v definitions

injective f forall x1 x2, f x1 = f x2 -> x1 = x2

cancel f g g (f x) = x

involutive f cancel f f

left_injective op injective (op^~ x)

right_injective op injective (op y)

left_id e op e □ x = x

right_id e op x □ e = x

left_zero z op z □ x = z

right_zero z op x □ z = z

self_inverse e op x □ x = e

idempotent op x □ x = x

commutative op x □ y = y □ x

associative op x □ (y □ z) = (x □ y) □ z

right_commutative op (x □ y) □ z = (x □ z) □ y

left_commutative op x □ (y □ z) = y □ (x □ z)

left_distributive op add (x + y) * z = (x * z) + (y * z)

right_distributive op add x * (y + z) = (x * y) + (x * z)

left_loop inv op cancel (op x) (op (inv x))

(* set_scope *)

��HH set0 ∅
A :|: B setU A ∪B
a |: A [set a] :|: A {a} ∪A
A :&: B setI A ∩B
~: A setC A AC

A :\: B setD A B A\B
A :\ a A :\: [set a] A\{a}
f @^-1: A preimset f (mem A) f−1(A)
f @: A imset f (mem A) f(A)
f @2: (A , B) imset2 f (mem A) (fun _ =>mem B) f(A,B)

(* bool_scope *)

a \in A see ssrbool.v a ∈ A
A \subset B see fintype.v A ⊆ B
[disjoint A & B] see fintype.v A ∩B = ∅

setP A =i B <-> A = B

in_set0 x \in set0 = false

subset0 (A \subset set0) = (A == set0)

in_set1 (x \in [set a]) = (x == a)

in_setD1 (x \in A :\ b) = (x != b) && (x \in A)

in_setU (x \in A :|: B) = (x \in A) || (x \in B)

in_setC (x \in ~: A) = (x \notin A)

(NB: inE is a multi-rule corresponding to in_set0, in_set1, in_setD1, in_setU, in_setC, etc.)

setUC A :|: B = B :|: A

setIC A :&: B = B :&: A

setKI A :|: (B :&: A) = A

setCI ~: (A :&: B) = ~: A :|: ~: B

setCK involutive (@setC T)

setD0 A :\: set0 =A

cardsE #|[set x in pA]| = #|pA| (NB: cardE : #|A|= size (enum A) in fintype.v)

cards0 #|@set0 T| = 0 (NB: card0 : #|@pred0 T|=0 in fintype.v)

cards_eq0 (#|A| == 0) = (A == set0)

cardsU #|A :|: B| = #|A| + #|B|- #|A :&: B|

cardsT #|[set: T]| = #|T| (NB: cardT : #|T|= size (enum T) in fintype.v)

set0Pn reflect (exists x, x \in A) (A != set0)

subsetIl A :&: B \subset A

subsetUr B \subset A :|: B

subsetI (A \subset B :&: C) = (A \subset B) && (A \subset C)

setI_eq0 (A :&: B == set0) = [disjoint A & B]

imsetP reflect (exists2 x, in_mem x D & y = f x) (y \in imset f D)

card_imset injective f ->#|f @: D|=#|D|

Section Partitions

cover P
⋃

B∈P B
trivIset P

∑
B∈P |B| = |cover(P)|

see also bigop_doc.pdf

http://staff.aist.go.jp/reynald.affeldt/ssrcoq/finset_doc.pdf, November 23, 2022

APPENDIX A. CHEAT SHEETS

112

Appendix B

Coq and MathComp
Installation

In case of emergency, you can use Coq in a web browser, just search for jsCoq
(“JavaScript Coq”) on the web. Maybe try https://coq.vercel.app/.

You can also install the Coq platform. It is a set of compatible packages
for Coq that is easy to install.

It is however much more convenient to install Coq through opam on your
computer and to have the source code at hand. You can find installation in-
structions online, e.g., installation on Linux and Windows. (Please, PR on
github if you find errors in these installation notes or if you want to propose an
improvement.)

