
日本ソフトウェア科学会第 18回大会（2001年度）論文集 1

Supporting Objects in Run-time Bytecode Specialization

Reynald Affeldt † Hidehiko Masuhara ‡ Eijiro Sumii † Akinori Yonezawa †
†Department of Information Science, ‡Department of Graphics and Computer Science,

Graduate School of Science, Graduate School of Arts and Sciences,
University of Tokyo University of Tokyo

This paper describes a run-time specialization system for the Java language. One of the main difficulties of

supporting the full Java language resides in a safe yet effective management of references to objects and arrays.

This is because a specialization process may share references with the process that executes specialized code, and

because side-effects to those objects by the specialization process could easily break the semantics of the original

program. To cope with this difficulty, we propose a set of requirements and assumptions that ensures correct

run-time specializations. Based on them, we design and implement a run-time specialization system for Java. Our

preliminary experiments reveal, for instance, approximately 20-25% speed-up factor for a ray-tracing application.

1 Introduction

Partial evaluation (or specialization, for short) is a
program transformation technique that performs con-
stant propagation and expression unfolding in a pro-
gram given partial knowledge of its arguments. This op-
timization is particularly effective in optimizing highly
parameterized programs running in invariant contexts.
When performed at run-time, specialization has the ad-
ditional advantage to enable optimization with respect
to infrequently-changing run-time values.

Run-time specialization has been experimented for a
large number of programming languages (e.g., [3], [5]).
There are also numerous studies about both practical
and theoretical aspects of compile-time specialization
of imperative and object-oriented languages (e.g., [7]).
However, few systems fully support both run-time spe-
cialization and object-orientation.

In fact, we found it is non-trivial to design effi-
cient and correct run-time specialization for an object-
oriented language. Because specialization is done dur-
ing a run of an application program, specializers and
specialized methods are tightly coupled by the use of the
heap. This introduces new correctness constraints but
also new optimization opportunities. Most techniques
for run-time specialization merely support immutable
data structures or put the user in charge of writing a
number of annotations to achieve correct and effective
specialization of mutable data structures.

This paper describes a run-time specialization system
for a typical object-oriented language, namely the Java
language. In Sect. 2, we discuss why run-time special-
ization of Java is both challenging and highly beneficial.
In Sect. 3, we give an overview of our implementation.
In Sect. 4, we show how we support references. In Sect.
5, we discuss the treatment of local objects. In Sect. 6,
we present results of our preliminary performance.

2 Motivations

We believe that run-time specialization of object-
oriented languages may be highly beneficial because:

• it makes use of run-time invariants, thus triggering
more optimizations,

• it resolves virtual dispatches that cannot be elimi-
nated by traditional static analyses, and

• it benefits from the fact that specializers and spe-
cialized methods share a common heap.

The last point, at the same time, complicates correct
specialization. This can be explained by the following
example that manipulates a one-dimensional point:

1 Class Point {
2 int x = 0;
3 // f performs some heavy computation
4 void update (int a) { x = f (x , a ); }
5 static Point make (int s , int d) {
6 Point p = new Point ();
7 p.update (s);
8 p.update (d);
9 p.update (s);

10 return p;
11 }
12 }
Assume we specialize the method make with respect

to s. The object construction at line 6 only depends on
static arguments (their values are known), it can thus
be performed at specialization-time. The constructed
object is recorded in a global variable p. The method
call of line 7 is evaluated away because both the re-
ceiver object and the argument are static. At line 8, a
method of object p is invoked with a dynamic argument
(its value is unknown), entailing residualization of the
method call. After that, the status of object p becomes
unknown, resulting in residualization of the method call
of line 9. Eventually, the specialized code becomes:

static Point make_spec (int d) {
_p.update (d); /∗ p is the static point

constructed during specialization ∗/
_p.update (42); // 42 is the value of s
return _p;

}
In this specialized code, construction of an object and

one of the heavy computation are specialized away by
sharing objects through a global variable. However, this
code is incorrect for the following reasons:

• First, if we call the specialized method twice, the
second call will return an object in the wrong state.
In fact, the specialized code implicitly assumes that
p is reinitialized, while it is not.



日本ソフトウェア科学会第 18回大会（2001年度）論文集 2

• Second, two invocations of the specialized method
return the same reference, whereas the subject
method originally returned a fresh reference at each
run.

At first sight, the idea of reusing the local object con-
structed at specialization-time was tempting, in partic-
ular for a language like Java where a number of short-
lived objects are extensively used; e.g., objects in classes
String, Rectangle, and Font.

