
Formalization of Shannon’s Theorems Using the Coq Proof-Assistant

Reynald Affeldt

Research Institute for Secure Systems, National Institute of Advanced Industrial Science and Technology

概 要
Proofs in information theory can be very technical,

to the point that the exposition of details must some-

times be sacrificed for the sake of clarity. The only way

to provide complete proofs without impairing under-

standing is to formalize them with the help of dedicated

computer software: proof-assistants. In this tutorial,

we demonstrate formal proof for information theory.

First, we explain the basics of formal proof within the

Coq proof-assistant. Second, we introduce a library of

formal definitions and lemmas to formalize information

theory using Coq. Last, we explain how we formalized

Shannon’s theorems. Since the latter constitute the

foundations of information theory, we believe that our

work paves the way to further research in coding the-

ory.

1 What are Formal Proofs Useful For?

A proof is a deductive argument that establishes a

mathematical statement. It is usually articulated using

natural language and conventional notations. A proof

is only as detailed as it is necessary to be convincing.

Yet, when proofs become large, they become uncheck-

able by human beings. This is for example the case of

the proof of the Kepler conjecture by Hales [7].

Computers are now used to help mathematicians to

construct proofs. It began in 1976 when Appel and

Haken proved the four color theorem [4]. At first, some

mathematicians disregarded this proof because it relied

on an enumeration by a computer program that cannot

be checked by hand.

Proof assistants are computer software for the con-

struction of proofs. They not only help carrying out

tedious enumerations, but they also provide a double-

checking mechanism to ensure that no reasoning error

has been introduced in the process. When Gonthier

formalized the proof of Appel and Haken with the Coq

proof-assistant [3] in 2005, it became clear that the four

color theorem was proved at last [5].

In the case of the Coq proof-assistant, the double-

checking mechanism is a proof-checking algorithm. It

all comes from type theory, an alternative to set theory

for the foundations of mathematics [8]. It was observed

in 1968 that there is a correspondence between formal

proofs and functional programs (this is the so-called

Curry-Howard isomorphism). Since one knows how to

check whether a program is well-typed, one also knows

how to check that a proof is correctly constructed. This

provides a small trusted base to check proofs mechani-

cally and this is the basis for the construction of proof-

assistants.

Application to Information Theory We claim that

information theory and error-correcting codes can ben-

efit from formal proofs. The main reason to believe so

is that proofs in information theory are often very tech-

nical, so that the exposition of details is often sacrificed

for the sake of clarity. For example, it is not rare to

find in asymptotic proofs claims such as “this holds for

n sufficiently large” without any justification for the

existence of such a bound. Similarly, recent advances

in coding theory (e.g., low-density parity-check codes)

are supported by proofs lacking so much detail that

their formalization is a subject of concern.

We have recently started working on formalization

of information and coding theory using the Coq proof-

assistant. In particular, we have recently completed the

formalization of Shannon’s theorems (a.k.a. the source

and channel coding theorems) that define the basic no-

tions of information theory, namely the entropy and

the channel capacity. We are now working on formal-

ization of error-correcting codes.

2 The Basics of the Coq Proof-Assistant

We now explain the basics behind the proof check-

ing algorithm of the Coq proof-assistant. Let us con-

sider the following mathematical statement, where A,

B, and C are propositions:

(A → B → C) → (A → B) → A → C

It is certainly true, but how do we provide a checkable

proof for it? A formal proof is written using a small

set of reasoning rules. Here follow the two generic rea-

soning rules needed to prove statements about the im-

plication:

[F]i
...

G

F → G
→ Ii

F F → G
G

→E

Intuitively, the rule on the left says that to prove F →
G, it is sufficient to derive G from the assumption F .

The rule on the right is the well-know modus ponens:

if one knows F and F → G, when one knows G. These

two rules are all what is needed to prove the above

statement. One solely needs to arrange them in a well-

formed tree as follows:

[A → B → C]1 [A]3
B → C

→E
[A → B]2 [A]3

B
→E

C
→E

A → C
→ I3

(A → B) → A → C
→ I2

(A → B → C) → (A → B) → A → C
→ I1

That is a formal proof, and one can easily imagine a

system that checks whether or not the above tree is

well-formed. The way the Coq proof-assistant per-

forms the above checking is a bit more convoluted:

proofs are actually represented as terms of the so-called

λ-calculus, an archetypal programming language, to

which types are attached that can be read exactly as

mathematical statements. This is this reading of types

as statements and programs as proofs that is known as

the Curry-Howard isomorphism.

