
Formalization and Verification
of a Mail Server in Coq

Reynald Affeldt1 and Naoki Kobayashi2

1 Department of Computer Science, University of Tokyo
affeldt@yl.is.s.u-tokyo.ac.jp

2 Department of Computer Science, Tokyo Institute of Technology
kobayasi@kb.cs.titech.ac.jp

Abstract. This paper reports on the formalization and verification of a
mail server (SMTP server) in Coq. The correctness of a mail server is very
important: bugs of the mail server may be abused for eavesdropping mail
contents, spreading virus, sending spam messages, etc. We have verified
a part of a mail server written in Java, by manually translating the
Java program into a Coq function as faithfully as possible, and verifying
properties of the Coq function. The results of this experiment indicate the
feasibility and usefulness of verification of middle-sized system softwares
in this style. The verification has been carried out in a few months, and a
few bugs in the mail server have been indeed found during the verification
process.

1 Introduction

The AnZenMail project [13] consists in implementing a secure facility for elec-
tronic mail. This is a large system with many subparts and among them the mail
server is a central one. In this paper, we report an experiment of formalization
and verification of this mail server.

From the security point of view, it is very important to verify that a mail
server is correctly implemented because bugs may be responsible for loss of infor-
mation and flaws may also be abused for eavesdropping mail contents, spreading
viruses, sending spam messages, etc.

Concretely, we check by means of a theorem prover (namely Coq [14]) that the
implementation of the mail server is correct with respect to Internet standards
and reliable. Our approach is to create a model as faithful as possible of the
actual mail server by translating the code base written in the Java language into
a Coq function and verify the properties of the Coq function.

There are other approaches using a theorem prover such as extraction of
an implementation directly from the proofs (in an adequate theorem prover) or
direct proofs of the actual code base (without any need for a model). In com-
parison, our approach is convenient in many respects. First, it does not depend
on the implementation language. It is thus possible to use an implementation
language with appealing security and efficiency properties such as Java. Second,



the proof development can be managed in size and time like the source code de-
velopment; proofs done in parallel with the implementation increase confidence
in the code base and it is possible to go back and forth between the specifications
and the implementation for adjustments.

We claim that our experiment makes the following contributions:

– it is a large application of theorem proving (large in terms of the size of the
original code and proofs),

– it illustrates several techniques to model in a functional interface a reactive
system with infinitely many states, and

– it deals exhaustively with system errors.

The rest of this paper is organized as follows. Sect. 2 explains what part of
the mail system we formalize. Sect. 3 explains the formalization of the program
and its specifications. Sect. 4 presents the results of our verification. Sect. 5
discusses lessons learned from our experiment. Sect. 6 reviews related work.
Sect. 7 concludes and lists future work.

2 Mail Server

2.1 A Secure Mail System

The AnZenMail project is a subproject of the secure computing project, which
aims at enhancing the security of computer systems by using three levels of safety
assurance mechanisms —formal verification/analysis techniques, compile-time
code insertion for dynamic-checking of safety properties, and OS-level protection
(see the project home page http://anzen.is.titech.ac.jp/index-e.html for
details). The AnZenMail system consists of mail servers, which deliver mails, and
mail clients, which interact with users and send/receive mails.

The key features of the AnZenMail system are as follows:

1. Use of a high-level programming language: both the server code and the client
code are written in a safe language (namely Java) to minimize security holes
(that are often caused by buffer overflows).

2. Protection against forging or modification of mails: secure protocols based on
digital signatures are used to protect the contents of mails and the identity of
senders. Correctness of the security protocols are proved in a formal manner.

3. Fault-conscious design of the server code: the server code is carefully designed
in such a way that received mails are not lost even if the server crashes.

4. Verification of the server code: the core part of the server code is verified in
a formal manner.

5. Safe execution of mail attachments: on the mail client side, safe execution of
code received as a mail attachment is enforced by static analysis of the code,
compile-time code insertion for dynamically checking security properties,
and OS-level protection mechanisms.



The present paper is concerned with the fourth feature above. Verification of
the server code is also related to the second and third features: the second and
third features guarantee certain properties only at algorithm or design level, and
give no guarantee that the properties are indeed satisfied by the actual code.
By verifying the code, we can check whether the implementation is correct with
respect to the algorithm and the design.