A conservative solution would be to turn object p into
a dynamic one, but it would result in poor specializa-
tion. This is unsatisfactory for today’s object-oriented
programs that usually define methods for constructing
and initializing objects (e.g., the factory design pat-
tern).

We show in Sect. 5 how we preserve the correctness
of the program transformation while enabling reuse of
the objects constructed at specialization-time.

3 BCS Overview

ByteCode Specializer (BCS) is a run-time specializer for
a subset of the Java Virtual Machine Language (JVML)
[4]. The specialization is offline and uses code generators
(generating extensions). Thus far, BCS has no support
for references to objects and arrays. We implement our
run-time specializer for the Java language as an exten-
sion of BCS. Note that, even though our examples are
written in Java (or at least in pseudo-instructions that
resemble Java), the underlying system actually still ma-
nipulates bytecodes.

We now present the three stages that compose the
run-time specialization process. We use as a running
example the method that computes in a ray tracer the
intersection between a ray of light and a scene that is
the closest to an observer:

Inter inter = ray.closestInter (observer, scene);

We specialize closestInter with respect to the static
observer and scene objects, the ray object being dy-
namic.

3.1 Analysis Stage

The analysis stage takes place at compile-time and
amounts to call BCS with the compiled version of the
subject method closestInter and a binding-time spec-
ification distinguishing the static arguments from the
dynamic ones.

The first step is to determine the shape of the Java
virtual machine elements (stack, frame, heap) in the
presence of references to objects and arrays. Next, type
variables are attached to each stack entry, frame vari-
able, heap slot, and bytecode instruction. Dependencies
between those constructs are then instantiated. A set
of typing rules covering the core JVML language (in-
cluding bytecodes that manipulate objects) concisely
expresses those dependencies. Intuitively, they state
that a bytecode instruction is static if it solely depends
on static arguments. Dependencies are eventually re-
solved. A code generator generator further translates

the resulting annotated program into a code generator,
that effectively performs the specialization.

In our example, the result of the analysis stage is the
code generator closestInter gen.

3.2 Specialization Stage

The specialization stage takes place at run-time and
amounts to call the previously generated code generator
closestInter gen with the actual values of the static
observer and scene objects.

The result of the specialization stage is the specialized
method closestInter spec1.

3.3 Execution Stage

The execution stage consists in replacing the call to the
generic method closestInter by a call to its special-
ized version closestInter spec to which is passed the
actual value of the dynamic ray object. Concretely:

Inter inter = ray.closestInter (observer, scene);

becomes

Inter inter = closestInter_spec (ray);

4 References and Objects Support

We call static context the set of actual values of the
static arguments. If the target language has references,
then the static context extend over all the heap slots
that are reachable from them. We call static heap that
part of the heap. Since a specialized code is generated
for each static context, it may return a different result
from the one of the original code when it is executed in
a modified static context. To illustrate the assumptions
on which BCS is based, we use the following example.

This program shows how specialization may take
place in the control flow of an application:

Point p = new Point ();
p.update (s);
// specialize update with respect to p and s
update_spec = p.update_gen (s);
p.update (s);

If update gen is to change the static heap by modify-
ing p’s coordinate, the application will be disrupted in a
rather unnatural way. Moreover, the correctness of spe-
cialization should require the execution of the special-
ized method to take place just after its specialization.
In those conditions, it becomes difficult to extensively
reuse the specialized method, which is an inconvenient
for a system whose quality is partly determined by its
amortization cost. Again, turning the object into dy-
namic solves the problem but results in poor specializa-
tion.

To enable an effective specialization, we allow at
specialization-time static reads while prohibiting static
writes.

The immediate consequence is the possibility for the
specializer to residualize direct accesses to the static

1The actual implementation returns an instance of a class
that implements the specialized method.



日本ソフトウェア科学会第 18回大会（2001年度）論文集 3

heap, thus imposing the specializer and the specialized
code to run against the same static heap [2]. This re-
quirement is fairly natural since it corresponds to the
traditional correctness definition of partial evaluation.

4.1 No Static Heap Destruction

To guarantee the above property, we must prohibit
static assignments through references to the static heap.
In order to detect such assignments, we perform a side-
effect analysis before the binding-time analysis.

More precisely, the binding-time analysis rule for as-
signments through references states that if the reference
may point to the static heap, then (1) the assignment is
given dynamic binding-time, and (2) all the referenced
slots are marked as dynamic to disable subsequent static
dereferences.