A Proof in Coq In practice, it is not manageable to

manipulate graphical objects such as the above proof

tree. Instead, the user of the Coq proof-assistant writes

down proof scripts using characters (often in ASCII

to ease input) to construct proofs interactively. The

user first inputs the statement he wants to prove us-

ing standard notations from type theory: one writes

P : T where P is a proof and T is a type; propositions

Prop are basic types; types can be arranged with the

implication ->:

$ Variables A B C : Prop.

$ Lemma goal : (A->B->C)->(A->B)->A->C.

Coq answers by displaying the bottom of the proof

tree to be constructed:

> ===========

> (A->B->C)->(A->B)->A->C

The user goes on by giving names to the hypotheses

(H1, H2, H2):

$ intro H1. intro H2. intro H3.

Coq responds by updating the proof object accord-

ingly, adding named hypotheses above the conclusion:

> H1 : A->B->C

> H2 : A -> B

> H3 : A

> ===========

> C

The rule for modus ponens is also called cut. It

results in splitting the proof tree into two sub-goals:

$ cut B.

> H1 : A->B->C

> H2 : A -> B

> H3 : A

> ===========

> B -> C

>

> subgoal 2 is:

> B

The first subgoal can be solved by applying the hy-

pothesis H1 to the hypothesis H2:
$ apply (H1 H3).

Similarly apply (H2 H3) solves the second subgoal

and this concludes the proof.

Coq can therefore been seen as the language to write

proof scripts (intro, cut, apply, etc.) and to man-

age the resulting lemmas (the lemma goal here) into

reusable libraries.

3 Shannon’s Theorems

In this tutorial, we will focus on formal definitions

to state Shannon’s theorems; much work actually goes

into the construction of proof scripts but this is too

technical to fit this abstract.

3.1 Finite Probabilities

First of all, we will need a formalization of proba-

bility distributions to be able to formalize probability

of error or success of decoding. A probability distri-

bution over a set A can be formalized as a function

from A to R+ (the type of positive reals) such that the

sum over A of all the probabilities is equal to 1 (i.e.,∑
a∈A P (a) = 1). Already much needs to be formal-

ized in order to write down such a definition but luckily

Coq comes with several libraries that provide the most

basic mathematical objects: the type R of reals comes

from the standard library of Coq, and one can find

summation operators in the SSReflect [9] extension of

Coq. Let us note pmf the function that defines a proba-

bility distribution (function from A to R+) and pmf1 the

proof that
∑

a∈A P (a) = 1. Since pmf and pmf1 need

to be put together for the formalization of a probabil-

ity distribution to make sense, we arrange them as a

Record:
Record dist := mkDist {

pmf :> A -> R+ ;

pmf1 : \rsum_(a in A) pmf a = 1 }.

Since we are implicitly considering sample spaces to

be the powerset of some set A, an event can be for-

malized as a boolean predicate over A (pred A, which

is nothing more than a function from A to booleans).

The probability that the event E holds is defined as∑
a∈A
E a

P (a):

Definition Pr P (E : pred A) :=

\rsum_(a in A | E a) P a.

Now, let us assume that we are given some distri-

bution P over A (i.e., some object P with the type

dist A). Then one can easily define the entropy of P

(i.e., −
∑

a∈A P (a) logP (a)):

Definition entropy P :=

- \rsum_(a in A) P a * log (P a).

In the following, ‘H P denotes the entropy of P.

3.2 The Source Coding Theorem

The source coding theorem is a theorem about in-

formation compression over a noiseless channel. A

(source) code is a pair of (1) an encoding function that

turns tuples of k elements of some input alphabet A

into n bits (i.e., booleans):

Definition encT := k.-tuple A -> n.-tuple bool.

and (2) a decoding function that recovers the tuples

of A elements from the tuples of bits:

Definition decT := n.-tuple bool -> k.-tuple A.