2.2 SMTP Model

The overall structure of the mail server is shown in Fig. 1. It consists of two
parts: the SMTP receiver, which receives mails from other mail servers and mail
clients using the SMTP protocol and stores received mails in a mail queue, and
the SMTP sender, which extracts mails from the mail queue and sends them to
other mail servers and mail clients using the SMTP protocol.

SMTP
receiver

SMTP
sender

SMTP
protocol

mail user
agent

mail user
agent

SMTP
protocol

mail queue

remoteremote
secure mail server

mail server mail server

Fig. 1. The structure of the mail server

Fig. 2 illustrates most typical SMTP commands with an automaton. An
SMTP protocol session consists of commands and some mail contents sent by a
mail sender to the SMTP receiver that sends back replies. Before a session begins,
the SMTP receiver waits for incoming connections. The mail client connects
using the HELO command; the server replies with its identity and creates an
empty envelope. The client sends the MAIL command to set the return path of
the envelope with the address of the mail sender. The client then sends one or
more RCPT commands to add addresses to the list of recipients of the envelope.
The server may reply with error messages to the MAIL and RCPT commands for
various reasons (malformed addresses, MAIL and RCPT commands not ordered,
etc.) The client eventually sends the DATA command, followed by the mail
contents and terminated by a line containing only a period. If the server accepts
the data, it delivers the mail contents to recipients and notifies the mail sender if
delivery fails. Finally, the client closes the connection with the QUIT command
to which the server replies with some greetings. There are a few other commands:
the RSET command clears the envelope, the NOOP command just causes the
server to reply (it has no effect on the state of the server), etc.



HELO RCPT

DATA"."

RCPT

RSET RSET

RSET

RSET

MAIL

Fig. 2. Abstract state transition

2.3 Target of Formalization and Verification

Our goal is to verify that the implementation of the mail server as a whole sat-
isfies the critical responsibilities highlighted above. Those properties are mainly
adequacy of the code with the SMTP protocol and reliability of the implemen-
tation, i.e. the fact that accepted mails are eventually delivered.

In this paper, we are concerned with the SMTP receiver part of the mail
server. Formalization and verification are therefore restricted to that part of
above properties which are relevant to the SMTP receiver. Adequacy with the
SMTP protocol amounts to the following properties: the SMTP receiver must
handle all correct sessions, reject erroneous commands and send back correct
replies. Reliability amounts to the following property: the SMTP receiver must
save accepted mail contents in the mail queue for later processing by the SMTP
sender.

In the next section, we explain how we formalize the SMTP receiver (hereafter
referred to as the mail server) and formulate above properties.

3 Formalization and Verification

The task of formalization can be divided into construction of a model for the
execution of the program and specification of the properties to be verified. In
the following, we assume some familiarity with the syntax of Java. Other code
samples are explained in such a way that no a priori knowledge of Coq is required.

3.1 Model

A model for the execution of the mail server is a program written in the Coq
language such that its verification substitutes for the verification of the actual
mail server written in Java.

Construction of such a model essentially amounts to conversion of the orig-
inal program from Java to the Coq language. There are two difficulties. First,
Java is an imperative language whereas the Coq language is functional. Second,
relevant hardware aspects of the execution environment must be made explicit.
For instance, errors due to the network or the host computer may in practice



cause the mail server to behave unexpectedly. Therefore, our model must take
into account such system errors in order for the properties we verify to hold
under normal conditions of use. In the following, we first give an overview of
code conversion and then explain how we overcome those difficulties.

Code Conversion Overview We manually convert the original program in
such a way that its structure is preserved, i.e. any language construct can easily
be associated with its counterpart in the model. Conceptually, this task can be
divided into conversion of datatypes and conversion of control structures.

Java datatypes are converted to corresponding Coq types. Java data struc-
tures (or object fields) are converted to Coq records or tuples, union or enumera-
tion types are converted to Coq inductive types (similar to datatypes in ML-like
languages), etc. Those objects belong to the type Set of program specifications in
Coq. For instance, we represent the global state of the mail server by specifying
it as a record:

Record STATE : Set := smtp state{to client : OutputStream;
server name: String ;
queue dir : File;
buf : Buffer ;
from domain: String ;
rev path: Rfc821 path;
fwd paths: Rfc821 pathlist ;
quit : bool ;
files: FileSystem;
oracles: Oracles}.