Coq is typically used through a customizable text editor. The most pop-
ular choice is Emacs with the Proof General extension (and possibly also the
Company-coq extension). It is arguably the best solution in terms of speed of
edition and integration with other tools, in particular in a Unix-like environment
such as Linux or MacOS.

CoqIDE is a text editor specific Coq. It is a popular choice for beginners,
some advanced users also manage to be productive with it. It comes with the
Coq platform.

Visual Studio Code is a more recent alternative. It might be a better choice
than Emacs on Windows thanks to a good interaction with WSL. It is however
still a bit less stable than Emacs, but definitely looks more modern.

113

https://coq.vercel.app/
https://github.com/coq/platform
http://htmlpreview.github.io/?https://github.com/affeldt-aist/mathcomp-install/blob/master/install-jp.html
https://proofgeneral.github.io/

APPENDIX B. COQ AND MATHCOMP INSTALLA‌ . . .

114

List of Tables

2.1 Some files of interest in Coq . 24

3.1 Examples of scopes used in MathComp 36
3.2 A few generic definitions in MathComp 37
3.3 Naming Convention: Identifiers for operations 38
3.4 Naming Convention: Identifiers for positional notation 38
3.5 Naming Convention: Suffixes for the properties of operations . . 39
3.6 Naming Convention: Identifiers for relations 39
3.7 Some files of interest in MathComp 40
3.8 Summary of iterated operations . 50

5.1 Examples of scopes used in MathComp-Analysis 73

115

LIST OF TABLES LIST OF TABLES

116

List of Figures

3.1 The mathematical structures of MathComp 41
3.2 Some conversions between numeric types 53

4.1 Mathematical structures of MathComp-Analysis 59

5.1 Hierarchy of measure theory structures 75
5.2 Hierarchy of measure structures . 82

6.1 Hierarchy for non-negative simple functions 87
6.2 Approximation of a measurable function using simple functions . 89

117

Index

σ-algebra, 76

algebra of sets, 76
attribute, 42

backward reasoning, 33

charge, 82
clear-switch, 20
coercion, 42

is_true, 42
nat_of_ord, 46

command
About, 21
Check, 21
Context, 33
Definition, 19
End, 33
Fixpoint, 26
HB.builders, 79
HB.factory, 40, 79
HB.instance, 40, 80
HB.mixin, 40
HB.structure, 40
Hypothesis, 33
Inductive, 23
Lemma, 19
Let, 33
Print, 21
Record, 39
Search, 22
Section, 33
Variable, 33
Variant, 23

connector, 64
constructor, 23

continuous, 61
Curry-Howard correspondence, 9

delimiter
E, 73
classic, 57

dependent pair, 30
diagonal, 63
differentiation, 97
dyadic interval, 88

entourage, 63

factory, 79, 82
filter, 60

proper filter, 60
filterbase, 61
filtered type, 62
forward reasoning, 33

generated σ-algebra, 79
goal, 19

identifier
interval, 52
set_system, 60
trivIset, 58
xget, 58

implicit arguments, 21, 31
impredicative, 18
index, 27
indicator function, 83
integrable, 95
integral, 90
interval, 52
intro-pattern, 25

118

INDEX INDEX

measurable function, 86
measure, 81

σ-finite measure, 82
additive measure, 81
content, 81
Dirac measure, 83
Lebesgue measure, 86
Lebesgue-Stieltjes measure, 86
product measure, 86, 95
pushforward measure, 86
signed measure, 82

mixin, 40

neighborhood, 62
normed module, 65
notation

'D_, 97
+oo, 73
-oo, 73
_, 59
\oo, 61
\o, 36
^`(), 52, 97
^~, 18, 36
`&`, 57
`<=`, 57
~`, 57

occurrence switch, 28
open set, 62
ordinal, 46

parameter, 27
polymorphism, 13
poset, 57
positional notation, 38
predicative, 18
pseudometric space, 64