Formally, a source code is a pair of such encoding

and decoding functions:

Record scode := mkScode { enc : encT; dec : decT }.

The goal of a source code is to minimize the number

of bits needed for encoding, in other words to lower the

rate of source codes:

Definition SrcRate (sc : scode) := n / k.

The probability of error for decoding with a source

code sc is defined as the probability that decoding (i.e.,

function dec sc) of encoding (enc sc) fails:

Definition SrcErrRate P sc := Pr (P ‘^ k)

[pred t | dec sc (enc sc t) != t].

The probability here is taken over the distribution of

tuples of k elements emitted with probability distribu-

tion P. We note P ‘^ k this tuple distribution, defined

as t 7→
∏

1≤i≤k P (ti) (formalization omitted here).

The direct part of the source coding theorem says

that for a source emitting symbols with probability dis-

tribution P there exists a source code of rate greater

than ‘H P such that the probability of decoding error

is negligible. Above formal definitions are enough to

formally paraphrase this statement as follows:

Theorem source_coding_direct :

forall lambda, 0 < lambda < 1 ->

forall r, ‘H P < r ->

exists k n (sc : scode A k n),

r = SrcRate sc /\

SrcErrRate P sc <= lambda.

Conversely, codes with rate smaller than the entropy

of the source have non-negligible probability of decod-

ing error:

Theorem source_coding_converse :

forall lambda, 0 < lambda < 1 ->

forall r : Qplus, 0 < r < ‘H P ->

forall n k (sc : scode A k.+1 n),

r = SrcRate sc ->

SrcConverseBound P (num r) (den r)

n lambda <= k.+1 ->

SrcErrRate P sc >= lambda.

Here, SrcConverseBound (formal definition omitted

here) is a function that defines a bound above which k

is big enough for the source code to have non-negligible

error rate, a bound that is never defined in pencil-and-

paper proofs but that needs to be made explicit to

complete the formal proof.

3.3 The Channel Coding Theorem

The channel coding theorem is a theorem for reliable

information transmission over a noisy channel. The

basic idea is to encode messages from some set M by

a longer message. Formally, such an encoding func-

tion is a function that turns messages into tuples of,

say n, elements of A where A is the input alphabet of

the channel:
Definition encT := {ffun M -> n.-tuple A}.

A decoding function conversely turns the output of

the channel (tuples of n elements of B, the output al-

phabet) back into messages. To represent the fact that

decoding can fail, the codomain of the decoding func-

tion is formalized by an option type:
Definition decT := {ffun n.-tuple B -> option M}.

A (channel) code is then simply a pair of an encoding

function and a decoding function:
Record code := mkCode { enc : encT; dec : decT }.

Of course, we are looking for n to be as small as pos-

sible. In other words, we are interested in maximizing

the rate of the code defined as follows:
Definition CodeRate (c : code) := log #| M | / n.

Channels are represented by stochastic matrices,

that are best formalized by functions returning distri-

butions (the row of the stochastic matrix). Here follows

the type of a channel with input alphabet A and output

alphabet B:
Definition channel1 := A -> dist B

Hereafter, we denote channel A B by ‘C1 A B. The

main characteristic of a channel is its capacity. The lat-

ter is the least upper bound of the mutual information

(between the input distribution and the output dis-

tribution) taken over all possible input distributions.

We formalize the capacity by a relation capacity be-

tween a channel and a real number. Beforehand, let us

formalize the mutual information. The output distri-

bution is the distribution of the outputs:
Definition out_dist (P : dist A)

(W : ‘Ch1 A B) : dist B.

apply makeDist with (fun b =>

\rsum_(a in A) W a b * P a).

...

(This definition needs to be completed by the proof

that this function is really a distribution, we omit it

for lack of space.) We also need the joint distribution

of the inputs and the outputs:

Definition joint_dist (P : dist A)

(W : ‘Ch1 A B) : dist [finType of A * B].

apply makeDist with (fun ab =>

W ab.1 ab.2 * P ab.1).

...

Let us note ‘H(P o W) the entropy of the output dis-

tribution and ‘H(P , W) the entropy of the joint dis-

tribution. The mutual information is then formalized

as follows:

Definition mut_info P (W : ‘Ch1 A B) :=

‘H P + ‘H(P ‘o W) - ‘H(P , W).