The field to client contains replies from the server, the field rev path contains the
return path of the envelope, the field fwd paths contains the list of recipients, etc.
(Other relevant fields are explained later.) For Coq records to be manipulated
as Java data structures, we also provide mutator functions. For instance, the
function enque reply, given a STATE and an SMTP reply, updates the list of
replies sent by the server so far.

Java control structures are converted to corresponding Coq control struc-
tures. Java switch statements are converted to Coq Cases statements, method
calls are converted to function calls, Java sequences a;b are converted to Coq
function calls (seq a b) (where the function seq is to be defined later), etc. Con-
version of control structures is illustrated later in this section.

Monads for Exception Handling The first difficulty is the conversion of
imperative operations in Java to the Coq language. In the case of exception
handling, we use monadic style programming [15].

The actual mail server can circumvent some system errors (e.g., network fail-
ures) by using Java exceptions. In Coq, we represent all system errors, including
fatal errors (e.g., host computer failure), by an inductive type:



Inductive Exception: Set :=
IOException: Exception

| parse error exception: Exception
| Smail implementation exception: Exception
| empty stream exception: Exception
| system failure: Exception.

The IOException constructor represents network failures, the system failure con-
structor represents host computer failures, etc.

Using the above definitions for the state of the mail server and for exceptions,
we can mimic exception handling by the following monad-like inductive type
(bracketed variables are here parameters and the arrow-like notation indicates
constructors arguments):

Inductive Except [A: Set ]: Set :=
Succ: A → STATE → (Except A)

| Fail : Exception → STATE → (Except A).
Definition Result : Set := (Except unit).

Result represents the result of a computation which can be either successful
(constructor Succ) or a failure (constructor Fail).

Test Oracles for Non-deterministic Failures The second difficulty is the
simulation by the model of non-deterministic system errors. For that purpose,
we use in Coq a coinductive type that represents test oracles in the form of an
infinite sequence of booleans:

CoInductive Set Oracles := flip : bool → Oracles → Oracles.

Test oracles appear as a part of the state of the model (field oracles in the
record STATE above) and are used at any point where a system error may occur.
Concretely, the value of the leading test oracle determines whether a system
error occurs or not, and whenever a test oracle is used, test oracles are updated
(by applying the function update coin to the current STATE ). For instance, a
network failure may occur whenever the mail server sends a reply, hence the
following definition of the function that sends replies:

Definition reply [r :ReplyMsg ; st :STATE ]: Result :=
(Cases (oracles st) of

(flip true coin) ⇒
(Succ unit tt (update coin (enque reply st r) coin))

| (flip false coin) ⇒
(Fail unit IOException (update coin st coin))

end).

Similarly, a host computer failure may occur during the execution of any two
successive Java statements. In Coq, we represent the sequence of Java statements
by the following function (bracketed variables are here function arguments):

Definition seq : Result → (STATE→Result) → Result :=
[x : Result ][f : STATE→Result ]



(Cases x of
(Succ st) ⇒

Cases (oracles st) of
(flip true coin) ⇒ (f (update coin st coin))

| (flip false coin) ⇒ (Fail unit system failure st)
end

| (Fail e st) ⇒ (Fail unit e st)
end).

Example of Code Conversion Equipped with above objects, we show how we
convert a method taken from the original Java program to its Coq counterpart.

The get helo method (Fig. 3) is essentially a loop that fetches SMTP com-
mands until it receives the HELO command. In case of unexpected commands, it
replies with some error message; in case of termination commands, it terminates
the SMTP protocol session. Note that the execution of get helo may also be
interrupted by network failures if the socket gets closed or broken.

void get_helo() throws IOException {
while (true) {

...
int cmd = get_cmd();
String arg = get_arg();
switch(cmd) {
case cmd_unknown:

reply_unknown_cmd(); break;
case cmd_abort:

reply_ok_quit(); quit = true; return;
case cmd_quit:

reply_ok_quit(); quit = true; return;
case cmd_rset:

do_rset();
reply_ok_rset(); break;

case cmd_noop:
reply_ok_noop(); break;

case cmd_helo:
if (do_helo(arg)) return;
else break;

case cmd_rcpt_to:
reply_no_mail_from(); break;

default:
reply_no_helo(); break;