4.2 Persistent Static Heap

This assumption about the static heap requires the user
to keep the static heap unchanged from the specializa-
tion stage to the execution stage. Although the current
implementation has no automatic mechanism, a piece
of guard code can also be automatically produced for
that purpose.

A persistent static heap enables reference lifting. We
say that a primitive value is lifted when it appears in
a dynamic context. Concretely, it is residualized to a
piece of code that yields its value at execution-time. In
a compile-time specializer, references cannot be lifted
because it is difficult before execution to represent them
by a syntactic construct. In contrast, in a run-time
specializer that ensures persistence of the static heap, a
specialized method can safely refer to lifted references.

Since it it not possible in JVML to yield directly onto
the stack the value of a reference, we need to save it
at specialization-time in a table from which it will be
retrieved by a piece of residual code at execution-time.

Given our ability to lift references, support for par-
tially static objects is a trivial matter. This is actually
an intended feature. Complex data structures are typi-
cal of object-oriented programs and our ability to handle
partially static object is therefore critical to deliver an
accurate specialization.

In the case of the example above, the specialized
method written in pseudo-instructions becomes:

// p is the static point argument
// 7 is the value of p ’ s coordinate
// 42 is the value of the static integer argument
// 1234 is the value returned by f (7, 42)
void update_spec () { p.x = 1234; }

4.3 Virtual Dispatching

Thanks to the knowledge of the run-time class of static
arguments, BCS can evaluate away virtual dispatches.
It is all the more effective since other optimizations like
loop unrolling clear up method calls. In comparison,
a class-hierarchy analysis occurring at compile-time is
overly conservative.

By way of example, let us consider virtual dispatch
call sites in our ray tracer. They appear in particular
where the intersection between a ray of light and an
object needs to be computed:

Inter inter = object.intersect (observer, ray);

The declared class of object is an abstract class whose
subclasses include a Plane class and a Sphere class.
When BCS runs into such a call site, the generated code
generator is added the following method call:

Inter inter = object.intersect_gen (observer, ray);

and the classes Plane and Sphere are added code gener-
ators with the same signature. As a result, virtual dis-
patching is resolved at specialization-time by the Java
virtual machine.

5 Local Object Support

Correct and efficient treatment of the construction of
local objects is a difficult issue that requires us to rec-
oncile two opposite requirements. On the one hand,
escaping references to local objects must be guaranteed
to be fresh. On the other hand, the binding-time anal-
ysis should annotate as many constructs as possible as
static, including objects allocated in the target method.

Our solution is to perform at specialization-time all
the object constructions that do not depend on any dy-
namic value. The corresponding local objects are con-
sidered static and the corresponding allocated objects,
that we call template objects, are kept in the specializa-
tion store.

The specializer can use the template object to carry
out static operations, no matter whether the local ob-
ject escapes or not. As far as the specialized method is
concerned, it uses the template object as a mould to in-
stantiate new objects in the case of an escaping reference
or as a place-holder to carry out dynamic computations
when the reference does not escape.

5.1 Unique Identity Generation

In order to generate fresh identity for escaping local ob-
jects, we use a preliminary escape analysis. When there
is a construction (carried out by the new operator) of an
escaping object, the specializer first creates an object,
registers the object in a table, and generates a CLONE

pseudo-instruction. In the execution stage, the CLONE

pseudo-instruction allocates a new object and initial-
izes its instance variables by copying those of the object
registered in the table.

We can now propose a correct specialized method for
the example of Sect. 2:

static Point make_spec (int d) {
Point p = CLONE _p; /∗ p is the static point

constructed during specialization ∗/
p.update (d);
p.update (42);
return p;

}

Although we cannot avoid the construction of the
local object, CLONE saves one possibly time-consuming



日本ソフトウェア科学会第 18回大会（2001年度）論文集 4

update call, resulting in better specialization than mak-
ing the local object dynamic.

Note that CLONE cannot be a straightforward shallow
copy. When the to-be-CLONEd object is referencing other
escaping local objects, they are also CLONEd so that ob-
jects created by cloning are eventually isomorphic to the
objects created by the original code.

5.2 Specializing Initialization

Although it is not possible to avoid construction of es-
caping local objects, specialized methods can reuse tem-
plate objects of non-escaping local objects.