We are now in a position to formalize the relation

between a channel W and its capacity cap:

Definition capacity (W : ‘Ch1 A B) cap :=

lubound (fun P => ‘I(P ; W)) cap.

Here, lubound is a relation such that lubound f lub

holds when lub is the least upper bound of f.

The direct part of the channel coding theorem says

that for some rate strictly smaller that the channel ca-

pacity, there exists a code with this rate such that the

probability of error is negligible. Put formally:

Theorem channel_coding : r < cap ->

forall epsilon, 0 < epsilon ->

exists n M (c : code A B M n),

sval r = CodeRate c /\

CodeErrRate W c < epsilon.

CodeErrRate is the probability that decoding of en-

coded messages fails. It is formalized as follows. First

we define the probability of decoding error knowing

that some message m was sent:

Definition ErrRateCond (W : ‘Ch1 A B) c m :=

Pr (W ‘‘^ n (| enc c m))

[pred tb | dec c tb != Some m].

W ‘‘^ n (| enc c m) is the distribution of outputs

knowing that that enc c m was sent (formalization

omitted here). The probability of decoding error is de-

fined as the average probability for all messages in M:

Definition CodeErrRate (W : ‘Ch1 A B) c :=

1 / INR #| M | *

\rsum_(m in M) ErrRateCond W c m.

The most difficult Shannon’s theorem is the converse

part of the channel coding theorem, which shows that

codes with rate beyond channel capacity have negligi-

ble success rate. Let W be a channel with input alpha-

bet A and output alphabet B, and capacity cap (i.e.,

capacity W cap). Let epsilon be some strictly posi-

tive real number and let minRate be some real strictly

bigger than the capacity (minRate > cap). The con-

verse of the channel coding theorem can be formalized

as follows:

Theorem channel_coding_converse : exists n0,

forall n M (c : code A B M n),

M != set0 -> n0 < n -> minRate <= CodeRate c ->

CodeSuccRate W c < epsilon.

The success rate is the complement probability of the
error rate seen above:

Definition CodeSuccRate W c := 1 - CodeErrRate W c.

Conclusion We gave an overview of the formalization

of Shannon’s theorems using the Coq proof-assistant.

We provided most formal definitions necessary to un-

derstand the formal statements of the theorems (doc-

umentation for the complete formal development can

be found online [2], see also [1] for more details and

related work). Compared to pencil-and-paper proofs,

our formalization has the benefit of providing explicit

proofs of existence for all the bounds that appear in the

proofs and is guaranteed to be free of typos, implicit

assumptions, and, of course, errors. This effort helped

in particular in debugging the pencil-and-paper proofs

in the textbook by Hagiwara [6].

Acknowledgments This tutorial is based on joint

work with Manabu Hagiwara and Jonas Sénizergues.

参考文献
[1] R. Affeldt, M. Hagiwara. Formalization of Shan-

non’s Theorems in SSReflect-Coq. In 3rd Con-

ference on Interactive Theorem Proving, LNCS

7406:233–249. Springer, 2012

[2] Formalization of Shannon’s Theorems. Coq

documentation. http://staff.aist.go.jp/

reynald.affeldt/shannon

[3] The Coq Proof Assistant. http://coq.inria.fr

INRIA, 1984–2013

[4] K. Appel, W. Haken. Every map is four

colourable. Bulletin of the American Mathemat-

ical Society 82:711–712 (1976)

[5] G. Gonthier. Formal Proof—The Four-Color The-

orem. Notices of the American Mathematical So-

ciety 55(11): 1382–1393 (2008)

[6] 萩原 学. 符号理論：デジタルコミュニケーションに
おける数学. 日本評論社，2012

[7] T. C. Hales. A proof of the Kepler conjecture. An-

nals of Mathematics 162(3):1065–1185 (2005)

[8] J. van Heijenoort. From Frege to Gödel: A Source

Book in Mathematical Logic, 1879–1931. Harvard

University Press (1967)

[9] G. Gonthier, A. Mahboubi, E. Tassi. A Small Scale

Reflection Extension for the Coq System. Techni-

cal Report 6455. Version 11. INRIA, 2012