}
}

}

Fig. 3. Java get helo method



The context in which the get helo method is called is the mail server main
loop (Fig. 4). Intuitively, upon reception of the HELO command, a loop is entered
in which the following MAIL, RCPT and DATA commands are to be processed.

void work() throws IOException, Smtpdialog_bug, Mailqueue_fatal_exception {
...
get_helo();
int msg_no = 0;
while (!quit) {

do_rset();
if (! get_mail_from()) continue;
if (! get_rcpt_to()) continue;
get_data(msg_no++);

}
...

}

Fig. 4. Mail system main loop

The first step of code conversion is to convert Java datatypes to Coq types.
For instance, SMTP commands represented by the integers cmd helo, cmd quit,
etc. in the actual Java code base are converted to the inductive type SMTP cmd
(Fig. 5).

Inductive SMTP cmd : Set :=
cmd helo: String → SMTP cmd

| cmd mail from: String → SMTP cmd
| cmd rcpt to: String → SMTP cmd
| cmd data: String → SMTP cmd
| cmd noop: SMTP cmd
| cmd rset : SMTP cmd
| cmd quit : SMTP cmd
| cmd abort : SMTP cmd
| cmd unknown: SMTP cmd.

Fig. 5. SMTP cmd inductive type

The second step of code conversion is to convert Java control structures to
Coq control structures. Let us directly comment on the result of code conversion
(Fig. 6). In the resulting get helo Coq function, we see that Java’s switch is
replaced by Coq’s Cases, that sequences of statements are replaced by calls to
functions seq, comp and seq b (comp and seq b are slight variations of seq), and
that calls to third-party Java methods are replaced by calls to their respective
Coq counterparts (after adequate code conversion). Observe that, as a result of



our code conversion, statements that used to appear syntactically after the call
to method get helo in method work now appear inside the function get helo.

Fixpoint get helo [in stream: InputStream]: STATE → Result :=
(comp get cmd
(comp get arg

[st : STATE ]
Cases in stream of

nil ⇒ (fail empty stream exception st)
| (cons m in stream’ ) ⇒

(Cases m of
cmd unknown ⇒

(seq (reply unknown cmd st) (get helo in stream’ ))
| cmd abort ⇒

(seq (reply ok quit st) succ)
| cmd quit ⇒

(seq (reply ok quit st) succ)
| cmd rset ⇒

(seq (reply ok rset st) (get helo in stream’ ))
| cmd noop ⇒

(seq (reply ok noop st) (get helo in stream’ ))
| (cmd helo arg) ⇒

(seqb (do helo arg st)
[x :bool ]if x then (get mail from in stream’ )

else (get helo in stream’ ))
| (cmd rcpt to b) ⇒

(seq (reply no mail from st) (get helo in stream’ ))
| ⇒

(seq (reply no helo st) (get helo in stream’ ))
end)

end))

Fig. 6. Coq get helo function

Not all methods are converted as faithfully as our example. Indeed, the
method get helo is specific to the problem at hand and requires careful conver-
sion for the verification to be meaningful. In contrast, methods such as get cmd
and get arg here are of more general use and can be seen as trusted utility
methods. From the viewpoint of our verification, the interesting point about
such methods is rather that their execution may cause some errors. As a conse-
quence, get cmd and get arg are simply converted as generators of exceptions
in a non-deterministic manner.

Difficulties in Automation Although the code conversion described here can
be applied to many programs, it seems difficult to automate it because it requires
human intervention. The latter is for instance necessary to properly model the



execution environment and in particular to insert non-determinism at relevant
places. In the case of theorem provers such as Coq, human intervention is also
required to build a tractable model. As an illustration, the fact that the input
stream of SMTP commands is made a parameter of the function get helo is
linked to the fact that Coq allows recursive functions to be defined only by
structural induction.