For instance, let us consider a method that performs
some arithmetic operations on complex numbers:

Complex f (Complex s, Complex d) {
return s.plus(s).times(d);

}

We specialize it with respect to s whose value is 2+3i.
The specialized method written in pseudo-instructions
becomes:

Complex f_spec (Complex d) {
return _t.times(d); /∗ t is the intermediate

complex number 4 + 6i constructed
during specialization ∗/

}

Each instance of the specialized method f spec reuses
the same intermediate Complex object, whose dynamic
allocation may be said to have been evaluated at
specialization-time.

From the reference identity point of view, this is cor-
rect because non-escaping local objects are not involved
in any equality test outside the subject method. In-
side the specialized method, they can only be compared
against dynamic references that are necessarily different
(dynamic references cannot be aliases since this would
have required escaping).

Some precautions must however be taken to guar-
antee data integrity. Whenever the template object is
lifted inside the subject method, a mechanism should be
added that reinitialize it to its specialization-time state
before it can be reused. However, this is unnecessary in
the other cases, independently of the fact that the object
is immutable or not. Indeed, specialization residualizes
the code that correspond to the object proper initial-
ization (for more details, see the full version [1] of this
paper).

This reusing is actually reminiscent of an optimiza-
tion technique used in languages with automatic mem-
ory management which consists in recycling memory
slots that are statically known to be unused.

6 Performance Measurements

We implemented the system by extending the second
and the last author’s BCS system, and compared the ex-
ecution time of subject methods and of their specialized
versions for two object-oriented applications specialized
with BCS. We also measure the overhead due to the JIT
compilation. Times are given in microseconds.

Our first example is an implementation of the power
function that is specialized with respect to its exponent
[7]. It is written in an object-oriented manner by using
the Strategy design pattern:

VM unspec. spec. speed-up
UltraSparcII method 1.99 1.37 1.46

Sun JDK 1.3.1 JIT 40,039 181,237
Pentium III method 0.54 0.42 1.30

Sun JDK 1.3.1 JIT 12,849 27,392
Pentium III method 0.32 0.07 4.35

IBM JDK 1.3.0 JIT 48,921 54,081

Our second example is the ray tracer discussed in
Sect. 3 and Sect. 4.3:

VM unspec. spec. speed-up
UltraSparcII method 10.18 8.65 1.18

Sun JDK 1.3.1 JIT 196,055 200,485
Pentium III method 6.40 5.12 1.25

Sun JDK 1.3.1 JIT 115,241 104,031
Pentium III method 9.87 7.84 1.26

IBM JDK 1.3.0 JIT 208,341 557,194

We get reasonable performance improvements. How-
ever, experiments of run-time specialization with other
imperative languages seem to reach slightly better
speed-up (e.g., [3]). We believe that this is due to the
difference in the implementation of traditional compila-
tion optimizations in Just-in-time compilers and also to
the lack of optimizations in our system at analysis-time.

7 Conclusion and Future Work

This paper presented a run-time specialization system
for the Java language with discussion on supporting ref-
erences and objects. In particular, it correctly residu-
alizes side-effects, handles partially static objects, and
resolves statically determined virtual dispatches. Treat-
ment of local objects has been given special attention so
that it preserves reference identity while enabling safe
reuse of the specialization store.

The next step is to further validate experimentally
our implementation. A precise side-effect analysis that
enables more static side-effects should also be devised.

References
[1] R. Affeldt. Supporting object-oriented features in run-

time bytecode specialization. Master’s thesis, University
of Tokyo, Graduate School of Science, Department of
Information Science, Sep 2001.

[2] K. Asai. Integrating partial evaluators into interpreters.
In Semantics, Applications and Implementation of Pro-
gram Generation, Lecture Notes in Computer Science.
Springer-Verlag, Sep 2001. To appear.

[3] N. Fujinami. Automatic run-time code generation in
C++. In Scientific Computing in Object-oriented Paral-
lel Environments, volume 1343 of Lecture Notes in Com-
puter Science, pages 9–16. Springer-Verlag, 1997.

[4] H. Masuhara and A. Yonezawa. A portable approach to
dynamic optimization in run-time specialization. Journal
of New Generation Computing, 20(1), Jan 2002.

[5] F. Noël, L. Hornof, C. Consel, and J. L. Lawall. Au-
tomatic, template-based run-time specialization: Imple-
mentation and experimental study. In International
Conference on Computer Languages, pages 123–142.
IEEE, May 1998.

[6] U. Schultz and C. Consel. Automatic program spe-
cialization for Java. Technical report, IRISA/IN-
RIA, Rennes - LABRI, Nov 2000. Available at
http://www.daimi.au.dk/PB/551/PB-551.pdf.