ring of sets, 76

scope, 23, 35
classical_set_scope, 57
ereal_scope, 73
seq_scope, 47
Table 5.1, 73
Table 3.1, 36

script, 14, 19
section

x-section, 63
semi-σ-additive, 81
semiadditive, 81
semiring of sets, 75
sigma-type, 30, 42
simple function, 87, 88
simplification operation, 28
strict implicit argument, 32
supremum, 58

tactic, 14, 20
apply, 21
case, 24
elim, 26
exact, 21
have, 33
left, 29
move, 20
near:, 66
near=>, 66
pose, 33
rewrite, 28
right, 29
set, 33
split, 29
terminating tactic, 21

tactical, 20
:, 20
;, 24
=>, 20
by, 32

topological space, 62
type family, 27

uniform space, 63

119

	Overview of Coq and MathComp
	A Bit of History
	What are Proof Assistants Good for?
	Short Presentation of Coq
	The Rest of this Document

	Introduction to Coq using SSReflect
	The Languages of the Coq Proof Assistant
	Gallina: the Language of Proofs
	Vernacular: the Language of Commands

	Interactive Proof
	Discoverability of Definitions and Lemmas
	Checking Existing Lemmas
	Searching for Lemmas and Notations

	Inductive Types
	Boolean Numbers
	Proof by Case Analysis
	Natural Numbers
	Recursive Functions
	Proof by Induction

	List Data Structures
	Lists
	Vectors

	The Leibniz Equality and Rewriting
	More Propositional Logic with Coq
	Predicate Logic: the Existential Quantifier and Sigma-types
	Views
	Implicit Arguments
	Script Management

	Introduction to the MathComp Library
	Useful Notation Scopes in MathComp
	Generic Definitions and Notations
	IMPORTANT Naming Conventions
	Properties of Operations
	Properties of Relations

	About Mathematical Structures
	Building Hierarchies with Hierarchy-Builder
	ssrbool.v: Boolean Reasoning
	eqtype.v: Decidable Equality
	ssrnat.v: Natural Numbers
	fintype.v: Finite Types
	seq.v: Lists
	order.v: Ordered Types
	IMPORTANT bigop.v: Iterated Operations
	About Finite Sets

	Mathematical Structures in algebra
	ssralg.v: Algebraic Structures
	poly.v: Polynomials
	ssrnum.v: Numeric Types
	interval.v: Intervals

	Classical Reasoning using MathComp
	Axioms Introduced by MathComp-Analysis
	Propositional Extensionality
	Functional Extensionality
	Constructive Indefinite Description
	Consequences of Classical Axioms

	Naive Set Theory
	Basic Set-theoretic Operations
	More Set-theoretic Constructs

	Supremum and Infimum
	Mathematical Structures in MathComp-Analysis
	Pointed Types
	Real Numbers

	Convergence
	Filters
	Convergence using Filters
	Filtered Types

	Other Structures in MathComp-Analysis
	Topological Spaces
	Uniform Spaces
	Pseudometric Spaces
	Complete Spaces
	Normed Modules

	near Notations and Tactics
	Sequences

	Measure Theory with MathComp-Analysis
	Extended Real Numbers
	Formalization of -algebras
	Generated -algebra
	Formalization of Measures
	Example: the Dirac Measure
	Other Instances of Measures

	Measurable Functions

	Integration Theory with MathComp-Analysis
	Simple Functions
	Approximation Theorem

	Integral of Measurable Functions
	Integral of a Simple Function
	Integral of a Non-negative Function
	Integral of a Measurable Function
	Properties of the Integral

	Monotone Convergence Theorem
	Monotone Convergence for Simple Functions
	Monotone Convergence Intermediate Lemma
	Proof of the Monotone Convergence Theorem

	Fubini's Theorem

	Derivation with MathComp-Analysis
	Differentiation

	Conclusion
	Bibliography
	Cheat Sheets
	Coq and MathComp Installation
	List of Tables
	List of Figures
	Index