3.2 Specification

We have already stated informally the properties we verify in Sect. 2.3. In this
section, we formally write those properties in Coq using inductive predicates
(similar to predicates in logic). Those objects belong to the type Prop of logical
propositions in Coq. Before, we explain how we formalize the correctness of
SMTP protocol sessions and acknowledged and saved mails.

Correct SMTP Protocol Sessions The relevant Internet standard is the
RFC 821[12]. It is a prose description that explains the SMTP protocol, including
definitions of correct commands and replies.

By way of example, we show below how correct SMTP protocol sessions are
represented in Coq. Let us assume that we are given simple predicates that state
the correctness of individual SMTP commands. For instance, (valid cmd helo
s) states that s is a correct HELO command. Correct SMTP protocol sessions
satisfy the following inductive predicate (not displayed entirely by lack of space):

Inductive valid protocol : InputStream → Prop :=
rcv helo: (s: InputStream)(c: SMTP cmd)

(valid cmd helo c)
→ (valid after helo s)
→(valid protocol (cons stream c s))

| rcv quit :
(s: InputStream)(valid protocol (cons stream cmd quit s))

| rcv skip: (s: InputStream)(c: SMTP cmd)
¬(valid cmd helo c)
→ ¬c=cmd quit → ¬c=cmd abort
→ (valid protocol s)
→ (valid protocol (cons stream c s))

with valid after helo: InputStream → Prop :=
...

Intuitively, it can be read as follows. There are three cases distinguished by
the constructors: (1) an SMTP protocol session that starts with a correct HELO
command such that the rest of the session is also correct is itself correct, (2) an
SMTP protocol session that starts with a QUIT command is always correct and
(3) an SMTP protocol session that starts with any other command such that
the rest of the session is also correct is correct.

Similarly, correct replies are represented by an inductive predicate called
correct reply.



Messages Stored in the Mail Queue To specify the reliability property, we
need to represent on the one hand mails for which reception is acknowledged by
the mail server and on the other hand mails that are indeed saved in the mail
queue.

Acknowledged mails are represented by the function received mails.
Saved mails are represented by the following inductive predicate:
Inductive all mails saved in file: (list Mail)→FileSystem→FileSystem→Prop:=

all saved none: (fs1 :FileSystem)(fs2 :FileSystem)
(eq fs except garbage fs1 fs2 )

→ (all mails saved in file (nil Mail) fs1 fs2 )
| all saved some: (m:Mail)(mails: (list Mail))

(fs1 :FileSystem)(fs2 :FileSystem)(fs3 :FileSystem)
(mail saved in file m fs1 fs2 ) →
(all mails saved in file mails fs2 fs3 ) →
(all mails saved in file (cons Mail m mails) fs1 fs3 ).

This requires some explanations. FileSystem represents the file system through
which the mail queue is actually implemented (the field files in the record STATE
represents the file system in our model). The predicate eq fs except garbage is
true for file systems whose non-empty files have the same contents and the pred-
icate mail saved in files is true if the envelop and the mail contents have been
saved in the file system.

Verified Properties Equipped with above predicates, we can now write the
formal specification of the properties we want to verify. They appear as Coq
theorems. In the following, parenthesized parameters and the EX constructor
represent respectively universally and existentially quantified variables. Other
logical symbols (→, =, ∧, ∨) have their usual meaning.

– Adequacy with the SMTP protocol:
• The server handles correct SMTP protocol sessions unless a fatal error

occurs:
Theorem valid protocol1 :

(s: InputStream)(st :STATE )
(valid protocol s) → (is succ or fatal (work s st)).

• The server rejects erroneous SMTP protocol sessions:
Theorem valid protocol2 :

(s: InputStream)(st :STATE )(st’ :STATE )
(work s st)=(succ st’ )→ (valid protocol s).

• The server sends correct replies:
Theorem correct reply1 :

(s: InputStream)(st : STATE )(st’ : STATE )
((work s st)=(succ st’ )∨

(work s st)=(fail empty stream exception st’ ))→
(correct reply s (to client st’ )).



• The server sends correct replies up to failure:
Theorem correct reply2 :

(s: InputStream)(st : STATE )(st’ : STATE )(exn: Exception)
(work s st)=(fail exn st’ ) →

(EX s’ : InputStream |
(is prefix SMTP cmd s’ s) ∧

(correct reply s’ (to client st’ ))).

– Reliability: Once the server acknowledges reception of a message, the latter
is saved in the mail queue and is not lost:

Theorem reliability :
(s: InputStream)(st : STATE )(st’ : STATE )(exn: Exception)

((work s st)=(succ st’ ) ∨ (work s st)=(fail exn st’ )) →
(all mails saved in file

(received mails s (to client st’ )) (files st) (files st’ )).

4 Verification Results

In this section, we present the results of the verification in Coq of the specification
and the model presented above.

The SMTP receiver part of the secure mail system roughly consists of 700
lines of Java, excluding utility code such as parsing which is taken for granted.
Our model only accounts for the core part of the SMTP receiver and also roughly
consists of 700 lines in the Coq language. We believe that the code and its model
grow in size similarly.

The official documentation for the SMTP protocol [12] is 4050 lines long.
Our specification only accounts for that part of the documentation describing
a simple SMTP receiver and is roughly 500 lines long. Although it is hard to
compare prose documentation with formal specifications, we believe that the
latter is a concise alternative to the former.

The size of proof scripts are given below (there is a base of common lemmas
used throughout the other proofs):

Files Size (lines)
Lemmas 2324
valid protocol1 960
valid protocol2 2842
correct reply1 5278
correct reply2 4116
reliability 2071
Total 17591

Although we tried hard to limit the size of proofs, much experience is required
to write short proofs in Coq. Sizes we report here should therefore be seen as
upper bounds. Yet, it is likely that proof scripts grow quickly with the size of
involved inductive predicates.



The model, the specification and the proofs are available at http://web.yl.
is.s.u-tokyo.ac.jp/~affeldt/mail-system.tar.gz.

The authors (who are not experienced Coq users) have carried out the veri-
fication described in this paper in a few months of sparse work. We believe that
one person working in optimal conditions may need roughly 150 hours.

Coq 7.1 requires 7.3 minutes (according to Coq’s Time command) and 157MB
of memory (according to Unix’s top command) to check the proofs (operating
system: Solaris 8, architecture: UltraSparc 400MHz)

The main result is that verification has proved to be effective. Indeed, errors
were found when building proofs. They appeared as contradictory hypotheses
indicating some inconsistency in the state of the mail server. Once the offending
operation is identified in the Coq model, the Java code can be immediately
corrected accordingly thanks to the program transformation described in the
previous section. To be more precise, verification of the mail server allowed us
to find the following errors in the Java code base:

– the state of the mail system was not reset upon mail reception and wrongly
reset upon reception of the RSET command, and

– a wrong number of reply messages were sent back to the client.

Those errors are only revealed by specific sequences of SMTP commands, that
is the reason why they slip through a non-exhaustive testing procedure.

5 Discussion

5.1 Limitations

A first limitation of our approach is that there is a small gap between the imple-
mentation and its model. However, alternative approaches also have drawbacks.
One can implement the mail server directly in the theorem prover to prove its
properties and eventually use an extraction facility to generate a runnable pro-
gram. Yet, (1) the extracted code may not be directly runnable (because the
model contains non-software aspects such as a model of the program environ-
ment) and (2) the extracted code is unlikely to be efficient (because handling
code optimizations complicates the proof and because extraction facilities are
non-optimizing code generators). One can choose a radical approach by formal-
izing the semantics of an efficient programming language chosen for the im-
plementation as a preliminary step. Yet, (1) it results in a long and intricate
development and (2) it may not even be possible since most languages are only
described in prose. Another argument in favor of our approach is that it is still
possible to defer proof that the model is faithful to the implementation to a later
stage of software development.

A second limitation of our approach in general is that it does not deal with
threads. However, it is not a major problem here because the processing operated
by the SMTP receiver part of the mail server is confined to a single thread.

A last limitation that applies to formal verification in general is that there
may be bugs in the specifications we write and in the tools we use (although
here we only need to trust the smaller proof checker of Coq).



5.2 Lessons Learned

The main lesson is taught by results in Sect. 4: formal verification of system
softwares is feasible (although proofs may become tedious) and useful (since it
may uncover errors).

Another lesson is the practical importance of proof modularity because it
decreases the size of proofs and facilitates their maintenance. The following two
examples illustrate those points.

Reusable lemmas allow for shorter proofs. In the case of the model discussed
in Sect. 3.1, when we know that the execution of a sequence of two statements
ends up with a success, we may need to show that there is an intermediate
successful state. It is possible to unfold objects of the formalization to directly
exhibit this state, but it is shorter to use the following lemma:

Lemma lem seq succ1 :
(v :Result)(g :STATE→Result)(st :STATE )

(seq v g)=(succ st)→
(EX st1 :STATE |

(EX st2 :STATE |
v=(succ st1 ) ∧ (g st2 )=(succ st) ∧ (eqstate st1 st2 ))).

Changes in the actual code base must be reflected in the model; by encapsu-
lating details that are susceptible to change in lemmas, we facilitate maintenance
of proofs. For instance, when we know that a call to the do helo function (the
Coq counterpart of the Java do helo method, see Fig. 3 and 6) is successful,
we may need to show that the HELO command is well-formed or that addresses
of recipients are unchanged. It is possible to unfold objects to exhibit directly
those properties but the proof would have to be modified whenever the body of
the do helo is changed. In contrast, the proof may not need to be changed if we
use the following lemma:

Lemma lem do helo:
(s:String)(st :STATE )(b:bool)(st’ :STATE )

(do helo s st)=(Succ bool b st’ )→
((is nullstr s)=(negb b) ∧ (fwd paths st)=(fwd paths st’ )).

Another lesson is the practical importance of support for dealing with re-
dundancies in proofs. Indeed, the proofs made here involve many similar case
analyses which are unfortunately difficult to automate with Coq.

A last lesson is that our difficulty to deal with threads emphasizes the im-
portance of proof systems for concurrent programs.

6 Related Work

There are few experiments of verification of existing programs using theorem
proving. Most work targets idealized subparts: verification of stripped down
algorithms (e.g., [10]), verification of properties of network protocols (e.g., [8]),
verification of compilers for languages subsets (e.g., [2]), etc.



Pierce and Vouillon specify a file synchronizer and prove its properties [11]
with Coq. The model for file synchronization is a function that takes two possi-
bly inconsistent trees of files as input and outputs a single, ‘synchronized’ one.
In comparison, a mail server is more difficult to model because it is a reactive
program dealing with multiple entities communicating by means of messages.
Intents are also different: we write our model in order to match the actual code
base whereas they do it for the purpose of generating an idealized implementa-
tion.

Thttpd is a freely available http daemon that puts an emphasis on security
[7]. Black and Windley discuss inference rules of the axiomatic semantics of C
with the aim of mechanically verifying a small version (100 lines of C source code)
of thttpd [4] with a theorem prover. Verification has been eventually achieved
by Black in his Ph.D. thesis [3]. In contrast, we avoid the burden of formalizing
such a semantics thanks to a program transformation that allows us to handle
a larger program, independently of the implementation language.

Filliâtre [9] studies certification of imperative programs in type theory. One
of his achievement is a Coq tactic that generates proof obligations given a pro-
gram written in some imperative language. The underlying machinery actually
makes use of a transformation to an intermediate functional representation using
effects and monads. This is reminiscent of the manual transformation we per-
form here and indicates that it can be automated to a certain extent. However,
full automation requires to overcome several difficulties such as non-determinism
and general recursion as discussed at the end of section 3.1.

There are several implementation of mail servers. In particular, Dan Bern-
stein wrote qmail [1] with security and reliability in mind. For instance, qmail’s
so-called ‘straight-paper path’ philosophy ensures that accepted mails cannot be
lost by design, which corresponds to our reliability property.

Model checking is another well-established approach to verification of system
softwares [6]. In the case of a mail server, complex data manipulation is a source
of state explosion that makes it not immediate to apply model checking tech-
niques. Of course, it is possible to handle model checking of even infinite state
systems by using, for instance, abstraction techniques (e.g., [5]). However, such
an approach leads us away from the faithful code transformation we also think
is important here. This is the reason that makes us prefer theorem proving to
model checking in this paper.

7 Conclusion

In this paper, we report an experiment of verification of the SMTP receiver
part of the secure mail system. Such a verification is very important from the
viewpoint of security and challenging because of the size of the application.
The verification is carried out by the Coq theorem prover. Our approach is to
translate manually the actual code base written in Java into a model written
in the Coq language. The techniques we use ensure that the verification of the
model substitutes for the verification of the actual code base. Then we specify the



correctness properties using inductive predicates and prove them mechanically
in Coq. Although much effort and care is needed to write proofs, results attest
that our approach is feasible and useful in practice, since errors in the actual
code base were indeed found during verification.

The verification is in progress. We now have to verify the rest of the mail
server (in particular the SMTP sender part, but also some procedures such as
parsing whose correctness has been taken for granted). Eventually, we would
like to prove formally the correspondence between the Java code and the Coq
function, so as to overcome one major limitation of our approach. Concerning
applicability to other system softwares, a solution should be devised to handle
concurrency. More broadly speaking, the size of proofs in our experiment indi-
cates that our approach to formal verification may become unreasonably tedious.
In such situations, a combination of theorem proving and model checking may
be worth exploring.

Acknowledgements The authors are grateful to Kenjiro Taura for providing the
source code with detailed explanations and suggestions about verification.

References

1. D. Bernstein and various contributors. The qmail home page. http://www.qmail.
org.

2. Y. Bertot. A certified compiler for an imperative language. Technical Report
RR-3488, INRIA, Sep. 1998.

3. P. E. Black. Axiomatic Semantics Verification of a Secure Web Server. PhD thesis,
Department of Computer Science, Brigham Young University, Feb. 1998.

4. P. E. Black and P. J. Windley. Inference rules for programming languages with side
effects in expressions. In J. von Wright, J. Grundy, and J. Harrison, editors, The-
orem Proving in Higher Order Logics, volume 1125 of Lecture Notes in Computer
Science, pages 51–60. Springer-Verlag, August 1996.

5. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, Septem-
ber 1994.

6. E. M. Clarke and J. M. Wing. Formal methods: state of the art and future direc-
tions. ACM Computing Surveys, 28(4):626–643, 1996.

7. F. B. Cohen. Why is thttpd secure? Available at http://www.all.net/journal/

white/whitepaper.html.
8. B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authenti-

cation protocols. In E. L. Gunter and A. Felty, editors, Theorem Proving in Higher
Order Logics, volume 1275 of Lecture Notes in Computer Science, pages 121–136.
Springer-Verlag, Aug. 1997.

9. J.-C. Filliâtre. Preuve de programmes impératifs en théorie des types. PhD thesis,
Université Paris-Sud, Jul. 1999. Available at http://www.lri.fr/~filliatr/ftp/
publis/these.ps.gz.

10. D. Nazareth and T. Nipkow. Formal verification of algorithm W: The monomorphic
case. In J. von Wright, J. Grundy, and J. Harrison, editors, Theorem Proving in
Higher Order Logics, volume 1125 of Lecture Notes in Computer Science, pages
331–345. Springer-Verlag, Aug. 1996.



11. B. C. Pierce and J. Vouillon. Specifying a file synchronizer (full version). Draft,
Mar. 2002.

12. J. B. Postel. Rfc 821: Simple mail transfer protocol. Available at http://www.

faqs.org/rfcs/rfc821.html, Aug. 1982.
13. E. Shibayama, S. Hagihara, N. Kobayashi, S. Nishizaki, K. Taura, and T. Watan-

abe. AnZenMail: A secure and certified e-mail system. In M. Okada, B. Pierce,
A. Scedrov, H. Tokuda, and A. Yonezawa, editors, Proceedings of International
Symposium on Software Security, Keio University, Tokyo, Japan (Nov. 2002), Lec-
ture Notes in Computer Science. Springer-Verlag, Feb. 2003.

14. The Coq Development Team. The Coq proof assistant reference manual. Available
at http://coq.inria.fr/doc/main.html, 2002.

15. P. Wadler. Monads for functional programming. In M. Broy, editor, Marktoberdorf
Summer School on Program Design Calculi, volume 118 of NATO ASI Series F:
Computer and systems sciences. Springer-Verlag, Aug. 1992. Also in J. Jeuring and
E. Meijer, editors, Advanced Functional Programming, Springer Verlag, LNCS 925,
1995. Some errata fixed August 2001.


